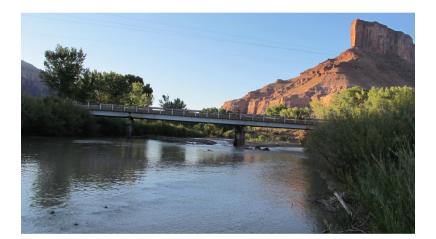


Applied Research and Innovation Branch

DEVELOPING BRIDGE-SCOUR EQUATIONS FOR COLORADO MOUNTAIN STREAMS


Albert Molinas, Amanullah Mommandi, Aziz Khan, Brett Sollenberger

Report No. CDOT-2018-10 March 2018 The contents of this report reflect the views of the author(s), who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views of the Colorado Department of Transportation or the Federal Highway Administration. This report does not constitute a standard, specification, or regulation.

		Tec	hnical Report Docu	mentation Page
1. Report No. CDOT-2018-10	2. Government Accession No		3. Recipient's Cat	
4. Title and Subtitle DEVELOPING BRIDGE-SC	COUR EQUATIONS	FOR COLORAD	5. Report Date March 2018	
MOUNTAIN STREAMS			6. Performing Org	ganization Code
7. Author(s) Albert Molinas, Amanullah Morr	nmandi, Aziz Khan, Breti	Sollenberger	8. Performing Org CDOT-2018-1	anization Report No. 0
9. Performing Organization Name and A Hydrau-Tech, Inc.	Address		10. Work Unit No.	(TRAIS)
363 West Drake Road, Suite Fort Collins CO 80526	3B		11. Contract or Gr	rant No.
12. Sponsoring Agency Name and Add Colorado Department of Transp			13. Type of Repor Final	rt and Period Covered
4201 E. Arkansas Ave. Denver, CO 80222			14. Sponsoring Ag 106-04	gency Code
15. Supplementary Notes Prepared in cooperation with th	e US Department of Tra	nsportation, Feder	al Highway Admin	istration
16. Abstract CDOT currently uses FHWA's HE for a bridge site are first computed pier-scour equations given in FHW consideration. The laboratory and i uniform sediments, subcritical-flow mountain channels, bridge-scour e Traditional equations overestimate In this research study, a new brie mountainous regions of Colorado. parameter to pier scour. Dimension accommodates the presence of cob material through the scour-initiation river bed), and to average coarse m This report presents the develop different sites scattered across mou derived from 16 bridges through a Plan of Action (POA) for Scour-C described, along with methodologi As shown in the report, measure agreement through the entire range material in the streams varied from parent materials varied from sand a wide range of flow and environme	in applying the FHWA me VA's HEC-18 design manu field data used in developing w conditions, and flatter gr quations are applied beyon bridge scour for hydraulic dge pier-scour equation ha This equation utilizes a din less excess velocity, by in bles and boulders through g velocity term. The gener n velocities to representative naterial that exists in abund ment of the new scour equ intainous parts of CDOT R culmination of bridge-scour ritical Bridges study. Addi es employed to determine ed and computed pier-scour of observed scour values, n 2 to 24 in, the computed v and gravel to boulder sizes	ethods. By applying al, scour values are of ng the FHWA equation adients. In western s d the range of condi- conditions encounted s been developed sur- nensionless excess- cluding critical and the critical-velocity ral form of the equat ve fine material (D35 lance along mountain ation, and applies the tegions 3 and 5. Sou ar studies conducted tional coarse-materian pier-scour estimates r values for the 38 pi- which vary from 0 to velocities ranged fro- , it can be concluded a shown to be an exce	these computed hydra computed for the brid ions was based largel tates where many brid tions for which they vered in steep mountain itable for streams flow velocity concept, and scour-initiating veloc term, as well as finer ion leads to calibratio 5 of parent-sediment in n streams. is equation to compute rces of data used in the for CDOT by Hydraval al data collected for the ters included in the stream to 14 ft. Considering to a that the equation wa rellent predictor.	aulic parameters to lge under y on streams with dges cross steep were derived. n streams. wing through relates this flow ities in its definition, sand-gravel size on coefficients material found on the te pier scour at 16 he analysis are u-Tech, Inc. for a his project is udy show very good that the coarse that the range of
17. Keywords Pier scour, local scour, effect HEC-18, steep mountain stre velocity, steep channels, pier scour in cobble bed, pier scor effects of coarse material, loc	ams, excess scour in gravel, pier ur in boulder bed,		^{nent} available on CDOT adodot.info/progran	
Froude number	-	this page)	21 No. of Domini	22 Dries
19. Security Classif. (of this report) Unclassified	20. Security Classif. (of Unclassifie		21. No. of Pages 815	22. Price
Form DOT F 1700.7 (8-72) Repr	oduction of completed page autho	rized		

FINAL REPORT DEVELOPING BRIDGE-SCOUR EQUATIONS FOR COLORADO MOUNTAIN STREAMS

Albert Molinas and Brett Sollenberger, Hydrau-Tech, Inc. Amanullah Mommandi and Aziz Khan, CDOT

Prepared by: Colorado State University and Hydrau-Tech, Inc.

Sponsored by: Colorado Department of Transportation in Cooperation with the U.S. Department of Transportation and Federal Highway Administration

February 2018

ACKNOWLEDGEMENTS

This study was sponsored by the Colorado Department of Transportation, Division of Transportation Development Research Branch. The authors gratefully acknowledge the Colorado Department of Transportation's financial support during the course of this study. The authors extend their deep appreciation to the members of the Colorado Department of Transportation Research Study Panel, consisting of Alfred Gross (Staff Hydraulics), Lynn Croswell (Staff Bridge), Mike Banovich (Environmental), Stuart Gardner (R-3 Hydraulics), Walt Buckholtz (R-5 Hydraulics), Dave Wieder (Maintenance), and Matt Greer (FHWA) for their technical assistance, guidance, and review of this document. The authors also acknowledge Tyler Liebman, Hydrau-Tech, Inc. for analyzing numerous sediment samples, organizing the CDOT documents, and assisting in field trips for hydraulic-data collection.

EXECUTIVE SUMMARY

CDOT currently uses FHWA's HEC-18 methods to estimate bridge-pier scour values. Velocities, depths, and energy slopes for a bridge site are computed first in applying the FHWA methods. Applying these computed hydraulic parameters to pier-scour equations given in FHWA's HEC-18 design manual, scour values are computed for the bridge under consideration. The laboratory and field data used in developing the FHWA equations was based largely on streams with uniform sediments, subcritical-flow conditions, and flatter gradients. These conditions are applicable to a large portion of streams in the eastern and southern parts of the United States. However, in western states where many bridges cross steep mountain channels, bridge-scour equations are applied beyond the range of conditions for which they were derived. Traditional equations overestimate bridge scour for hydraulic conditions that are encountered in steep mountain streams. For these cases, hydraulic engineers need customized equations suited for Colorado's geographic conditions.

In this research study, a new bridge pier-scour equation was developed suitable for streams flowing through mountainous regions of Colorado. This equation utilizes a dimensionless excess-velocity concept, and relates this flow parameter to pier scour. Dimensionless excess velocity, by including critical and scour-initiating velocities in its definition, accommodates the presence of cobbles and boulders through the critical-velocity term, as well as the finer sand-gravel size material through the scour-initiating velocity term. The development of the study's various research tasks is presented in Chapter 2. Chapter 3 presents the approach, and Chapter 4 discusses previous work conducted at Colorado State University by Dr. Molinas during a 6-year FHWA study to examine effects of gradation. Theoretical development of the new scour equation and initial steps in its derivation are presented. The general form of the equation leads to calibration coefficients relating critical and scour-initiation velocities to representative fine material (D_{35} of parent-sediment material found on the river bed), and to average coarse material that exists in abundance along mountain streams. Chapter 5 presents the new scour equation and applies this equation to compute pier scour at 16 different sites scattered across mountainous parts of CDOT Regions 3 and 5. Sources of the data used in the analysis are presented in Chapter 5. Extensive data from 16 bridges, a culmination of bridge-scour studies conducted for CDOT by Hydrau-Tech, Inc. for a Plan of Action (POA) for Scour-Critical Bridges study, is described. Additional coarse-material data collected for this project is described, along with methodologies employed to determine pier-scour estimates. Finally, tables related to scour computations are presented, and computed scour is compared with measured scour.

As shown in Figure 5.1 (page 59), measured and computed pier-scour values for the 38 piers included in the study show very good agreement through the entire range of observed-scour values, which vary from 0 to 14 ft. Considering that the coarse material in the streams varied from 2 to 24 in, the computed velocities ranged from 2 to 15 ft/sec, and the range of parent materials varied from sand and gravel to boulder sizes, it can be concluded that the equation was tested through a wide range of flow and environment conditions, and has been shown to be an excellent predictor.

IMPLEMENTATION PLAN

In this research study, a new bridge pier-scour equation suitable for streams flowing through mountainous regions of Colorado was developed. This equation utilizes a dimensionless excess-velocity concept, and relates this flow parameter to pier scour. Dimensionless excess velocity, by including critical and scour-initiating velocities in its definition, accommodates the presence of cobbles and boulders through the critical-velocity term, as well as the finer sand-gravel size material through the scour-initiating velocity accounts for the presence of large particles found in abundance in Colorado stream beds, results of pier-scour computations using the new equation are more realistic. The use of the newly-developed equation is recommended for applications involving high-velocity mountain streams with large cobbles and boulders.

Even though the laboratory database was adequate to derive the form of the new equation, the steepmountain scour database used in the calibration of the coefficients was limited. It is recommended that this database be expanded as new pier-scour data becomes available from mountain regions, and used in further refining the coefficients of the new equation.

TABLE OF CONTENTS

1.	BACKGROUND	9
2.	CONCEPT OF PROBLEM AND OBJECTIVES	
	2.1 PROBLEM STATEMENT	
	2.2. OBJECTIVES	
3.	APPROACH	
	3.1 RESEARCH TASKS	
4.	PREVIOUS CSU STUDIES FOR THE EFFECTS OF GRADATION AND COARSE- MATERIAL FRACTION ON PIER SCOUR	16
	4.1. General	
	4.2. Experimental Setup and Measurements	16
	4.2.1. Laboratory Flumes	16
	4.2.2. Piers	
	4.2.3. Sediment Mixtures	
	4.2.4. Measurements	
	4.2.5. Experimental Procedure	
	4.3 EXPERIMENTAL RESULTS	
	4.4 THEORETICAL ANALYSIS	
	4.4.1. Governing Parameters	
	4.4.2. Derivation of <i>K</i> 4 Relationship	
	4.5 ADJUSTMENTS TO FHWA'S CSU PIER-SCOUR EQUATION.	
	4.6 SUMMARY AND CONCLUSIONS OF THEORETICAL DEVELOPMENT	53
5.	DEVELOPMENT OF PIER SCOUR EQUATION FOR COLORADO STREAMS	56
	5.1 GENERAL	
6.	SUMMARY AND CONCLUSIONS	64
AP	PENDICES	65

1. BACKGROUND

The CDOT presently uses FHWA's HEC-18 methods to estimate bridge-scour values in bridge-scour computations. In applying these methods, first a hydraulic computation method (FHWA's WSPRO or U.S. Army Corps of Engineers' HEC-RAS) is used to compute velocities, depths, and energy slopes for a bridge site. Applying these computed hydraulic parameters to scour equations given in FHWA's HEC-18 design manual, scour values are computed for the bridge under consideration. Depending on the strength of flows and the sediment-movement regime, clear-water and moveable-bed scour equations are used for different bed-material properties.

FHWA's HEC-18 design manual provides scour equations for clear-water and moveable-bed scour conditions. In all of these equations, hydraulic conditions are represented by the Froude number, the dimensionless ratio of velocity to depth and gravitational acceleration. In general terms, for most river flows Froude numbers are less than 0.4. For steep channels, Froude numbers are greater than 0.6, and in some cases, greater than 1 (supercritical). There is a need to develop specialized bridge-scour equations for steep mountain streams with high Froude numbers.

Using the current HEC-RAS application for steep mountain reaches, scour calculations often result in unrealistic scour depths. This is due to the fact that for steep channels, the range of Froude numbers is far beyond the data used in developing the existing equations. For mountain streams, scour is mostly related to velocity rather than the Froude number. The analysis should reflect the physical conditions with data derived from similar conditions.

2. CONCEPT OF PROBLEM AND OBJECTIVES

2.1 Problem Statement

CDOT builds and maintains many roadway projects with bridges that cross rivers and small streams. The safe and economic design of these bridges requires hydraulic computation of potential pier and abutment scour. For existing structures, potential bridge-scour computations are needed to assess the safety of these structures.

The pier- and abutment-scour equations used in the Federal Highway Administration's guidelines are presented in HEC-18 design manual. These equations were developed using hydraulic conditions of flat channels. The laboratory and field data used in developing the FHWA equations was based largely on streams with subcritical conditions and flatter gradients. These conditions may be applicable to a large portion of streams in the eastern and southern parts of the United States. However, in midwestern states where many bridges cross steep mountain channels, bridge-scour equations are applied beyond the range of conditions for which they were derived. For hydraulic conditions that are encountered in steep mountain streams in Colorado, traditional equations overestimate bridge scour. For these cases, hydraulic engineers need customized equations suited for Colorado's geographic conditions.

In the proposed approach, bridge scour for steep mountains is related to a new parameter defined as the *excess velocity*, rather than the presently-used Froude number (velocity divided by square root of gravitational acceleration times the flow depth, $F=V/\sqrt{gd}$), or shear stress (the specific weight of water multiplied by the hydraulic radius and the energy slope, $\tau = \gamma RS$), currently used in HEC-18 equations. In the present analysis, the excess velocity, representing the strength of approach flow, is related to bridge scour. Excess velocity is defined as the dimensionless velocity in excess of velocity needed to initiate the motion of bed material and initiate bridge scour.

$$\Psi = (V_{\rm a} - V_{\rm i}) / (V_{\rm c} - V_{\rm i})$$

where Ψ = dimensionless excess velocity; V_a = approach flow velocity; V_i = velocity needed to initiate the motion of bed material; V_c = critical velocity beyond which all sizes of fractions are mobilized.

By using excess velocity, the effects of large cobbles and boulders present in steep mountain streams can be represented. Additionally, by not using a "lumped" Froude number, the exaggerated effects due to variations in depth will be eliminated.

2.2. Objectives

CDOT has stated the primary objective of this study is to provide a technical tool to compute bridge scour in steep mountain channels. The pier- and abutment-scour equations developed from the study are required to be applicable to the range of slopes, velocities, and depths encountered in bridges crossing steep Colorado streams. In order to accomplish these objectives, enhancements to the current bridge-scour equations are needed. These enhancements can be grouped into three major categories:

- Introduction of new parameters in scour equations to represent steep mountain hydraulics (shallower depths, higher velocities, coarser bed material in the form of gravels, cobbles, and boulders);
- Calibration of new relationships with data specific to Colorado (this data is currently being collected as part of the Plan of Action for Scour Critical Bridges project); and
- Development of scour equations for mountain streams.

3. Approach

3.1 Research Tasks

The scope of work developed by CDOT for this project delineated six basic tasks. Each task is further delineated into sub-tasks where appropriate. This study has closely followed these tasks.

Task 1. Perform a literature review to determine if there has been similar research that will aid CDOT in improving current practices.

This task is aimed at identifying CDOT and nationwide bridge-scour and technical data for steep mountain streams. The study team has developed strong relationships with national highway agencies, including the American Association for State Highway Transportation Officials (AASHTO), the National Cooperative Highway Research Program (NCHRP), and the Federal Highway Administration, through long associations with these agencies. In conducting a literature search, these agencies were contacted and inquiries made about methodologies adopted by the agencies. The team has identified the following sources of information:

- Within Colorado: state universities, local FHWA personnel, and consulting engineering firms involved in FHWA work;
- Nationwide and internationally: other DOTs, AASHTO, FHWA, ASTM, universities and institutions; and
- The Transportation Research Board: existing and in-progress research studies available from the Transportation Research Information Services' database.

The research team studied procedures of other DOTs related to pier and abutment scour and conducted an extensive literature review. The principal author of this report, Dr. Albert Molinas, had conducted a 6-year laboratory research study for the Federal Highway Administration to identify effects of gradation and cohesion on bridge scour (1991-1996, 1998). His research resulted in the adoption of a gradation-correction factor for pier scour (the *K*₄ factor used in HEC-18). He also authored FHWA's BRI-STARS analysis model between 1986 and 2000 for four consecutive projects. These projects utilized various bridge-scour equations recommended by HEC-18 in addition to stream-tube computations to overcome difficulties associated with large contraction-scour estimations.

Dr. Christopher Thornton, of Colorado State University, has conducted hundreds of pressure-scour, debris-scour, and bridge-scour countermeasure experiments to examine ways to quantify and prevent adverse effects of bridge scour. As a part of this effort he conducted numerous literature reviews on bridge-scour topics. These reviews were closely related to the proposed research topic and were used by the research team.

Task 2. Conduct a national survey of state DOTs to determine if other states have had similar problems, and if so, their solutions and recommendations.

For this task, information from other state DOTs related to bridge scour was obtained. Review of the information was useful in defining governing flow parameters. In the extensive, multi-year, Colorado Statewide Plan of Action for Scour Critical Bridges (POA) project and the 2013 Emergency and Permanent Flood Recovery projects the research team collaborated with CDOT to develop needs specific to Colorado to address problems with current practices and methodologies.

Task 3. Field inspection of bridges with scour problems.

Specific bridge sites were determined by the CDOT Staff Hydraulics Engineer, Region Hydraulics Engineers, representatives of Staff Bridge, and Region Maintenance personnel. Approximately 20 candidate sites from the mountainous parts of Colorado were selected. Under the current Plan of Action (POA) for Scour Critical Bridges and Bridges with Unknown Foundations projects the research team collected hydrologic, sediment size, channel geometry, and bridge data for some mountain-bridge sites over steep channels. Hydraulic computations for velocities and depth were conducted. Existing data was supplemented by field visits to collect additional sediment data and scour information.

Figures 3.1 and 3.2 Field inspection of scour-critical bridges

Task 4. Prepare a workplan for field work and get approval for all traffic control and safety plans; inform personnel from Traffic, Maintenance, Residencies, Headquarters, and other parties involved, including outside agencies and organizations, prior to the field activities and site visits.

For this task a workplan was prepared in cooperation with CDOT headquarters staff, and the appropriate people were notified for traffic control and safety. Personnel from Maintenance, Residencies, Headquarters, and other parties involved were notified prior to field visits.

Task 5. Analyze data collected in the above tasks and develop a scour-equation design procedure to be used by CDOT hydraulics engineers statewide for calculating and analyzing scour in mountainous areas of the state.

In this task data collected from a search of existing literature, the Staff Bridge database, actual field surveys, and other unbiased, reliable sources was analyzed. For specific Colorado sites the measured scour from maintenance records and as-built drawings was correlated with various parameters including type

of structures, bed materials, and hydraulic conditions. These conditions included excess velocities, depths, and geometric characteristics of piers and abutments.

Using the information collected from the previous tasks, new bridge-scour equations were developed which were specifically applicable to Colorado. In this study, the objective was to derive relationships between bridge scour and hydraulic parameters similar to those utilized in HEC-18. However, in the present approach, hydraulic parameters and relationships pertinent to steep mountain streams were developed. Using data derived from Colorado, coefficients of these relationships were calibrated to reflect local conditions. The form and applicability of the equations were discussed with hydraulic engineers from CDOT in order to customize the equations with parameters that can be reliably measured or obtained. Depending upon the availability of data, the bridge-scour equations were modified to reflect Colorado's various geographical areas, and the types of floods and the durations specific to them.

The most commonly accepted HEC-18 equation, the CSU pier-scour equation, was based on laboratory data using silt-sized sediments where the initiation of motion occurred at very low velocities. As a result, scour predictions based on this equation are overly conservative. In steep mountain streams the river beds are composed of large gravel, cobbles, and boulders. Initiation of scour does not occur until stream velocities reach significantly higher levels. By using the concept of excess velocity, the approach outlined in this report overcomes this deficiency of high scour-initiating velocities. The excess-velocity concept also considers the critical velocity of sediment mixtures to account for the presence of coarse fractions in river beds.

Shear stress is defined as the specific weight of water multiplied by the hydraulic radius and energy slope. The energy slope may vary by several orders of magnitude depending on the reach length and accuracy of assumed downstream elevations. Velocity is easier to compute and verify in the field, and there are less variations which are due to limited computational accuracy.

The Froude number is the ratio of velocity to the square root of gravitational acceleration times the flow depth, $F=V/\sqrt{(gd)}$. Steep mountain channels are characterized by shallower depths, and the range of depth variation is limited. As a result, scour is not related to square root of depth, but more closely to $d^{1/6}$. Therefore equations based on Froude numbers overestimate the effects of depth.

Excess velocity accounts for the presence of large material. Computed-scour depths using excess velocity equations would be zero rather than an unreasonably large value for velocities less than or slightly greater than the velocity needed to move the bed material.

In the past, experiments at CSU which studied the effects of gradation on bridge scour (Molinas, 1998) have shown that when the correlations between measured bridge scour and flow strength were conducted with effective velocity instead of the traditional Froude number, the scour overestimation was reduced, even when using FHWA's recommended equations.

By not using the "lumped" Froude number, the exaggerated effects of variations in depth will be eliminated. This process is commonly used in sediment-transport relationships where sediment transport is related to velocity rather than Froude number.

Sediment-transport literature and FHWA publications provide various definitions of critical velocity, and define this term for various sediment sizes. Dr. Molinas' research study for FHWA has provided a more-definitive relationship for critical velocity for graded sediments which are commonly encountered in mountain streams, and which are the reason for channel-bed armoring. The validity of various definitions was tested with field data by comparing computed critical velocities corresponding to surface/subsurface bed material with actually-experienced velocities during known historical flooding events.

Task 6. Submit draft and final reports which properly address comments of the study panel.

A draft final report for the research study was prepared, which included observations, findings, and recommendations. This document is the final report.

4. PREVIOUS CSU STUDIES ON THE EFFECTS OF GRADATION AND COARSE-MATERIAL FRACTION ON PIER SCOUR

4.1. General

Pier scour has been extensively studied in the past for uniform and graded-sediment mixtures. In general, pier-scour equations account for the variation in sediment properties either by including a correction factor for sediment gradation, or by the use of median size and a gradation coefficient in developing experimental regression equations. This study focused on a new governing sediment parameter which describes the characteristics of the coarse fraction available in mixtures. It also accounts for the wide variation in scour depth for mixtures with the same median size and size-gradation factor. Along with a dimensionless flow-intensity parameter, a pier-scour equation was developed to account for sediment properties in the clear-water scour range. This equation was shown to be applicable to sediment sizes ranging from 0.1 mm to 40 mm. In this study pier-scour experiments were conducted with non-cohesive materials to identify the effects of sediment properties on the resulting scour. For this purpose ten sets of experiments were performed, which were designed to vary sediment size, gradation, and other size-distribution properties. Pier-scour experiments for each sediment mixture were conducted by varying approach-flow conditions. Since the primary goal of the study was to define effects of gradation and coarse-material fraction on pier scour, other flow variables such as depth, flow angle of attack, pier shape, etc., were kept constant.

4.2. Experimental Setup and Measurements

This section describes experimental flumes, sediment mixtures used as bed materials, piers, experimental procedures, and individual measurements employed in quantifying effects of gradation and coarse-material fraction on pier scour.

4.2.1. Laboratory Flumes

Three laboratory flumes, designated as hydrodynamics flume, sedimentation flume, and river mechanics flume, were utilized simultaneously for conducting pier-scour experiments in non-cohesive sediment mixtures. The first two flumes were sediment-recirculating facilities, while the latter did not recirculate sediment. All flumes are housed at the Hydraulics Laboratory of the Engineering Research Center at Colorado State University. The water supply to these flumes is from the nearby Horsetooth Reservoir. The temperature of the water in the laboratory is controlled through a system of heated pipes.

Hydrodynamics Flume

The hydrodynamics flume is a tilting, water-and-sediment recirculating, laboratory facility. The flume is 0.6 m wide, 0.75 m deep, and 18 m long, and is made of a steel bottom with plexiglass side walls to allow visual observations. The facility is rigidly supported on U-shaped steel frames spaced every 1.2 m, and is equipped with angled upper- and lower-flange stiffeners. The bottom flanges are supported on two I-beams spanning the full length of the flume, and ground supported at the far upstream, middle, and far

downstream. Two carefully-leveled guide rails are mounted on the top flanges to provide an escorting track for the measuring carriage. The flume can be tilted around its central longitudinal axis by the synchronized operation of two mechanical jacks located at the upstream and downstream ends.

Flow is supplied to the flume from a ground sump via a 0.3-m diameter steel pipe, equipped with a 0.15-m diameter bypass for fine tuning of the flow, and a 20-HP centrifugal pump. The flow is first introduced to an upstream head box, equipped with a multi-layer screen containing gravel at its outlet to serve as a flow guide to provide uniform velocities and turbulence characteristics at the entrance of the flume. A wave suppressor is then introduced. The flow depth is controlled by a downstream rotating gate hinged across the bottom of the flume, spanning the full width, and operated by a system of pulleys. Because of the tail-gate control and the nature of the flume, a back water effect was sometimes noticed, causing the water depth to increase as the gate was approached.

A uniform sediment layer 23 cm thick was prepared from the tested mixture and spread along the full length of the flume. Provisions were made for a downstream 1.8 m-long sediment trap and an upstream 1.8 m-long transition zone. The upstream transition zone is composed of coarser sediments, with a sloping profile carefully designed to provide excess friction to ensure fully-developed turbulent flow, with a boundary layer hitting the free surface far upstream of the study reaches for all flow conditions.

Sedimentation Flume

The sedimentation flume is an elevated sediment-transport testing facility that provides both longitudinal tilting and sediment recirculation. The flume is 60 m long, 2.4 m wide, 1.2 m deep, and allows for slope adjustments up to 3 percent through a system of hydraulic jacks. The flume is constructed from steel plates at the bottom and sides, with plexiglass windows along specific locations at its side. The structure's skeleton is composed of U-shaped lateral steel frames supported on box-sectioned longitudinal girders. A walkway is cantilevered from the lateral frames on each side of the structure. The upper flanges house guide rails for an electrically-motorized measuring carriage that can move to any point in the flume.

Three different pumps (125, 150, and 250 HP), with a maximum combined-flow capacity of 3 m³/s, can be simultaneously operated to supply water to the flume from a reservoir sump via three separate steel pipelines. The flow is first introduced to the upstream head box, which contains several guide vanes and flow straighteners followed by a honeycomb mesh. It then passes through a gravel-filled screen followed by a wave suppressor. Rapid development of the fully-turbulent boundary layer is achieved by an upstream concrete ramp and/or artificial roughening of the entrance zone. The flow depth is regulated through a manually-operated, downstream, adjustable tail gate.

The sediment bed is built to a thickness of approximately 0.4 m, with provisions made for a downstream sediment trap that extends for 6 m. To facilitate drainage of the flume after the experiments, a perforated 10 cm-diameter PVC pipe was embedded in the bed material and spanned the full length of the study reach. A motorized instrument carriage runs longitudinally on rails mounted on the side walls of the flume.

River Mechanics Flume

The river mechanics flume is a fixed-slope facility. The flume is 6 m wide, 0.9 m deep, and approximately 30 m long. The test section, however, was 24 m long, 5.1 m wide, and 0.9 m deep, equipped with two plexiglass viewing sections along one side of the flume, and a large upstream reservoir to create uniform entrance conditions. I-beam rails are mounted on the side walls to provide a track for the measuring carriage.

A 75-HP axial pump with maximum capacity of approximately 0.6 m³/s supplies water to the flume through a 0.6 m-diameter pipeline. The upstream main ends in a similar-size diffuser located orthogonal to the main flow direction, to distribute the flow uniformly across the flume width. The flow then passes through a gravel-filled screen, followed by an artificially-coarsened concrete ramp that joins the main sediment bed. The setup also includes a downstream sediment trap, and a downstream sill for depth regulation.

4.2.2. Piers

For the pier-scour experiments conducted in the sedimentation flume, three identical 1.22 m-high, clear plexiglass, cylindrical piers with an outside diameter of 0.18 m were utilized. Circular piers were used because of their symmetry and the abundance of data available for comparative purposes. The three piers were placed at the center line of the flume for each run. In the longitudinal direction, the leading pier was 13.7 m from the head box of the flume, the second was 24.4 m from the head of the flume, and the third was 36.6 m from the head of the flume. To keep side-wall effects insignificant, the maximum pier size (for use in the 2.48 m wide flume) was kept at 0.18 m, that is, with a flume-width-to-pier-width ratio of 13.7:1.

Depth measurements for pier scour with time were achieved utilizing visual techniques. For this purpose, the piers were constructed of transparent plexiglass material, and a measuring scale was glued to the front, side, and back of each pier. In addition, a mirror with the handle angled at 45° was placed at the base of the pier. At any time the base and deepest point of the scour hole could be easily identified and recorded by sliding the mirror within the plexiglass pier and reading the corresponding measurement on the scale. In this way scour depth with elapsed time could be obtained up to an accuracy of ± 1.5 mm. A bright light located above the water surface was used to improve the visibility of the scour region under clear-water scour conditions.

For the hydrodynamics-flume experiments, three plexiglass piers with outside diameters of 0.051 m, 0.051 m, and 0.07 m were installed in the flume, equidistant from the walls.

Pier-scour experiments in the river mechanics flume investigated the effects of pier width on the resulting scour. For this purpose six additional pier diameters, 0.019 m, 0.032 m, 0.057 m, 0.089 m, 0.165 m, and 0.216 m, were tested.

4.2.3. Sediment Mixtures

Previous researchers have indicated that there is a very strong tendency for alluvial sediments to follow the log-normal size distribution. This size distribution can be represented by a straight line on plots using

logarithmic-normal probability scales. In this case the median sediment size, D_{50} , is also the geometric mean diameter, D_g , of the sediment mixture, where D_{50} is the sediment diameter for which 50 percent of the sediment material is finer by weight. The geometric standard deviation, σ_g , is given by:

$$\sigma_{\rm g} = \frac{D_{\rm 84}}{D_{\rm 50}} = \frac{D_{\rm 50}}{D_{\rm 16}} \tag{1}$$

or,

$$\sigma_{\rm g} = \frac{1}{2} \left(\frac{D_{84}}{D_{50}} + \frac{D_{50}}{D_{16}} \right) \tag{2}$$

or,

$$\sigma_{\rm g} = \sqrt{\frac{D_{84}}{D_{16}}} \tag{3}$$

where: D_{16} , D_{50} , and D_{84} are the sediment diameters for which 16, 50, and 84 percent of the sediment material is finer by weight, respectively.

The log-normal distribution function is a two-parameter distribution and is completely defined by D_{50} and σ_{g} . However, most natural sediments show an approximate log-normal distribution only through the mid part of the distribution, approximately $D_{50} \pm \sigma_{g}$, but they usually have long tails in both the coarse and fine fractions. Thus, equations 1-3 are for gradation coefficients that measure the spread of the distribution only between D_{84} and D_{16} in most natural sediments. The presence of coarse material in sediment mixtures is better defined by sizes of different quantities, such as D_{98} , D_{95} , D_{90} , etc. For the work here, D_{50} and σ_{g} were held constant and sizes of D_{90} , D_{95} , D_{98} , etc., were changed, since armoring in the scour hole involves mostly the coarser fractions of the mixtures.

There is a specific requirement that must be met in determining the gradation of the initial grain-size distribution for the sediment mixtures. The median-size diameter must be kept constant throughout the study. In the sedimentation-flume sand-scour experiments, the median diameter was chosen to be 0.75 mm, with gradation coefficients varying between 1.3 and 4.0. In the hydrodynamics-flume sand-scour experiments, the median diameter was chosen to be 1.8 mm, with gradation coefficients varying between 1.1 and 4. Additional runs using 0.75-mm uniform sand were conducted to study scaling effects. In the river-mechanics flume sand-scour experiments, 0.45-mm sand with a gradation coefficient of 2.3 was used. Finally, in the gravel-scour experiments conducted in the sedimentation flume the median diameter was chosen to be 18 mm, with gradation coefficients varying between 1.4 and 2.3.

The properties of the sediment mixtures used in the pier-scour experiments are given in Table 1.

4.2.4. Measurements

A series of measurements is needed to define the relationship between local pier scour and the various hydraulic, geometric, and sediment parameters. These measurements are presented below.

Flow Discharge

The water discharge in all three test flumes was measured through a system of an orifice-meter and a differential manometer. For the hydrodynamics flume, two orifice plates were available: one mounted on the 0.3 m-diameter main, and the other attached to the 0.15 m-diameter bypass line. Both orifice plates were connected to a dual water-mercury manometer for detecting the pressure drop across the ends of the plate. The flow discharge was then computed from the calibration curves for the orifices. The pressure tapping across the orifice plate was connected to the manometer through hard vinyl tubing, provided with bleeding valves for drainage and for ensuring an air-free environment. The sedimentation flume is equipped with three similar setups for measuring the discharge, each attached to a different pump. Extreme care was taken to ensure the release of air bubbles entrapped in all manometer lines. Flow discharges were also estimated by integrating the vertical-velocity profiles over the entire cross section of the flume at several locations. The error in measuring the discharge in the hydrodynamics flume is approximately 3 percent, in the sedimentation flume approximately 4 percent, and in the river mechanics flume approximately 5 percent. These estimated errors are due to the calibration errors of orifice plates, unsteadiness in the pump discharge, and fluctuations in manometer readings.

Flow Velocity

In the hydrodynamics flume, velocities were measured utilizing a two-dimensional, electromagnetic, Marsh McBirney Model 523 velocity meter attached to a point gauge. This was used to measure velocity components in two orthogonal directions in the plane parallel to the bottom of the flume. The meter consisted of a spherical, electromagnetic probe with cable and signal processor powered by 6-V DC, externally charged with 110-V AC. The probe has a diameter of 12 mm and is mounted on a 6 mm-diameter, vertical standing rod. The analog signals corresponding to the two orthogonal velocities sensed by the probe were intercepted by a multi-channel data-acquisition board connected to a personal computer. The sampling duration was 30 s, with a frequency of 50 Hz. This setup resulted in velocity measurements accurate to within approximately ± 3.5 percent.

In the river-mechanics and sedimentation flumes, velocities were measured with a one-dimensional Marsh McBirney Model 2000 electromagnetic flow meter with a 2.54-cm elliptic probe and a digital-display conversion voltmeter. The error in accuracy of the flow meter is reported to be \pm 2 percent by the manufacturer, and its operating range is from -0.015 m/s to +6.1 m/s within temperature extremes of 0°C to 71°C. The overall error in accuracy of the velocity-measuring setup is estimated to be \pm 5 percent.

Flow Depth and Hydraulic Grade Line

In the case of non-uniform material, bed irregularities affect the accuracy of bed-elevation measurements. Theoretically, during experiments the bed surface is not known and the bed elevation measurement at

any section depends on the position of the tip of the point gauge relative to the larger grains on the bed. To reduce such errors, during the sedimentation-flume experiments three different point-gauge readings utilizing a flat tip were taken across each of the test sections. The bed elevation was assumed as the average of these three values. Using a point-gauge tip, the corresponding water-surface elevations were also measured. At specified test sections the depth of flow was then calculated as the average difference between the water-surface and the bed-surface elevations. For all experimental runs a uniform flow depth over the entire flume length was maintained at 0.3 m \pm 0.03 m by regulating the tail gate at the flume exit. However, the local flow depth varied along the flume length during run numbers MA-12, MA-19, and MA-27 in response to the presence of bed features.

Slope in laboratory flumes is one of the most difficult quantities to measure. Care was taken to reduce the error in slope measurements as much as possible. For this reason bed levels were measured using the point gauge, then corrected through conversion factors obtained from a careful leveling of the carriage along the entire flume using a surveyor's level and rod. The bed slope was then computed as the slope of the line of best fit based on least-square criteria. The slope of the water surface was calculated in a similar manner.

In the hydrodynamics flume the water-surface elevations were measured using point gauges with a resolution of \pm 0.3 mm. Water-surface elevation measurements were conducted at a minimum of three approach cross sections per pier, and at a minimum of four locations across the flume width at each cross section. At every location in the cross section, the water level was considered to be the average of detected values to account for any residual fluctuations in the supply discharge, and any surface waves induced by the setup. This tedious procedure assumed an accuracy of \pm 2 percent in the computed water depth. The hydraulic grade line is identified through regressing the measured water-surface values after being adjusted with the level-correction factors. The regression resulted in high correlation coefficients ($R^2 = 0.95$). The velocity head was then added to the hydraulic grade line to define the total energy line.

Free-Stream-Bed and Scour-Hole Topographies

The bed topographies for the scour holes and the free-stream approaches were measured using point gauges. In all flumes, the standard procedure for measuring topography started with leveling the instrumentation carriages at each measurement location along and across the flume to account for the potential unevenness of tracks. Choosing an arbitrary fixed level, every location in the flume, as identified by its Cartesian coordinates, was assigned a correction factor reflecting its elevation relative to the fixed level. In the hydrodynamics flume, point gauges with flat, pointed tips were utilized for measuring purposes, depending on the location and accuracy desired. The bed topographies at four different approach sections were measured for each pier model to define the upstream bed elevation. At each cross section the bed level was considered to be the average of ten measurements evenly distributed across the flume's width. To define bed topography in the vicinity of local scour requires more intensive measurements. An intensive measuring grid was adopted to describe the scour-hole region for each pier. A similar procedure was followed for the other two flumes, with provisions made for measuring the initial as well as the final levels.

The raw measurements were adjusted with leveling correction factors for each location and then regressed together to yield the value of the bed slope. Approximately 300 topography measurements were performed for each pier model per experiment. Due to the large sampling size, the error in bed measurements is considered to be equal to $\pm 1/4$ of the D_{90} grain size. The maximum scour-depth value for each run was calculated as the difference between the mean initial bed elevation and the lowest measured point of scour around each pier.

Scour Versus Time Measurements

The measurement of the scour-hole development for piers utilized visual techniques. As mentioned above, piers were made from transparent plexiglass. Measuring-grid tapes were affixed to the interior wall at the front, side, and back of each pier. Using a simple periscope with an inclined mirror, the development of scour with time was recorded without interfering with the flow. A series of lights was used to facilitate the observation of the scour-hole development. The depth of scour was recorded at regular intervals as the scour hole formed. The frequency of scour-depth measurements decreased as the rate of scouring decreased. The experiments were stopped when no change occurred to the maximum depth of the scour hole over a period of 4 hours.

Sampling of the Armor Layer

At the end of each experiment, the particle-size distribution of the armor layers formed around each pier in the scour hole, approach bed to each pier and downstream of the pier, were measured from samples obtained by the "flour-paste technique" described by Ahmed (1989). Sieve analysis was then performed on the samples using U.S. standard sieves and the available shaker in the Sediment Laboratory of the Engineering Research Center, at Colorado State University.

To determine the grain-size distribution of the armor layer, it was necessary to collect all grains from only the top layer. The most common method used by previous researchers for this purpose is the "wax method." Gessler (1967) used molten resin at 200°C, Little and Mayer (1972) used purified beeswax at 65°C to 68°C, Davies (1974) used molten petroleum wax at 76°C to 78°C, and Proffitt (1980) used paraffin wax at 55°C to 57°C. In previous work, the measured grain-size distribution of the armor layers was found to be highly affected by the temperature of the wax poured onto the bed. If the temperature is outside the narrow ranges specified above, the wax either permeates down before solidifying, or solidifies before all grains in the top layer adhere to it.

Day (1976) used the "paint method" to identify grains in the top layer, but still used the wax method to lift it up. This method predicted a coarser grain-size distribution of the armor layer than the wax method. Day explained this to be caused by the penetration of the wax below the armor layer.

In the present study, the flour-paste technique was used. The procedure proved to be much easier than the wax method in terms of preparation, use, elapsed time, and separation of the grains adhering to the paste. The paste was sticky enough for all grain sizes to easily adhere in a thick layer so that the paste did not penetrate further than the surface layer.

After the bed was allowed to dry, the paste was placed on the surface of the bed. A gentle uniform pressure was applied downward on the paste to pick up all the grain sizes on the surface layer. The paste

was then lifted up, bringing with it the grains that had been the surface layer. The process of separating the grains from the paste was achieved simply by washing the surface of the paste with warm water, and gently brushing by hand. A visual observation of the resulting surface of the paste clearly indicated that all grains, even the finest, were separated from the paste. The material was then dried, weighed, sieved, and the grain-size distribution of the armor layer at a specific area for a given flow condition was obtained.

Grain-Size Distribution

Mechanical (or sieve) analysis was used to determine the particle sizes and their relative distribution for particles greater than 0.074 mm (0.0029 in.). The smallest sieve size used in this analyses was the U.S. No. 200. The sieve number corresponds to the number of openings per linear inch. For example, the U.S. Bureau of Standards No. 8 sieve has eight openings per inch.

To accomplish the mechanical analysis, sieves were stacked one on top of the other in a nest of sieves, in which the largest screen opening (smallest sieve number) was on top, progressing to the sieve with the smallest screen openings (largest sieve number) on the bottom of the nest. A lid was placed on top of the nest and a pan was placed below the bottom sieve to catch any sediment that passed through the smallest opening. A 10-min shaking period was used in this procedure. A larger sample would require a longer shaking period. Similarly, a sample composed primarily of fine-grained material would require a longer shaking period than a coarser-grained sample of equal weight.

4.2.5. Experimental Procedure

Preparation for the scour test was initiated by leveling the bed. Prior to each run, the sediment bed was leveled with the aid of a flat plate of the same width as the flume, which was connected vertically to the instrument carriage by clamps. By employing a point gauge mounted on the carriage, initial-bed elevations were taken to check the leveling of the flume and calculate the average initial-bed elevation around each pier.

The gate was kept closed until the flume was filled with water. Then the gate was adjusted to get the desired depth, and the valves of the pump were adjusted to get the desired discharge, which was determined with an orifice inserted in the recirculating pipeline. Flow depth in the sedimentation flume experiments was maintained at approximately 0.3 m, and water-surface and bed slopes were almost parallel. For the hydrodynamics flume experiments, flow depth was kept at approximately 0.08 m.

Once the desired flow conditions were verified, the carriage and point gauge were moved along the flume in such a way that any point in the study area could be reached with the measuring devices. The watersurface profile was measured along the length of the flume to calculate its slope. Vertical-velocity profiles and development of scour with time were recorded during each experiment. In the sedimentation-flume experiments, a 16-hour duration was selected to allow maximum scour to be reached and the final scourhole geometry to be established. This period was long enough to maintain a constant maximum-scour depth for at least 3 to 4 h. The hydrodynamics-flume experiments used longer test durations. Test runs up to 56 h showed that, for the ranges of sediment sizes and gradation used in the experiments, the longer experiment durations did not alter maximum scour. For a given discharge, once the surface-armor layer was formed, bed profiles remained virtually constant. At the end of each run, the tail gate was slowly closed and the pump stopped to drain the flume without any disturbance. Then the flume was slowly drained with the aid of an efficient drainage system on the floor of the flume, with its end open toward the tail gate.

The bed was then allowed to dry over a 24-h period, photos of scour holes around each pier were taken, and measurements of the final bed elevations were recorded to determine the maximum-scour depth around each pier and the final bed slope. The bed was allowed to dry another 24 h, and then the armored layers around each pier and different areas in the approach and downstream of the piers were sampled using the flour-paste technique. Sieve analysis was then performed on the samples using U.S. standard sieves. The sieving of the sediment samples was completed by using a series of sieves sized at intervals of $\sqrt{2}$ times the sieve diameters.

This procedure was repeated for each run. In the sedimentation-flume experiments, the area around each pier within 6.1 m had to be refilled with the proper mixtures, leveled and saturated with water. Flow conditions were verified, and velocity was measured at the approach of each pier, in addition to the water-surface profile measurements and scour depth with time. After the scour depth became constant with time for at least 3 to 4 h the flow was stopped to let the bed dry, and final bed elevations were taken. Finally, the surface layers around each pier as well as the approach and downstream of each pier were sampled to determine the size distribution of the armored layers.

4.3 Experimental Results

A comprehensive experimental program was designed to investigate the different aspects of gradation and coarse-material-fraction effects on local pier scour. These experiments were categorized into ten sets of runs, labeled 1-10. The experimental program was carried out concurrently in three different laboratory facilities. Sets 1-3, 9, and 10 were conducted in the sedimentation flume; sets 4-7 were performed in the hydrodynamics flume; and set 8 experiments were carried out in the mechanics flume. Thirteen different sediment mixtures, and 10 different pier models were subjected to a range of flow conditions, resulting in a total of 188 different pier-scour case studies.

Set 1 experiments were conducted by subjecting three identical piers to specified flow conditions. The purpose was to check the repeatability of results for scour depth at the three piers which were subjected to the same flow conditions. The first set (runs MA-1 through MA-12) was performed using a graded-sand mixture with a geometric standard deviation, σ_g , of 2.43, and D_{50} of 0.75 mm.

Set 2 experiments (runs MA-13 through MA-19) were conducted using the same sand with σ_g of 2.43 and D_{50} of 0.75 mm as the bed material around pier 1. Around piers 2 and 3 the size of coarse-material fraction in the original sediment mixtures, 10 percent around pier 2, and 5 percent around pier 3, was increased. The gradation coefficient, σ_g , and D_{50} were kept constant at 2.43 and 0.75 mm, respectively. The purpose of this second set of experiments was to examine the behavior of the scour depth with the increase in

sizes of sediments for the fraction above D_{90} and D_{95} in the original sediment mixture, without changing the gradation coefficient.

Set 3 experiments (runs MA-20 through MA-27) used a sediment mixture with σ_g of 3.4 and D_{50} of 0.75 mm as the bed material around pier 2, and increased the coarse fraction above D_{90} in the same sediment mixture as the bed material around pier 1. For pier 3, a uniform sand with σ_g of 1.38 and D_{50} of 0.75 mm were used. The purpose of set 2 and 3 experiments was to investigate the effect of increasing the coarse-material fraction and gradation of bed materials on local pier-scour depth.

Sets 4-7 were conducted in a smaller flume with scaled down (1:4) flume width, flow depth, and pier width. In sets 4-6, a coarse sand mixture with the same median diameter, D_{50} , of 1.8 mm, but different gradation coefficients, was subjected to a range of approach-flow conditions. In set 4, a uniform mixture with σ_{g} of 1.15 was used. In sets 5 and 6, σ_{g} were 2.43 and 3.4, respectively. Finally, in set 7 the same sediment used in set 1 (with D_{50} of 0.75 mm and σ_{g} of 2.43) was used to study scaling effects.

Set 8 experiments were conducted in the 5.18 m-wide river mechanics flume to examine and verify effects of pier sizes. For this purpose, a series of circular piers with various diameters was subjected to the same oncoming flow. The sediment used for these experiments was medium sand with a median diameter of 0.55 mm and gradation coefficient of 2.43. The results of these experiments were used to establish scaling parameters for pier widths. In general, it was found that pier scour is a function of $b^{2/3}$.

Sets 9 and 10 were conducted in the sedimentation flume, and examined the effects of coarse fraction on gravel scour. The two sediment mixtures used in these experiments both had a median diameter of 18 mm and gradation coefficient of 1.45. However, the gravel mixture used in set 9 experiments contained larger coarse fractions. The D_{90} for the mixtures used in sets 9 and 10 was 40 mm and 22 mm, respectively. The purpose of these experiments was to investigate the range of applicability of the theory developed from the study.

A summary of the sediment characteristics associated with the different mixtures utilized in the study is given in Table 1. Tables 2-7 present the cases. In the pier-scour experiments presented in this section, the effects of the following parameters were investigated:

- Effect of mean sediment size, *D*₅₀ (all sets);
- Effect of sediment gradation, σ_{g} (all sets);
- Effect of the coarsest 10th percentile of the sediment-size gradation (sets 1-3 and 9-10);
- Effect of flow depth, Y (all sets); and
- Effect of pier diameter, *b* (set 8).

The following sections present results of experiments. References to related summary tables are given whenever applicable.

Mixture	Mixture	$\sigma_{\! m g}$	Dm	D 16	D 35	D 50	D 65	D 84.6	D 85	D 90	D 95	D 99	Dcfm	<i>D</i> _{cfm} / <i>D</i> ₅₀
No.	ID		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)
1	MA-1A	2.43	0.75	0.31	0.50	0.75	1.11	1.83	1.83	2.10	2.36	4.80	2.59	3.46
2	MA-1B	2.43	0.75	0.31	0.50	0.75	1.11	1.83	1.83	2.80	5.00	8.00	4.24	5.65
3	MA-1C	2.43	0.75	0.31	0.50	0.75	1.11	1.83	1.83	2.00	2.36	8.00	3.09	4.12
4	MA-2E	3.40	0.75	0.23	0.45	0.75	1.31	2.65	2.65	4.76	6.40	8.00	5.50	7.33
5	MA-2D	3.40	0.75	0.23	0.45	0.75	1.31	2.65	2.65	3.20	4.20	8.00	4.24	5.66
6	MA-3	1.38	0.75	0.55	0.65	0.75	0.87	1.05	1.05	1.18	1.22	1.30	1.19	1.59
7	HN-1	3.70	1.87	0.40	1.02	1.87	3.00	5.47	5.47	6.30	8.04	10.00	7.36	3.93
8	HN-2	1.15	1.87	1.56	1.74	1.87	2.01	2.21	2.21	2.26	2.32	2.38	2.29	1.23
9	HN-3	2.17	1.80	1.10	1.29	1.80	2.53	3.89	3.89	4.39	4.93	5.60	4.69	2.61
10	HN-4	1.28	0.76	0.63	0.66	0.76	0.87	1.03	1.03	1.08	1.14	1.19	1.11	1.46
11	MH-1	2.24	0.55	0.22	0.40	0.55	0.75	1.10	1.10	1.30	1.60	2.30	1.53	3.40
12	MH-2	1.28	16.90	11.50	16.10	16.90	17.84	19.10	38.10	40.00	42.40	45.00	41.30	2.44
13	MH-3	1.30	16.70	13.00	15.20	16.70	18.16	20.20	20.20	20.90	21.70	22.40	21.30	1.28

 Table 1. Properties of Sediment Mixtures Used in Pier-Scour Experiments

		Median	Gradation	Flow	Approach	Approach	Energy	Froude	Scour	Flow
Dum	Misture	Diameter	Coefficient	Discharge	Depth	Velocity	Slope	Number	Depth	Duration
Run ID	Mixture ID	D ₅₀	$\sigma_{\! m g}$	Q	Ŷ	V	Se	Fr	Ds	t
		(mm)		(I/s)	(m)	(m/s)			(m)	(h)
MA-1-1	MA-1	0.75	2.43	206.43	0.384	0.213	0.00020	0.11	0.037	8
MA-1-2	MA-1	0.75	2.43	206.43	0.396	0.204	0.00020	0.10	0.037	8
MA-1-3	MA-1	0.75	2.43	206.43	0.399	0.201	0.00020	0.10	0.034	8
MA-2-1	MA-1	0.75	2.43	246.07	0.287	0.347	0.00040	0.21	0.076	8
MA-2-2	MA-1	0.75	2.43	246.07	0.293	0.341	0.00040	0.20	0.067	8
MA-2-3	MA-1	0.75	2.43	246.07	0.293	0.338	0.00040	0.20	0.067	8
MA-3-1	MA-1	0.75	2.43	300.16	0.287	0.421	0.00060	0.25	0.168	19
MA-3-2	MA-1	0.75	2.43	300.16	0.290	0.405	0.00060	0.24	0.143	19
MA-3-3	MA-1	0.75	2.43	300.16	0.293	0.405	0.00060	0.24	0.143	19
MA-4-1	MA-1	0.75	2.43	300.16	0.381	0.302	0.00040	0.16	0.049	12
MA-4-2	MA-1	0.75	2.43	300.16	0.375	0.302	0.00040	0.16	0.049	12
MA-4-3	MA-1	0.75	2.43	300.16	0.378	0.290	0.00040	0.15	0.046	12
MA-5-1	MA-1	0.75	2.43	263.63	0.354	0.296	0.00042	0.16	0.046	8
MA-5-2	MA-1	0.75	2.43	263.63	0.344	0.293	0.00042	0.16	0.046	8
MA-5-3	MA-1	0.75	2.43	263.63	0.341	0.296	0.00042	0.16	0.040	8
MA-6-1	MA-1	0.75	2.43	280.34	0.335	0.332	0.00045	0.18	0.088	12
MA-6-2	MA-1	0.75	2.43	280.34	0.335	0.332	0.00045	0.18	0.082	12
MA-6-3	MA-1	0.75	2.43	280.34	0.335	0.329	0.00045	0.18	0.079	12
MA-7-1	MA-1	0.75	2.43	323.10	0.323	0.396	0.00060	0.22	0.146	16
MA-7-2	MA-1	0.75	2.43	323.10	0.326	0.390	0.00060	0.22	0.134	16
MA-7-3	MA-1	0.75	2.43	323.10	0.326	0.387	0.00060	0.22	0.134	16
MA-8-1	MA-1	0.75	2.43	360.76	0.320	0.442	0.00065	0.25	0.186	12
MA-8-2	MA-1	0.75	2.43	360.76	0.326	0.411	0.00065	0.23	0.183	12
MA-8-3	MA-1	0.75	2.43	360.76	0.323	0.421	0.00065	0.24	0.183	12
MA-9-1	MA-1	0.75	2.43	267.03	0.320	0.335	0.00043	0.19	0.091	16
MA-9-2	MA-1	0.75	2.43	267.03	0.311	0.335	0.00043	0.19	0.079	16
MA-9-3	MA-1	0.75	2.43	267.03	0.305	0.341	0.00043	0.20	0.079	16
MA-10-1	MA-1	0.75	2.43	390.49	0.332	0.469	0.00070	0.26	0.195	10
MA-10-2	MA-1	0.75	2.43	390.49	0.326	0.457	0.00070	0.26	0.186	10
MA-10-3	MA-1	0.75	2.43	390.49	0.317	0.460	0.00070	0.26	0.183	10
MA-11-1	MA-1	0.75	2.43	429.00	0.335	0.491	0.00073	0.27	0.207	14
MA-11-2	MA-1	0.75	2.43	429.00	0.329	0.479	0.00073	0.27	0.198	14
MA-11-3	MA-1	0.75	2.43	429.00	0.320	0.494	0.00073	0.28	0.207	14
MA-12-1	MA-1	0.75	2.43	473.74	0.363	0.503	0.00085	0.27	0.198	16
MA-12-2	MA-1	0.75	2.43	473.74	0.363	0.524	0.00085	0.28	0.195	16
MA-12-3	MA-1	0.75	2.43	473.74	0.384	0.482	0.00085	0.25	0.201	16

 Table 2.
 Summary of Sand-Scour Experiments in Sedimentation Flume for Set 1 (runs 1-12)

		Median	Gradation	Flow	Approach	Approach	Energy	Froude	Scour	Flow
Run	Mixture	Diameter	Coefficient	Discharge	Depth	Velocity	Slope	Number	Depth	Duration
ID	ID	D ₅₀	$\sigma_{\! m g}$	Q	Ŷ	v	S _e	Fr	Ds	t
		(mm)		(I/s)	(m)	(m/s)			(m)	(h)
MA- 13-1	MA-1A	0.75	2.43	314.32	0.323	0.390	0.00055	0.22	0.155	16
MA- 13-2	MA-1B	0.75	2.43	314.32	0.323	0.366	0.00055	0.19	0.049	16
MA- 13-3	MA-1C	0.75	2.43	314.32	0.323	0.372	0.00055	0.21	0.067	16
MA- 14-1	MA-1A	0.75	2.43	206.43	0.311	0.256	0.00029	0.15	0.049	16
MA- 14-2	MA-1B	0.75	2.43	206.43	0.314	0.250	0.00029	0.14	0.012	16
MA- 14-3	MA-1C	0.75	2.43	206.43	0.314	0.250	0.00029	0.14	0.027	16
MA- 15-1	MA-1A	0.75	2.43	146.11	0.305	0.250	0.00022	0.11	0.009	16
MA- 15-2	MA-1B	0.75	2.43	146.11	0.308	0.183	0.00022	0.11	0.003	16
MA- 15-3	MA-1C	0.75	2.43	146.11	0.305	0.186	0.00022	0.11	0.006	16
MA- 16-1	MA-1A	0.75	2.43	236.73	0.329	0.280	0.00045	0.16	0.082	16
MA- 16-2	MA-1B	0.75	2.43	236.73	0.335	0.265	0.00045	0.15	0.027	16
MA- 16-3	MA-1C	0.75	2.43	236.73	0.338	0.259	0.00045	0.14	0.046	16
MA- 17-1	MA-1A	0.75	2.43	259.38	0.329	0.302	0.00050	0.17	0.091	16
MA- 17-2	MA-1B	0.75	2.43	259.38	0.332	0.293	0.00050	0.16	0.030	16
MA- 17-3	MA-1C	0.75	2.43	259.38	0.332	0.290	0.00050	0.16	0.049	16
MA- 18-1	MA-1A	0.75	2.43	380.30	0.329	0.451	0.00062	0.25	0.213	16
MA- 18-2	MA-1B	0.75	2.43	380.30	0.329	0.427	0.00062	0.24	0.085	16
MA- 18-3	MA-1C	0.75	2.43	380.30	0.335	0.433	0.00062	0.24	0.128	16
MA- 19-1	MA-1A	0.75	2.43	477.14	0.335	0.549	0.00098	0.30	0.226	16
MA- 19-2	MA-1B	0.75	2.43	477.14	0.335	0.558	0.00098	0.31	0.180	16
MA- 19-3	MA-1C	0.75	2.43	477.14	0.305	0.646	0.00098	0.37	0.201	16

Table 3. Summary of Sand-Scour Experiments in Sedimentation Flume for Set 2 (runs 13-19)

		Median Diameter	Gradation Coefficient	Flow Discharge	Approach Depth	Approach Velocity	Energy Slope	Froude Number	Scour	Flow Duration
Run	Mixture			Q	y v	Velocity	Se	Fr	Deptil Ds	t
ID	ID	(mm)	$\sigma_{\! m g}$	ي (I/s)	, (m)	(m/s)	Je		(m)	(h)
MA-20-1	MA-2E	0.75	3.40	147.25	0.305	0.195	0.00047	0.11	0.003	16
MA-20-2	MA-2D	0.75	3.40	147.25	0.308	0.189	0.00047	0.11	0.003	16
MA-20-3	MA-3	0.75	1.38	147.25	0.308	0.186	0.00047	0.11	0.009	16
MA-21-1	MA-2E	0.75	3.40	184.06	0.341	0.207	0.00050	0.11	0.009	16
MA-21-2	MA-2D	0.75	3.40	184.06	0.338	0.210	0.00050	0.12	0.012	16
MA-21-3	MA-3	0.75	1.38	184.06	0.338	0.213	0.00050	0.12	0.040	16
MA-22-1	MA-2E	0.75	3.40	206.71	0.323	0.250	0.00054	0.14	0.012	16
MA-22-2	MA-2D	0.75	3.40	206.71	0.329	0.241	0.00054	0.13	0.015	16
MA-22-3	MA-3	0.75	1.38	206.71	0.332	0.238	0.00054	0.13	0.064	16
MA-23-1	MA-2E	0.75	3.40	259.38	0.335	0.305	0.00062	0.17	0.018	16
MA-23-2	MA-2D	0.75	3.40	259.38	0.335	0.299	0.00062	0.16	0.021	16
MA-23-3	MA-3	0.75	1.38	259.38	0.338	0.293	0.00062	0.16	0.128	16
MA-24-1	MA-2E	0.75	3.40	314.32	0.326	0.387	0.00070	0.22	0.030	16
MA-24-2	MA-2D	0.75	3.40	314.32	0.329	0.378	0.00070	0.21	0.052	16
MA-24-3	MA-3	0.75	1.38	314.32	0.326	0.381	0.00070	0.21	0.213	16
MA-25-1	MA-2E	0.75	3.40	379.45	0.332	0.451	0.00090	0.25	0.070	16
MA-25-2	MA-2D	0.75	3.40	379.45	0.332	0.436	0.00090	0.24	0.085	16
MA-25-3	MA-3	0.75	1.38	379.45	0.335	0.430	0.00090	0.24	0.250	16
MA-26-1	MA-2E	0.75	3.40	478.55	0.317	0.591	0.00150	0.34	0.189	16
MA-26-2	MA-2D	0.75	3.40	478.55	0.317	0.582	0.00150	0.33	0.189	16
MA-27-1	MA-2E	0.75	3.40	518.20	0.299	0.674	0.00200	0.39	0.219	16
MA-27-2	MA-2D	0.75	3.40	518.20	0.299	0.652	0.00200	0.38	0.201	16

Table 4. Summary of Sand-Scour Experiments in Sedimentation Flume for Set 3 (runs 20-27)

		Median	Gradation	Pier	Flow	Approach	Approach	Froude	Bed	Scour	Flow
Run	Mixture	Diameter	Coefficient	Diameter	Discharge	Depth	Velocity	Number	Slope	Depth	Duration
ID	ID	D 50	$\sigma_{\! m g}$	b	Q	Ŷ	v	Fr	So	Ds	t
		(mm)	0	(m)	(I/s)	(m)	(m/s)			(m)	(h)
HN-01-1	HN-1	1.87	3.70	0.051	6.91	0.040	0.207	0.33	0.00418	0.010	8
HN-01-2	HN-1	1.87	3.70	0.051	6.91	0.050	0.165	0.23	0.00418	0.003	8
HN-01-3	HN-1	1.87	3.70	0.070	6.91	0.056	0.143	0.19	0.00418	0.004	8
HN-02-1	HN-1	1.87	3.70	0.051	13.79	0.065	0.436	0.54	0.00418	0.025	8
HN-02-2	HN-1	1.87	3.70	0.051	13.79	0.073	0.351	0.41	0.00418	0.009	8
HN-02-3	HN-1	1.87	3.70	0.070	13.79	0.080	0.314	0.35	0.00418	0.013	8
HN-03-1	HN-1	1.87	3.70	0.051	10.90	0.061	0.354	0.46	0.00363	0.015	8
HN-03-2	HN-1	1.87	3.70	0.051	10.90	0.071	0.271	0.32	0.00363	0.008	8
HN-03-3	HN-1	1.87	3.70	0.070	10.90	0.074	0.235	0.28	0.00363	0.008	8
HN-04-1	HN-1	1.87	3.70	0.051	17.58	0.075	0.488	0.57	0.00336	0.028	10
HN-04-2	HN-1	1.87	3.70	0.051	17.58	0.079	0.399	0.45	0.00336	0.012	10
HN-04-3	HN-1	1.87	3.70	0.070	17.58	0.081	0.354	0.40	0.00336	0.014	10
HN-05-1	HN-1	1.87	3.70	0.051	20.67	0.075	0.521	0.61	0.00368	0.032	10
HN-05-2	HN-1	1.87	3.70	0.051	20.67	0.078	0.451	0.52	0.00368	0.027	10
HN-05-3	HN-1	1.87	3.70	0.070	20.67	0.078	0.421	0.48	0.00368	0.036	10
HN-10-1	HN-2	1.87	1.15	0.051	6.91	0.075	0.162	0.19	0.00375	0.002	11
HN-10-2	HN-2	1.87	1.15	0.051	6.91	0.088	0.128	0.14	0.00375	0.000	11
HN-10-3	HN-2	1.87	1.15	0.070	6.91	0.101	0.110	0.11	0.00375	0.000	11
HN-11-1	HN-2	1.87	1.15	0.051	9.00	0.077	0.216	0.25	0.00375	0.007	9
HN-11-2	HN-2	1.87	1.15	0.051	9.00	0.087	0.158	0.17	0.00375	0.000	9
HN-11-3	HN-2	1.87	1.15	0.070	9.00	0.101	0.140	0.14	0.00375	0.000	9
HN-12-1	HN-2	1.87	1.15	0.051	10.90	0.075	0.256	0.30	0.00391	0.048	14
HN-12-2	HN-2	1.87	1.15	0.051	10.90	0.085	0.189	0.21	0.00391	0.009	14
HN-12-3	HN-2	1.87	1.15	0.070	10.90	0.098	0.158	0.16	0.00391		14
HN-13-1	HN-2	1.87	1.15	0.051	12.35	0.078	0.274	0.31	0.00418		21
HN-13-2	HN-2	1.87	1.15	0.051	12.35	0.088	0.204	0.22	0.00418		21
HN-13-3	HN-2	1.87	1.15	0.070	12.35	0.101	0.180	0.18	0.00418		21
HN-14-1	HN-2	1.87	1.15	0.051	13.79	0.077	0.387	0.44	0.00417		19
HN-14-2	HN-2	1.87	1.15	0.051	13.79	0.088	0.296	0.32	0.00417		19
HN-14-3	HN-2	1.87	1.15	0.070	13.79	0.100	0.247	0.25	0.00417		19
HN-20-1	HN-2	1.87	1.15	0.051	16.88	0.073	0.445	0.53	0.00417		30
HN-20-2	HN-2	1.87	1.15	0.051	16.88	0.089	0.344	0.37	0.00417		30
HN-20-3	HN-2	1.87	1.15	0.070	16.88	0.097	0.290	0.30	0.00417		30
HN-21-1	HN-3	1.8	2.17	0.051	10.90	0.085	0.212	0.23	0.00341		17
HN-21-2	HN-3	1.8	2.17	0.051	10.90	0.091	0.189	0.20	0.00341		17
HN-21-3	HN-3	1.8	2.17	0.070	10.90	0.097	0.149	0.15	0.00341		17
HN-22-1	HN-3	1.8	2.17	0.051	13.79	0.087	0.273	0.30	0.00341		22
HN-22-2	HN-3	1.8	2.17	0.051	13.79	0.094	0.244	0.25	0.00341		22
HN-22-3	HN-3	1.8	2.17	0.070	13.79	0.097	0.213	0.22	0.00341		22
HN-23-1	HN-3	1.8	2.17	0.051	16.88	0.088	0.342	0.37	0.00341	0.031	25

 Table 5.
 Summary of Sand-Scour Experiments in Hydrodynamics Flume for Sets 4-7

		Median	Gradation	Pier	Flow	Approach	Approach	Froude	Bed	Scour	Flow
Run	Mixture	Diameter	Coefficient	Diameter	Discharge	Depth	Velocity	Number	Slope	Depth	Duration
ID	ID	D 50	$\sigma_{\! m g}$	b	Q	Ŷ	v	Fr	So	Ds	t
		(mm)		(m)	(l/s)	(m)	(m/s)			(m)	(h)
HN-23-3	HN-3	1.8	2.17	0.070	16.88	0.095	0.258	0.27	0.00341	0.020	25
HN-24-1	HN-3	1.8	2.17	0.051	20.70	0.088	0.410	0.44	0.00323	0.048	24
HN-24-2	HN-3	1.8	2.17	0.051	20.70	0.087	0.377	0.41	0.00323	0.042	24
HN-29-3	HN-4	0.76	1.28	0.070	7.56	0.098	0.122	0.12	0.00000	0.002	8
HN-30-1	HN-4	0.76	1.28	0.051	9.74	0.076	0.232	0.27	0.00000	0.062	20
HN-30-2	HN-4	0.76	1.28	0.051	9.74	0.086	0.170	0.19	0.00000	0.024	20
HN-30-3	HN-4	0.76	1.28	0.070	9.74	0.096	0.152	0.16	0.00000	0.017	20
HN-31-1	HN-4	0.76	1.28	0.051	11.95	0.079	0.261	0.30	0.00000	0.081	21
HN-31-2	HN-4	0.76	1.28	0.051	11.95	0.091	0.191	0.20	0.00000	0.058	21
HN-31-3	HN-4	0.76	1.28	0.070	11.95	0.101	0.174	0.18	0.00000	0.047	21
HN-32-1	HN-4	0.76	1.28	0.051	13.79	0.079	0.298	0.34	0.00000	0.085	23
HN-32-2	HN-4	0.76	1.28	0.051	13.79	0.091	0.255	0.27	0.00000	0.066	23
HN-32-3	HN-4	0.76	1.28	0.070	13.79	0.101	0.205	0.21	0.00000	0.083	23

 Table 5.
 Summary of Sand-Scour Experiments in Hydrodynamics Flume (continued)

		Median	Gradation	Pier	Approach	Approach	Bed	Froude	Scour	Flow
Run	Mixture	Diameter	Coeficient	Diameter	Depth	Velocity	Slope	Number	Depth	Duration
ID	ID	D ₅₀	$\sigma_{\! m g}$	b	Ŷ	V	S _o	Fr	Ds	t
		(mm)		(m)	(m)	(m/s)	(m/m)		(m)	(h)
MH 11-1	MH-1	0.55	2.24	0.216	0.238	0.244	0.001	0.160	0.045	16
MH 10-1	MH-1	0.55	2.24	0.216	0.157	0.448	0.001	0.361	0.196	16
MH 9-1	MH-1	0.55	2.24	0.216	0.198	0.371	0.001	0.266	0.153	16
MH 8-1	MH-1	0.55	2.24	0.216	0.212	0.255	0.001	0.177	0.060	16
MH 7-1	MH-1	0.55	2.24	0.216	0.255	0.272	0.001	0.172	0.079	16
MH 6-1	MH-1	0.55	2.24	0.216	0.239	0.257	0.001	0.168	0.072	16
MH 5-1	MH-1	0.55	2.24	0.216	0.246	0.290	0.001	0.187	0.120	16
MH 12-1	MH-1	0.55	2.24	0.152	0.237	0.280	0.001	0.184	0.088	16
MH 13-1	MH-1	0.55	2.24	0.152	0.210	0.253	0.001	0.176	0.069	16
MH 14-1	MH-1	0.55	2.24	0.152	0.224	0.274	0.001	0.185	0.089	16
MH 15-1	MH-1	0.55	2.24	0.152	0.244	0.316	0.001	0.205	0.116	16
MH 16-1	MH-1	0.55	2.24	0.152	0.214	0.282	0.001	0.195	0.081	16
MH 17-1	MH-1	0.55	2.24	0.152	0.290	0.517	0.001	0.307	0.248	16
MH 18-1	MH-1	0.55	2.24	0.152	0.247	0.361	0.001	0.232	0.191	16
MH 19-1	MH-1	0.55	2.24	0.152	0.224	0.307	0.001	0.207	0.111	16
MH 11-3	MH-1	0.55	2.24	0.165	0.219	0.246	0.001	0.168	0.049	16
MH 10-3	MH-1	0.55	2.24	0.165	0.138	0.465	0.001	0.400	0.143	16
MH 9-3	MH-1	0.55	2.24	0.165	0.182	0.408	0.001	0.305	0.158	16
MH 8-3	MH-1	0.55	2.24	0.165	0.194	0.265	0.001	0.192	0.065	16
MH 7-3	MH-1	0.55	2.24	0.165	0.237	0.307	0.001	0.201	0.088	16
MH 11-2	MH-1	0.55	2.24	0.089	0.238	0.240	0.001	0.157	0.037	16
MH 10-2	MH-1	0.55	2.24	0.089	0.157	0.479	0.001	0.385	0.117	16
MH 9-2	MH-1	0.55	2.24	0.089	0.198	0.349	0.001	0.250	0.111	16
MH 8-2	MH-1	0.55	2.24	0.089	0.212	0.238	0.001	0.165	0.066	16
MH 7-2	MH-1	0.55	2.24	0.089	0.255	0.270	0.001	0.171	0.077	16
MH 6-2	MH-1	0.55	2.24	0.089	0.239	0.276	0.001	0.180	0.073	16
MH 11-4	MH-1	0.55	2.24	0.057	0.219	0.235	0.001	0.160	0.035	16
MH 10-4	MH-1	0.55	2.24	0.057	0.138	0.436	0.001	0.374	0.057	16
MH 9-4	MH-1	0.55	2.24	0.057	0.182	0.378	0.001	0.283	0.068	16
MH 8-4	MH-1	0.55	2.24	0.057	0.194	0.250	0.001	0.181	0.036	16
MH 7-4	MH-1	0.55	2.24	0.057	0.237	0.276	0.001	0.181	0.032	16
MH 10-5	MH-1	0.55	2.24	0.032	0.138	0.463	0.001	0.398	0.029	16
MH 9-5	MH-1	0.55	2.24	0.032	0.182	0.413	0.001	0.309	0.037	16
MH 8-5	MH-1	0.55	2.24	0.032	0.194	0.266	0.001	0.193	0.022	16
MH 7-5	MH-1	0.55	2.24	0.032	0.237	0.305	0.001	0.200	0.038	16
MH 10-6	MH-1	0.55	2.24	0.019	0.157	0.437	0.001	0.352	0.014	16
MH 9-6	MH-1	0.55	2.24	0.019	0.198	0.339	0.001	0.243	0.034	16
MH 8-6	MH-1	0.55	2.24	0.019	0.212	0.219	0.001	0.152	0.018	16

Table 6. Summary of River-Mechanics Flume Experiments to Study Pier-Width Effects for Set 8

		Median	Gradation	Pier	Approach	Approach	Bed	Froude	Scour	Flow
Run	Mixture	Diameter	Coefficient	Diameter	Depth	Velocity	Slope	Number	Depth	Duration
ID	ID	D ₅₀	$\sigma_{\! m g}$	b	Ŷ	V	So	Fr	Ds	t
		(mm)		(m)	(m)	(m/s)	(m/m)		(m)	(h)
MH G1-1	MH-2	16.90	1.28	0.178	0.296	0.850	0.0007	0.499	0.049	16
MH G2-1	MH-2	16.90	1.28	0.178	0.320	1.073	0.0007	0.605	0.073	16
MH G3-1	MH-2	16.90	1.28	0.178	0.338	1.192	0.0007	0.654	0.110	16
MH G4-1	MH-2	16.90	1.28	0.178	0.354	1.228	0.0007	0.659	0.113	16
MH G5-1	MH-2	16.90	1.28	0.178	0.372	1.384	0.0007	0.724	0.113	16
MH G6-1	MH-2	16.90	1.28	0.178	0.290	1.859	0.0007	1.103	0.110	16
MH G7-1	MH-2	16.90	1.28	0.178	0.238	2.286	0.0007	1.497	0.271	16
MH G1-2	MH-3	16.70	1.30	0.178	0.335	0.771	0.0007	0.425	0.073	16
MH G2-2	MH-3	16.70	1.30	0.178	0.357	0.969	0.0007	0.518	0.085	16
MH G3-2	MH-3	16.70	1.30	0.178	0.381	1.079	0.0007	0.558	0.119	16
MH G4-2	MH-3	16.70	1.30	0.178	0.357	1.186	0.0007	0.634	0.152	16
MH G5-2	MH-3	16.70	1.30	0.178	0.375	1.320	0.0007	0.688	0.183	16
MH G6-2	MH-3	16.70	1.30	0.178	0.250	2.018	0.0007	1.288	0.235	16
MH G7-2	MH-3	16.70	1.30	0.178	0.219	2.478	0.0007	1.688	0.305	16

 Table 7.
 Summary of Gravel-Scour Experiments in Sedimentation Flume for Sets 9 and 10

4.4 Theoretical Analysis

This section presents the parameters affecting pier scour in non-uniform mixtures, and derives relationships to quantify their effects on the resulting scour depths. The equations derived from this analysis are were tested with the data from the experimental study and with data from earlier studies.

4.4.1. Governing Parameters

Experiments conducted for sets 1-3 varied the size gradation and coarse-material fraction of six sand mixtures while keeping their median diameter constant. In these experiments, the flow depth was kept relatively constant and the pier diameter remained 0.18 m while the discharge into the flume was incremented. Since the channel width and flow depth remained constant, this discharge variation in the experiments corresponded to varying velocity while keeping all other flow parameters constant. Figure 4.1 shows the variation of dimensionless scour depth in experiments in sets 1-3 with approach velocity. By keeping all other variables constant, these experiments isolated the effects of gradation and coarse material fraction on pier scour.

As shown in Figure 4.1, the initiation of pier scour takes place independent of the size of coarse-material fractions for approach velocities of approximately 0.18 m/s. This velocity is termed the *scour initiation velocity*, V_i , and marks the threshold condition for clear-water scour. For approach velocities greater than V_i , the largest scour depth in Figure 4.1 takes place in uniform-sediment mixtures (gradation coefficient $\sigma_g = 1.38$). As the size-gradation coefficient increases from 1.38 to 2.43, then to 3.4, the depth of scour decreases. This finding is in agreement with previous research. However, the reduction of scour is not a constant factor as suggested by earlier studies, but is a function of flow intensity. While the largest scour reduction takes place for an intermediate velocity value, for velocities slightly greater than 0.18 m/s and for velocities greater than 0.6 m/s, the scour reduction remains small.

Figure 4.1 also shows two mixtures with the same median-sediment sizes and gradation coefficients, but with enlarged coarse fractions. In mixtures identified as 2.38A and 2.38B, while D_{50} and σ_g were kept at 0.75 mm and 2.43 respectively, the coarsest 5-percent and 10-percent fractions were enlarged by replacing these size groups with coarser sediments. As a result, as shown in Figure 4.1, the scour depths corresponding to these mixtures are smaller. In fact, the scour observed for the mixture with an enlarged coarsest 10-percent fraction (mixture 2.43A) is the same as the scour observed in mixture 3.4A with a gradation coefficient of 3.4. Similarly, introducing larger coarse fractions to mixture 3.4A resulted in further reduction in scour depth.

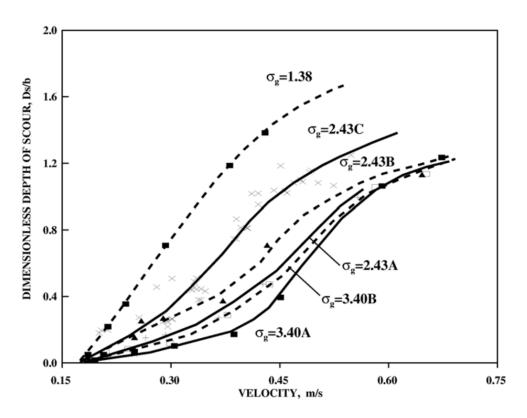


Figure 4.1. Variation of scour depth with velocity for sand mixtures used in sets 1-3

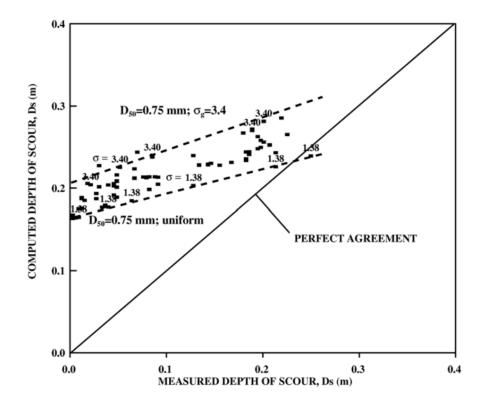
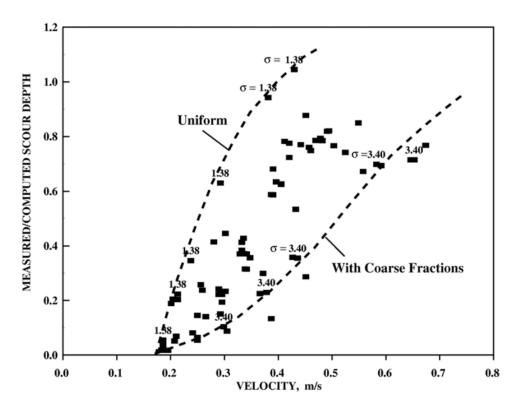
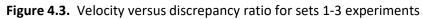




Figure 4.2. Comparison of FHWA's CSU equation with the measured scour from sets 1-3

Colorado State University

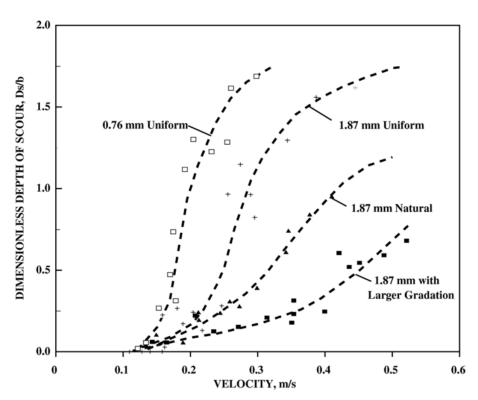


Figure 4.4. Flow velocity versus dimensionless scour for sets 4-7 experiments

Figure 4.2 compares the results of sets 1-3 experiments with the computed-scour values from the Colorado State University (CSU) equation given in FHWA's HEC-18. Several observations can be made in Figure 4.2:

- As the intensity of flow increases (indicated by larger scour depth) the computed-scour depths approach the measured values;
- For larger gradation factors and for mixtures with larger coarse fractions, the convergence of computed and measured values takes place at higher flow intensities; and
- At low-flow intensities the computed values are in the order of 8 to 10 times the measured values.

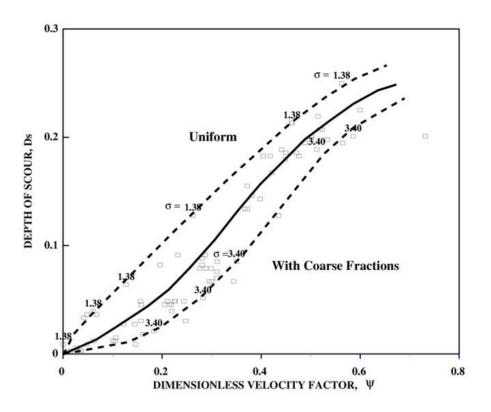

In Figure 4.3 the ratio of measured-to-computed scour depth is plotted against the flow velocity for the experiments in sets 1-3. For this data the ratio approaches 1 (perfect agreement) as the flow velocity (or intensity) increases. For a given flow velocity the ratio is closer to 1 for uniform mixtures (illustrated in the figure by the 1.38 gradation coefficient above the plotted points) than for mixtures with large size variations (illustrated by the 3.40 gradation coefficient above the plotted points). A general conclusion from Figures 4.2 and 4.3 is that the discrepancy between measured- and computed-scour depths using the current CSU equation increases as the gradation coefficient increases, and as the velocity (or flow intensity) decreases.

Figure 4.4 shows results from experiments in sets 4-7 conducted using coarser sediment mixtures, and compares these results with the finer uniform-sand mixture used in sets 1-3. In these experiments smaller depths and pier diameters were used. Without applying proper modeling-scale ratios for flow depth and pier diameter the results cannot be superimposed on the previous results. However, the pattern of scour-depth variation with flow intensity remains identical. In both Figures 4.1 and 4.4 the relationship between velocity and D_s/b shows, that for uniform material, the variation of scour with velocity is almost linear. For graded material and material with larger coarse fractions this relationship assumes the characteristics of a 2nd or 3rd degree polynomial (concave). At high flow velocities both figures show that scour values tend to converge to an "ultimate" value. The velocity at which maximum clear-water scour takes place is a function of the size of coarsest-size fractions present in mixtures. This velocity is identified as the critical velocity, V_c , at which the entire bed is mobilized (live-bed conditions).

It is possible to define a dimensionless excess velocity, P, which is a relative velocity with respect to the critical velocity that fully mobilizes the bed, given by:

$$\psi = \frac{V - V_{\rm i}}{V_{\rm c} - V_{\rm i}}; \qquad 0 \le \psi \le 1 \tag{4}$$

The value of ψ varies between 0 and 1, with 0 corresponding to initiation of scour and 1 corresponding to the condition of fully-mobilized bed. The values of V_i and V_c can be determined by relating these

Figure 4.5. Dimensionless excess velocity factor, ψ , versus depth of scour for sets 1-3

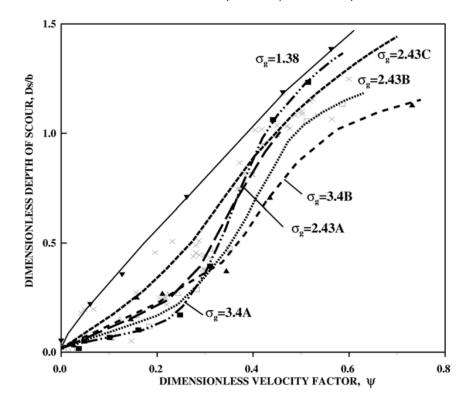
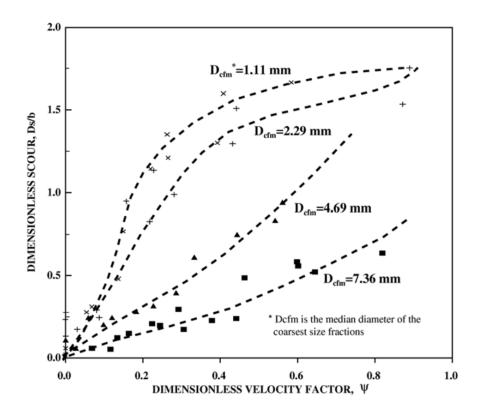
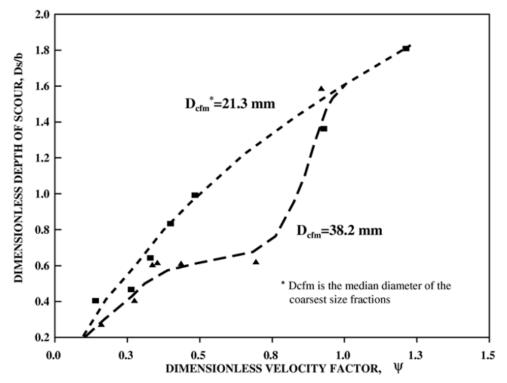




Figure 4.6. Variation of dimensionless scour with excess-velocity factor for various mixtures

Figure 4.7. Variation of dimensionless scour with excess-velocity factor, ψ , for different coarse-fraction sizes used in sets 4-7 experiments

Figure 4.8. Variation of dimensionless scour with excess-velocity factor, ψ , for different coarse-fraction sizes used in sets 8 and 9

Colorado State University

velocities to critical-flow conditions corresponding to initiation of motion. Using Shields' relationship for critical shear

$$\tau_{\rm c} = K \gamma_{\rm s} D_{\rm r} \tag{5}$$

or,

$$\gamma R S = K \gamma_{\rm s} D_{\rm r} \tag{6}$$

Where τ_c = critical shear; K = experimental constant (0.047); γ_s = submerged specific weight of sediment (1.65); R = hydraulic radius; S = slope of the energy grade line; and D_r = characteristic sediment size.

For critical conditions, using the Manning-Strickler equation to express the slope of the energy line in terms of approach velocity ($S = V_c^2 n^2 / R^{2/3}$, where V_c and R are in metric units), and using a relationship expressing the roughness coefficient, n, in terms of the characteristic sediment size ($n = D_r^{1/6}$ /26.1, where D_r is in meters) it is possible to obtain:

$$\gamma \frac{V_{\rm c}^2 D_{\rm r}^{1/3}}{26.1^2 R^{1/3}} = 0.047 \,\gamma_{\rm s} D_{\rm r} \tag{7}$$

or,

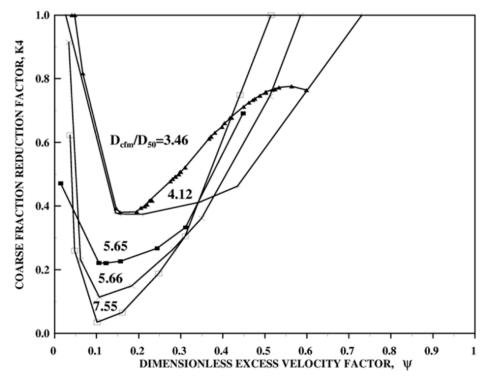
$$V_{\rm c} = 26.1 \sqrt{\frac{0.047 \ \gamma_{\rm s}}{\gamma}} D_{\rm r}^{1/3} R^{1/6} = K_{*} D_{\rm r}^{1/3} R^{1/6}$$
 (8)

where V_c , R, and D_r are in SI units. Replacing γ'_s / γ with 1.65 and after simplifications, equation 8 reduces to

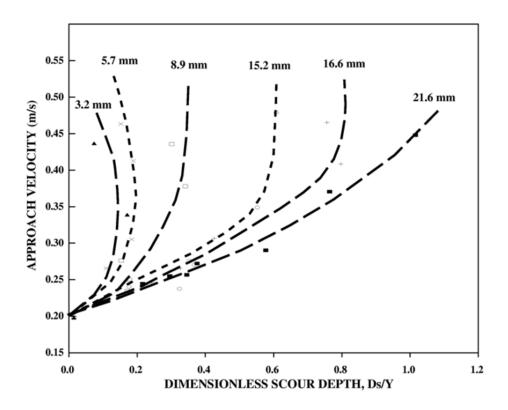
 $V_{\rm c}$ (m/s) = 7.27 $D_{\rm r}$ (m)^{1/3} Y(m)^{1/6}

In English units, the critical velocity expression becomes

$$V_{\rm c}$$
 (ft/sec) = 13.2 $D_{\rm r}$ (ft)^{1/3} Y (ft)^{1/6}


For the purposes of this study, however, the constant K_* in equation 8 is an experimentally-determined value. Using results of pier-scour experiments, K_* was found to be 6.625 for SI units (with D_r in meters) and 12 for English units (with D_r in feet). In order to reflect the characteristics of the coarse-material fractions, the representative sediment size, D_r , is defined by the median size of the coarse-material fraction, D_{cfm} , given by:

$$D_{\rm cfm} = \frac{D_{85} + 2D_{90} + 2D_{95} + D_{99}}{6} \tag{9}$$


The parameter D_{cfm} is a representative size (in meters for SI units, and feet for English units) for the coarse fractions present in sediment mixtures. Experimental evidence in Figures 4.1 and 4.4 indicates that a fully-

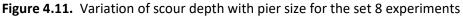


Figure 4.9. Variation of scour depth with excess-velocity factor, ψ , for different coarse-fraction size ratios used in sets 4-7 experiments

Figure 4.10. Variation of measured coarse-fraction reduction factor, K_4 , with excess-velocity factor, ψ , for sets 1-3 experiments

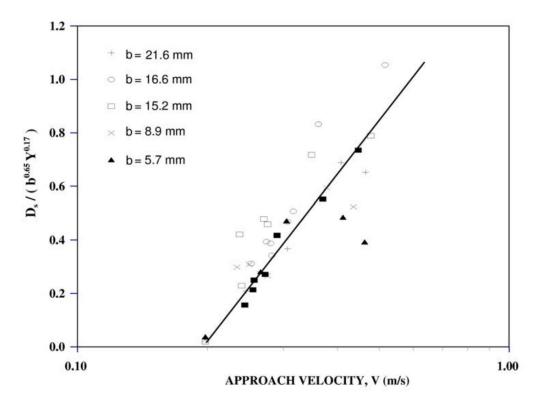


Figure 4.12. Relationship describing variation of pier scour with diameter

mobilized bed cannot be achieved without mobilizing coarser sizes. In the absence of extensive size information, or in cases where there are no discontinuities in the size-gradation curves, it is possible to utilize D_{90} to represent coarse fractions.

Velocities in the vicinity of piers are amplified. From potential-flow theory, this amplification is approximately 1.7 times the approach velocity. Scour initiation takes place when the accelerated flows past the pier are capable of removing the bed material from the pier region. Experimental evidence indicates that these velocities are dependent on the finer-size fractions that are significantly available in the bed.

For this study, the representative size for initiation of motion was determined to be D_{35} . This size was used in the sedimentation literature by Einstein, Ackers, and White to account for the gradation effects in the transport of bed material. The expression for the initiation of pier scour can be derived from the criticalvelocity relationship, and can be expressed as:

$$V_{\rm i} = K'' D_{35}^{1/3} Y^{1/6} \tag{10}$$

Where K'' is an experimental coefficient. From the pier-scour experiments, the value of K'' was found to be 2.65 for SI units using D_{35} in meters, and 4.8 for English units using D_{35} in feet.

Using the dimensionless velocity factor ψ the data presented earlier in Figure 4.1 is expressed in Figure 4.5. This figure shows that while maximum-scour depth is reached at ψ = 0.6 for the uniform mixture, for graded sediments higher flow intensities may be needed. This figure also shows that for mixtures with coarse fractions, low relative-flow intensities produce significantly smaller scour depths. For these mixtures, ultimate scour is produced sharply beyond a threshold intensity. Figure 4.5 indicates that even though the ultimate scour might be the same, for intermediate flows different mixtures exhibit different scour patterns. The information in Figure 4.5 is reproduced in Figure 4.6 in non-dimensional form.

Figures 4.7 and 4.8 present dimensionless velocity versus depth of scour for sets 4-9. In these figures the parameter D_{cfm} is used to differentiate between mixtures with the same median size and gradation coefficient. As shown, the representative coarse fraction size, D_{cfm} , can reliably identify mixtures and, therefore, can be used in relationships to quantify the associated scour depths. In general, for the same dimensionless velocity factor, smaller D_{cfm} values are associated with larger scour depths. However, a more reliable factor in differentiating sediment properties of mixtures is the ratio, D_{cfm} / D_{50} , used in Figure 4.9. This dimensionless parameter can be used to normalize different sediment sizes for their expected scour potential. In Figure 4.9, D_{cfm} / D_{50} values of 1.23 and 1.46 represent two uniform mixtures with median sizes of 1.80 mm and 0.75 mm, respectively. For a given dimensionless velocity factor, the mixture with the larger sediment size but with smaller D_{cfm} / D_{50} ratio produces larger scour holes. This experimental observation can be used to formulate an expression by relating scour to flow intensity (as represented by dimensionless flow velocity factor, Ψ) and the relative coarse-fraction size D_{cfm} / D_{50} .

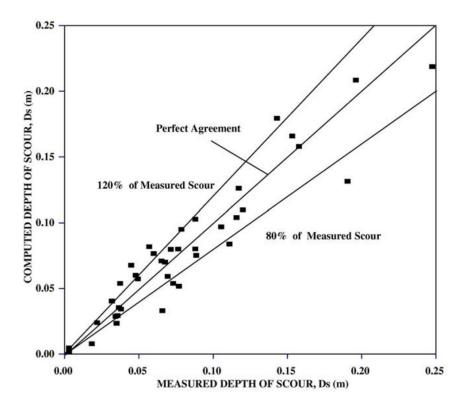
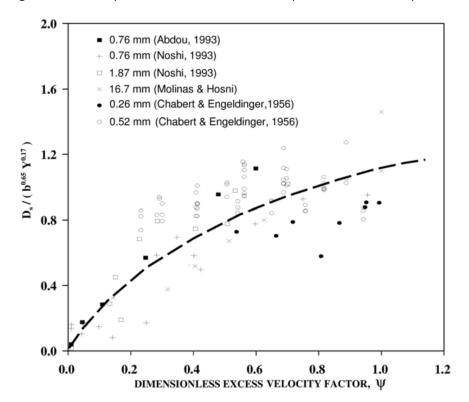
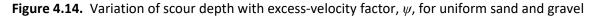




Figure 4.13. Computed and measured scour depths for the set 8 experiments

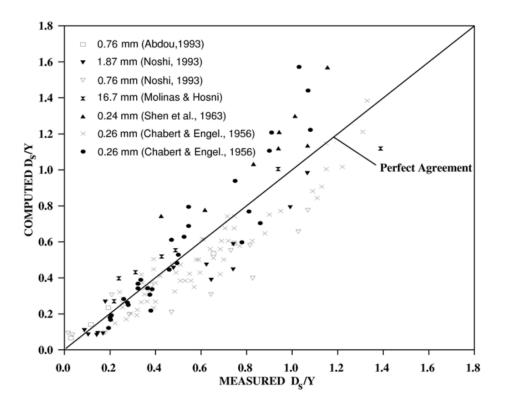


Figure 4.15. Measured and computed depth of scour for uniform sands and gravel using equation 12

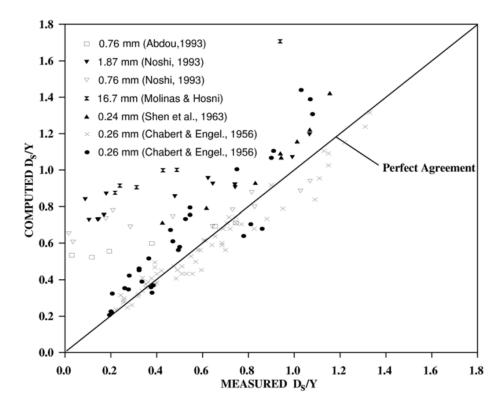


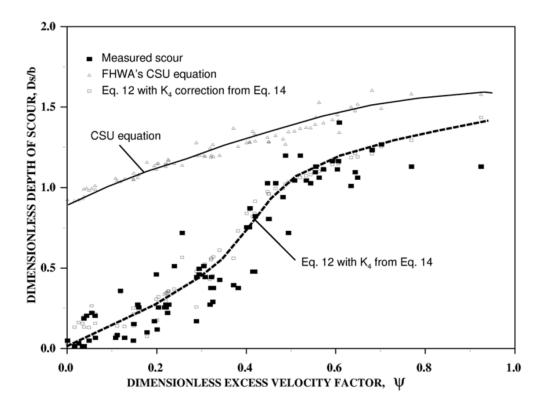
Figure 4.16. Measured and computed scour for uniform sediment using FHWA's CSU equation

To achieve this goal, it is necessary first to evaluate scour taking place in uniform material. Then, ratios of scour values observed in mixtures with varying amounts of coarse material compared with scour in uniform material must be evaluated. This ratio, which is termed the *coarse-fraction reduction factor* and denoted by K_4 , must then be related to flow intensity and D_{cfm}/D_{50} . Figure 4.10 shows the results of this procedure for experiments in sets 1-3. Several conclusions can be drawn from Figure 4.10:

- Scour reduction due to presence of coarse material cannot be expressed with a single value.
- Scour reduction is a function of the coarse-sediment-fraction ratio D_{cfm}/D_{50} . The higher the ratio, the lower the minimum value of K_4 .
- For low flow intensities, and therefore ψ values near zero, the K_4 value must be unity, since at low flow intensities there could be no effects due to coarse fractions or gradation.
- For high flow intensities, and therefore ψ values near or greater than unity, the K_4 value must also approach unity. At high flow intensities with a fully-mobilized bed, effects due to the presence of coarse fractions must be minimal.
- There exists a certain flow intensity \u03c8 at which scour reduction is minimum for a given sediment mixture. The location and magnitude of the minimum depend on the distribution and modality of sediment mixtures.

4.4.2. Derivation of the *K*⁴ Relationship

Two steps are needed in order to derive a functional relationship for K_4 — express pier scour in uniform mixtures, and separate the effects due to the presence of coarse fractions.


Set 8 experiments (Table 6) were used to define the variation of local scour with pier diameter. Figures 4.11 and 4.12 show the variation of dimensionless scour depth with approach velocity for the six pier diameters used in the study. Since the flow depth was kept relatively constant for these experiments and the investigation of these effects was beyond the scope of the experimental study, the commonly accepted depth dependency of $Y^{1/6}$ was assumed for this study in normalizing the results. The best-fit line for describing the variation of scour with pier width in the pier-width-effect experiments utilizing 0.55-mm graded sand and the corresponding correlation coefficient are given by:

$$\frac{D_s}{b^{0.66}Y^{0.17}} = 0.97\psi^{0.72}; \qquad R^2 = 0.90$$
(11)

where D_s , b, and Y are in meters and R^2 is the correlation coefficient. This relationship demonstrates that scour is related to pier diameter according to:

 $D_{\rm s} \propto b^{0.66}$

The goodness of fit of this relationship is shown in Figure 4.13.

Figure 4.17. Computed scour for sets 1-3 experiments using equation 12 with K_4 from equation 14

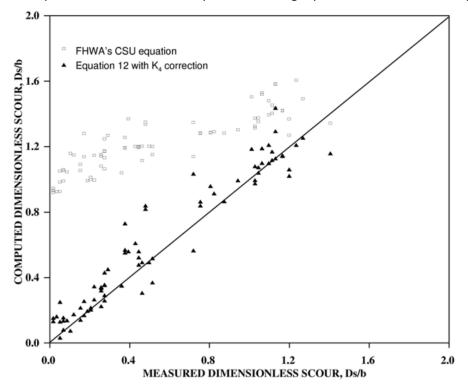


Figure 4.18. Measured and computed scour for nonuniform-sand experiments in sets 1-3

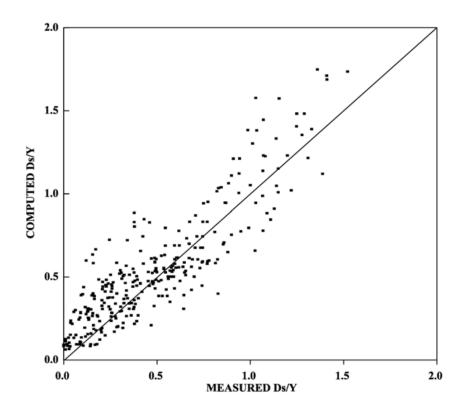


Figure 4.19. Computed and measured scour for all data using equation 12 (uniform-mixture equation)

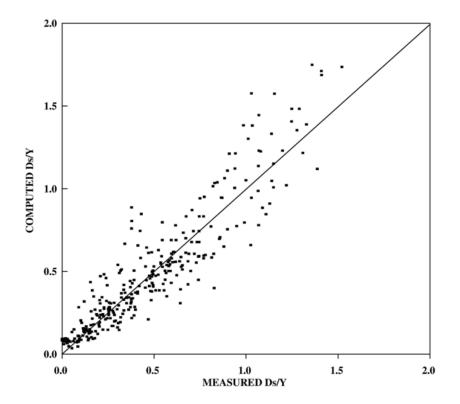


Figure 4.20. Computed and measured scour for all data using equation 12 with K₄ correction from equation 14

Next, utilizing $D_s /(b^{0.66} Y^{0.17})$ and ψ as variables, an expression for pier scour in uniform mixtures was developed. For this purpose, experiments with median-sediment sizes ranging from 0.75 mm to 1.80 mm, and to 17 mm were utilized. The resulting expression in SI units is:

$$\frac{D_s}{b^{0.66}Y^{0.17}} = 0.99 \ \psi^{0.55}; \qquad 0 \le \psi \le 1$$
(12)

in which D_s, b, and Y are in meters. For English units the expression becomes:

$$\frac{D_s}{b^{0.66}Y^{0.17}} = 1.21 \,\psi^{0.55}; \qquad 0 \le \psi \le 1 \tag{13}$$

In using these equations a limiting value of 1 must be imposed on ψ to reflect maximum clear-water scour conditions. Figures 4.14 and 4.15 show the goodness of fit of the data to this equation. In Figure 4.15 additional data (126 points) from Chabert and Engeldinger (1956) and Shen, Schneider, Karaki (1966) which were used in the development of FHWA's CSU equation are included. This demonstrates the agreement of the new equation with other data sources. For comparison purposes, Figure 4.16 presents the same uniform-material data with the CSU equation. As expected, for coarse material and gravel the CSU equation does not perform well.

The last step in the development was the derivation of an expression to separate the effects due to coarse material fractions. This expression was derived through an extensive search for a function that could describe the physical phenomenon explained earlier in Figure 4.10. Those conditions are:

- At low flow intensities (ψ < 0), effects due to coarse fraction are negligible, since at these flows only finer fractions are scoured;
- At high flow intensities (ψ > 0), effects due to coarse fraction are also negligible, since at these flows the entire mixture is mobilized;
- At intermediate flow intensities scour reduction is a function of both ψ and D_{cfm}/D_{50} ; and
- Maximum scour reduction takes place for ψ = 0.1 to 0.3.

The resulting expression is:

$$K_4 = 1.25 + 3\sqrt{\frac{D_{cfm}}{D_{50}}} \ \psi^{0.60} \ln(\psi + 0.5); \qquad 0 \le K_4 \le 1, \ 0 \le \psi \le 1$$
(14)

where ψ is the dimensionless excess velocity from equation 4.

Figure 4.17 shows the data from set 1-3 experiments along with predictions from FHWA's CSU equation and the new K_4 relationship. The goodness of fit is illustrated in Figure 4.18. As shown in the figures, at low flow intensities and in the presence of coarse material the correlation of the CSU equation was poor.

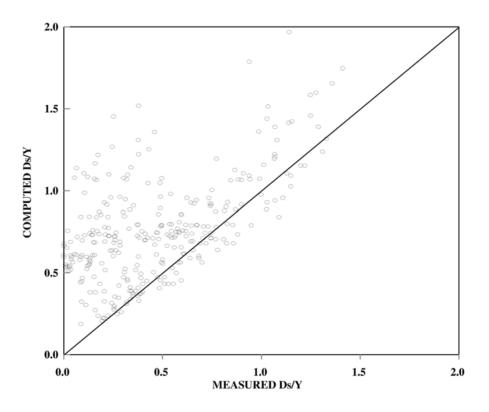
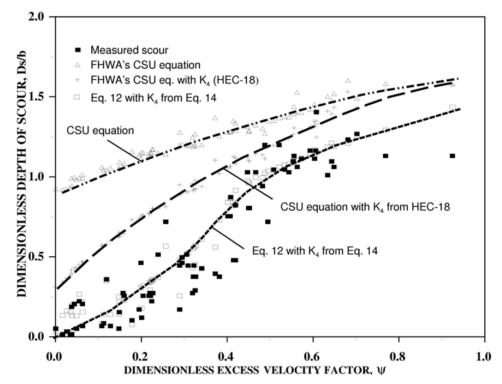
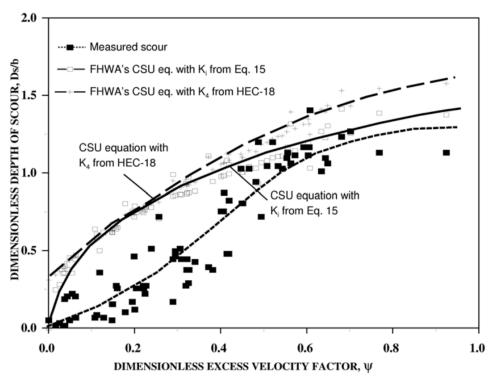
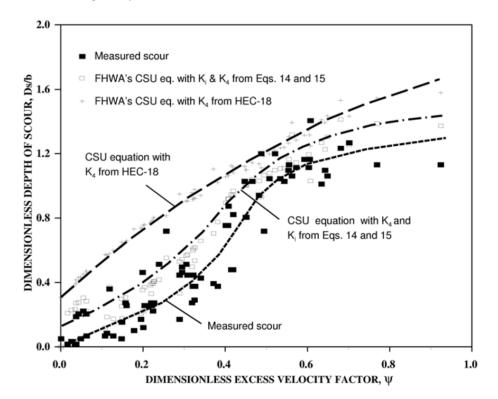
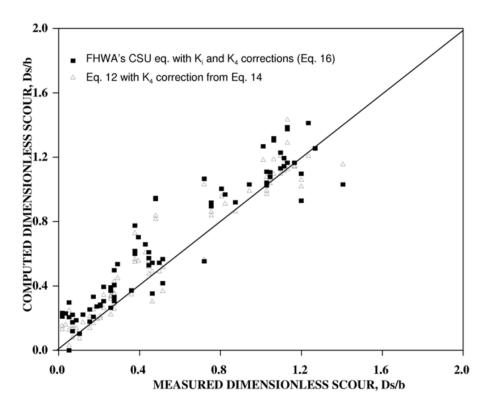




Figure 4.21. Computed scour using FHWA's CSU equation for uniform and nonuniform mixtures

Figure 4.22. Computed scour using FHWA's CSU equation with and without K_4 correction from HEC 18, and by using the newly-developed equation 12 with K_4 correction from equation 14

Figure 4.23. Comparison of FHWA's CSU equation with K_4 correction (according to HEC 18) and the initiation of motion correction, K_i (according to equation 15)




Figure 4.24. FHWA's CSU equation adjusted with K_i and K_4 , and with the HEC 18 correction for K_4

However, at high flow intensities the CSU predictions converged with the new method and measurements.

Figures 4.19 and 4.20 show the new equations with all data available from this study, and with the data from earlier studies that was used in the development of the earlier CSU equation (a total of 310 data values). The performance of the CSU equation with the same data set is illustrated in Figure 4.21.

4.5 Adjustments to FHWA's CSU Pier-Scour Equation

Figure 4.22 compares the present HEC-18 correction for coarse-material size with the new approach. As shown, modifications proposed in HEC-18 cannot fully accommodate size corrections since this factor does not involve any sizes, and provides maximum correction at $\psi = 0$ (the no-scour condition).

Figure 4.25. Comparison between computed and measured scour using K_i and K_4 corrections to FHWA's CSU equation (equation 16), and by using equation 12 with the K_4 correction from equation 14

From the analysis of all data, it is concluded that two adjustments to FHWA's CSU equation are needed:

- Implementation of initiation of scour for uniform mixtures with larger sediment diameters than those used in the derivation of the model; and
- Implementation of gradation and coarse-fraction size correction for non-uniform sediment mixtures.

Since the equation was originally developed for fine sands, initiation of motion took place at very low velocities, and the need for this correction was not obvious. For coarser sediments at low flow intensities, the present analysis amplifies this deficiency. The initiation of scour may be implemented in the CSU equation by the inclusion of a scour initiation factor, K_{i} . This factor was found to be:

$$K_{i} = \left(1 - \frac{V_{i}}{V}\right)^{0.45}; \qquad V > V_{i}$$
 (15)

For values of $V \le V_i$, the value of the initiation of scour factor, K_i , is 0.

Figure 4.23 compares the adjusted scour computations with the presently-used K_4 adjustment. The results are almost identical. The reason for this is due to the fact that the current K_4 is merely a correction for the initiation of motion, since the expression used for K_4 in HEC-18 is independent of relative sizes.

The second adjustment to the CSU equation to implement gradation and coarse-fraction size correction for non-uniform sediment mixtures may be accomplished through the *K*₄ factor defined earlier:

$$K_4 = 1.25 + 3\sqrt{\frac{D_{cfm}}{D_{50}}} \ \psi^{0.60} \ln(\psi + 0.5); \qquad 0 \le K_4 \le 1, \ 0 \le \psi \le 1$$
(16)

The final form of the CSU equation is:

$$\frac{D_s}{Y} = 2 K_1 K_2 K_3 K_i K_4 \left(\frac{b}{Y}\right)^{0.65} \left(\frac{V}{\sqrt{gY}}\right)^{0.43}$$
(17)

where the definition of terms K_1 , K_2 , and K_3 are as defined in HEC-18. Figures 4.24 and 4.25 show the results of pier-scour-depth computations using both K_i and K_4 , and compare the results with the results from this study. As seen, a major improvement takes place in the predictions. The final results are comparable to those obtained from the study with slight overestimations.

4.6 Summary and Conclusions of Theoretical Development

A new pier-scour equation describing effects of gradation and coarse-material fraction on pier scour, D_s , was developed for Colorado streams. This equation is given as:

$$\frac{D_s}{b^{0.66}Y^{0.17}} = K_U K_1 K_2 K_3 K_4 \psi^{0.55}; \qquad 0 \le \psi \le 1$$
(18)

Colorado State University

where $K_0 = 2.0$ for preferred English units, in which D_s , *b* (pier width), and *Y* (approach-flow depth) are in feet (1.64 for SI units, in which case D_s , *b*, and *Y* are in meters); K_1 , K_2 , and K_3 are as defined in HEC-18; and ψ equals the dimensionless excess-velocity factor given by:

$$\psi = \frac{V - V_i}{V_c - V_i}; \qquad 0 \le \psi \le 1$$
(19)

The definitions of the critical and scour-initiating velocities, V_c and V_i , respectively, are:

$$V_c = K_c D_{cfm}^{1/3} Y^{1/6}$$
(20)

$$V_i = K_i D_{35}^{1/3} Y^{1/6}$$
(21)

where $K_c = 12.0$ for preferred English units (6.625 for SI units); $K_i = 4.8$ for preferred English units (2.65 for SI units); and D_{cfm} is the median size of the coarse-material fractions (in feet for English units, and meters for SI units) computed from:

$$D_{\rm cfm} = \frac{D_{85} + 2D_{90} + 2D_{95} + D_{99}}{6}$$
(22)

The coarse-fraction reduction factor *K*⁴ is given by:

$$K_4 = 1.25 + 3\sqrt{\frac{D_{\rm cfm}}{D_{50}}} \ \psi^{0.60} \ln(\psi + 0.5); \qquad 0 \le K_4 \le 1, \ 0 \le \psi \le 1$$
(23)

By definition, both K_4 and ψ cannot be greater than 1. The new equation has the following characteristics:

- For uniform mixtures, it accommodates the initiation of motion at low flow intensities; for velocities smaller than the scour initiating velocities, no scour is computed.
- The computed results are bounded by the imposition of a limiting condition for ψ of 1 (live-bed conditions).
- It is physically based with no scour reduction at initiation of motion, or at high flow intensities.
- Scour reduction is expressed as a function of relative coarse-fraction size and the intensity of flow.
- It was verified with past experimental data (170 points), including data used in the development of FHWA's CSU equation. It also showed excellent agreement with Jain and Fisher's data for supercritical flows.
- It was shown to be applicable to size ranges from 0.24-mm fine sand to 17-mm gravel mixtures.
- It was tested successfully with 370 data sets with close agreement.

The work on the existing FHWA CSU equation also provided very promising results. The adjustments needed for the FHWA equation are:

- Implementation of initiation of scour for uniform mixtures with larger sediment diameters than those used in the derivation of the model; and
- Implementation of gradation and coarse-fraction size correction for non-uniform sediment mixtures.

The initiation of scour is implemented in the CSU equation by the inclusion of the *K*_i factor. This factor was found to be:

$$K_i = \left(1 - \frac{V_i}{V}\right)^{0.45}; \qquad V > V_i$$
 (24)

For values of $V < V_i$, the value of the initiation of scour factor, K_i , is 0.

Gradation and coarse-fraction size correction for non-uniform sediment mixtures is implemented in the CSU equation through the *K*₄ factor defined earlier as:

$$K_4 = 1.25 + 3\sqrt{\frac{D_{cfm}}{D_{50}}} \quad \psi^{0.60} \ln(\psi + 0.5); \qquad 0 \le K_4 \le 1, \qquad 0 \le \psi \le 1$$
(25)

The final form of the CSU equation is:

$$\frac{D_s}{Y} = 2 K_1 K_2 K_3 K_i K_4 \left(\frac{b}{Y}\right)^{0.65} \left(\frac{V}{\sqrt{gY}}\right)^{0.43}$$
(26)

where the terms K_1 , K_2 , and K_3 are as defined in HEC-18.

5. DEVELOPMENT OF PIER-SCOUR EQUATION FOR COLORADO STREAMS

5.1 General

This chapter discusses testing the new scour equation given by Eq. 17 using data from Colorado streams. The proposed scour equation in English units was given in Chapter 4 and is:

$$\frac{D_s}{b^{0.66} Y^{0.17}} = 2.0 K_1 K_2 K_3 K_4 \psi^{0.55}; \qquad 0 \le \psi \le 1$$

where

$$\psi = \frac{V - V_i}{V_c - V_i}; \qquad 0 \le \psi \le 1;$$
$$V_i = 4.8 D_{35}^{1/3} Y^{1/6}$$
$$V_c = 12 D_{cfm}^{1/3} Y^{1/6}$$

The Colorado streams used in the study are given Table 8. As shown in the table, 16 bridge sites were visited and data needed for the 40 pier-scour cases was obtained.

In general terms, the data needed for the analysis was:

- 1. General Site Information
 - a. Photos of various bridge elements and piers
- 2. Bridge Properties (from as-built drawings)
 - a. Pier size
 - b. Bridge geometry and elevations
 - c. Alignment of piers
- 3. Hydrology
 - a. 100-year and 500-year return frequency discharges
- 4. Hydraulics
 - a. Topography
 - b. Roughness
 - c. Losses
 - d. Ineffective flow areas
- 5. Sediment Properties
 - a. Bed-material size-gradation analyses
 - b. Coarse-fraction data

- 6. Scour-Calculation Data
 - a. Computed flow velocity
 - b. Computed flow depth
 - c. Initiation of bed-motion velocity
 - d. Critical velocity for mobilizing the channel bed
 - e. Excess velocity
- 7. Comparative Analysis
 - a. Past CDOT scour-measurement records
 - b. As-built plans
 - c. Existing-ground elevations

River	Colorado Highway	Structure ID	Number of Piers
Yampa River	SH 131	C-09-AR	2
Upper Colorado River	SH 131	E-10-A	3
Colorado River	I 70 AR	F-06-M	2
Colorado River	SH 340 EBND	H-02-S	8
Big Creek	SH 330	H-04-G	1
Plateau Creek	SH 330	H-04-S	1
Plateau Creek	SH 65	H-04-Z	1
East Muddy Creek	SH 133	H-07-H	2
Arkansas River	SH 300	H-11-AA	5
Lake Fork Creek	SH 300	H-11-U	2
North Fork Gunnison River	SH 187	I-06-C	2
Dolores River	SH 141	J-01-C	3
John Brown Creek	SH 141	J-01-D	1
Gunnison River	US 50	J-09-AB	2
Cebolla Creek	SH 149	K-08-D	2
Lake Fork Gunnison River	SH 149	L-07-A	2
Totals	16	16	39

Table 8. Colorado Streams Used in the Study

For the current study, streams listed in Table 5 were visited to obtain coarse-material samples and additional site and bed-material information. Data, including bridge properties (pier size, bridge geometry and elevations), hydrology, hydraulic computations (approach velocities and depths at each pier), bed-material properties (size-gradation information for bed material), and data for comparative analysis (CDOT scour measurements, as-built ground elevations, present ground elevations), was available to the research team through CDOT's on-going multi-year Plan of Action (POA) for Scour Critical Bridges study. This data was extracted and compiled from various Hydrau-Tech, Inc., reports and archives, and is provided in the Appendix.

In addition to the sediment size-distribution data at each site collected earlier during the POA study, the Appendix also provides results of numerous new sediment size-gradation analyses conducted to determine the coarse fractions in different streams. Coarse-material size (D_{cfm}) information was collected by:

- Individually collecting larger particles along river reaches (approximately 40-50 large particles along a 100-foot section) immediately upstream from bridges and at approach sections to bridges, and conducting a size analysis to determine an average coarse-material size at each site;
- Taking photographs of river beds at the approach sections with marked targets, and conducting photogrammetric size analysis using FHWA's size-analysis software; and
- In cases where coarse fractions could not be readily identified or measured, using the sizegradation analysis from the earlier POA study.

For the comparative analysis, several methods were used to determine scour at each pier:

- If available, CDOT measurements through the life of the bridge were used to determine changes at each pier. In following this procedure, it was noted that general scour taking place along the river is included in the overall-scour measurement.
- Comparing as-built drawings showing the ground elevation with Hydrau-Tech's recent groundelevation measurements immediately upstream from the piers to determine pier scour; and
- Using maintenance records and bridge-detail drawings to determine ground elevations, and comparing maintenance records with Hydrau-Tech's ground measurements.

Depending on the quality and frequency of maintenance-record data, results from different methodologies were analyzed and the most-accurate representation was chosen.

Tables 9-12 present the hydraulic, sediment, and pier-scour data used in the computations, as well as results of pier-scour calculations. Table 12 summarizes the computation results and provides measured-scour values derived from CDOT archives, CDOT maintenance, and Hydrau-Tech's field hydraulic surveys and corresponding computed pier-scour values. Figure 5.1 displays computed values against measured scour.

Structure	Pier	Hydraulics (100 yr)				
ID	Pler	$S_{\rm E}$ (ft/ft) $V_{\rm A}$ (ft/s)		Y _A (ft)		
C-09-AR	2	0.0041	5.7	6.8		
	3	0.0041	3.6	2.0		
E-10-A	2	0.0009	9.4	17.3		
	3	0.0009	8.6	7.4		
	4	0.0009	6.1	5.6		
F-06-M	2	0.0054	14.7	14.200		
	3	0.0054	14.6	11.600		
H-02-S	2	0.0011	1.9	3.3		
	3	0.0011	2.6	6.9		
	4	0.0011	2.1	5.2		
	5	0.0011	2.7	8.2		
	6	0.0011	3.6	10.1		
	7	0.0011	13.2	21.8		
	8	0.0011	13.1	22.1		
	9	0.0011	13.2	19.9		
H-04-G	2	0.0300	2.4	2.5		
H-04-S	2	0.0055	8.8	6.1		
H-04-Z	2	0.0023	10.0	8.3		
H-07-H	2	0.0035	3.8	2.5		
	3	0.0035	3.3	2.0		
H-11-AA	2	0.0030	3.6	2.9		
	3	0.0030	3.9	2.1		
	4	0.0030	5.9	3.6		
	5	0.0030	6.1	2.8		
	6	0.0030	1.3	0.5		
H-11-U	2	0.0016	3.6	2.5		
	3	0.0016	7.3	5.4		
I-06-C	2	0.0029	12.2	11.3		
	3	0.0029	9.8	6.6		
J-01-C	2	0.0022	12.7	9.3		
	3	0.0022	12.7	9.6		
	4	0.0022	3.1	3.3		
J-01-D	2	0.0064	6.7	7.1		
J-09-AB	2	0.0054	10.5	6.5		
	3	0.0054	11.8	9.5		
K-08-D	2	0.0007	6.3	5.2		
	3	0.0007	6.7	5.3		
L-07-A	2	0.0039	10.2	6.5		
	3	0.0039	8.6	4.7		

 Table 9.
 Summary of Hydraulic Parameters

Bed	Material	(ft)	Coarse-Fraction Properties (ft)								
D ₃₅	D 50	D 65	D ₁₆	D 35	D 50	D 65	D ₉₀	D ₉₅	D ₉₉	D cfm	D cfm
0.004	0.006	0.018	0.142	0.176	0.198	0.364	0.389	0.426	0.480	0.198	0.198
0.004	0.006	0.018	0.142	0.176	0.198	0.364	0.389	0.426	0.480	0.198	0.198
0.030	0.059	0.082	0.196	0.360	0.475	0.600	0.747	0.810	0.882	0.475	0.475
0.013	0.023	0.049	0.196	0.360	0.475	0.600	0.747	0.810	0.882	0.475	0.475
0.013	0.023	0.049	0.196	0.360	0.475	0.600	0.747	0.810	0.882	0.475	0.475
0.005	0.021	0.056	0.288	0.414	0.500	0.800	0.900	1.000	1.800	0.500	0.500
0.005	0.021	0.056	0.288	0.414	0.500	0.800	0.900	1.000	1.800	0.500	0.500
0.002	0.059	0.075	0.205	0.235	0.259	0.336	0.350	0.500	0.630	0.259	0.259
0.002	0.059	0.075	0.205	0.235	0.259	0.336	0.350	0.500	0.630	0.259	0.259
0.002	0.059	0.075	0.205	0.235	0.259	0.336	0.350	0.500	0.630	0.259	0.259
0.002	0.059	0.075	0.205	0.235	0.259	0.336	0.350	0.500	0.630	0.259	0.259
0.002	0.059	0.075	0.205	0.235	0.259	0.336	0.350	0.500	0.630	0.259	0.259
0.002	0.059	0.075	0.205	0.235	0.259	0.336	0.350	0.500	0.630	0.259	0.259
0.002	0.059	0.075	0.205	0.235	0.259	0.336	0.350	0.500	0.630	0.259	0.259
0.002	0.059	0.075	0.205	0.235	0.259	0.336	0.350	0.500	0.630	0.259	0.259
0.580	0.767	1.100	0.319	0.580	0.767	1.380	1.470	1.900	2.380	0.767	0.767
0.003	0.008	0.015	0.364	0.500	0.575	1.000	1.230	1.470	1.570	0.575	0.575
0.026	0.059	0.082	0.215	0.365	0.487	1.440	1.750	2.080	2.500	0.487	0.487
0.001	0.001	0.015	0.404	0.600	0.670	1.110	1.240	1.370	1.470	0.670	0.670
0.001	0.001	0.015	0.404	0.600	0.670	1.110	1.240	1.370	1.470	0.670	0.670
0.018	0.043	0.082	0.145	0.216	0.313	0.559	0.591	0.657	0.854	0.313	0.313
0.018	0.043	0.082	0.145	0.216	0.313	0.559	0.591	0.657	0.854	0.313	0.313
0.018	0.043	0.082	0.145	0.216	0.313	0.559	0.591	0.657	0.854	0.313	0.313
0.018	0.043	0.082	0.145	0.216	0.313	0.559	0.591	0.657	0.854	0.313	0.313
0.018	0.043	0.082	0.145	0.216	0.313	0.559	0.591	0.657	0.854	0.313	0.313
0.013	0.039	0.072	0.322	0.400	0.458	0.627	0.640	0.720	0.861	0.458	0.458
0.013	0.039	0.072	0.322	0.400	0.458	0.627	0.640	0.720	0.861	0.458	0.458
0.167	0.250	0.333	0.401	0.446	0.482	0.800	1.040	1.170	1.270	0.482	0.482
0.167	0.250	0.333	0.401	0.446	0.482	0.800	1.040	1.170	1.270	0.482	0.482
0.015	0.049	0.082	0.313	0.365	0.410	0.582	0.615	0.680	0.873	0.410	0.410
0.015	0.049	0.082	0.313	0.365	0.410	0.582	0.615	0.680	0.873	0.410	0.410
0.015	0.049	0.082	0.313	0.365	0.410	0.582	0.615	0.680	0.873	0.410	0.410
0.009	0.020	0.043	0.144	0.217	0.308	0.635	0.663	0.845	1.312	0.308	0.308
0.002	0.006	0.012	0.257	0.325	0.379	0.605	0.675	0.775	0.875	0.379	0.379
0.002	0.006	0.012	0.257	0.325	0.379	0.605	0.675	0.775	0.875	0.379	0.379
0.023	0.039	0.049	0.127	0.210	0.300	0.465	0.485	0.560	0.592	0.300	0.300
0.023	0.039	0.049	0.127	0.210	0.300	0.465	0.485	0.560	0.592	0.300	0.300
0.001	0.002	0.003	0.142	0.313	0.367	0.773	0.840	0.920	0.984	0.367	0.367
0.001	0.002	0.003	0.142	0.313	0.367	0.773	0.840	0.920	0.984	0.367	0.367

Table 10. Summary of Sediment-Size Properties

Structure	Vi (ft/s)	V _c (ft/s)	ψ	Ki	K 4	<i>b</i> (ft)
C-09-AR	1.07	9.63	0.54	0.91	1.00	1.50
C-09-AR	0.87	7.85	0.39	0.88	1.00	1.50
E-10-A	2.39	15.06	0.55	0.88	1.00	2.50
E-10-A	1.58	13.07	0.61	0.91	1.00	2.50
E-10-A	1.51	12.48	0.42	0.88	1.00	2.50
F-06-M	1.24	14.821	0.991	0.961	1.000	3.500
F-06-M	1.20	14.330	1.000	0.962	1.000	3.500
H-02-S	0.69	9.35	0.14	0.82	0.89	2.30
H-02-S	0.78	10.56	0.19	0.85	0.89	2.20
H-02-S	0.75	10.08	0.14	0.82	0.89	2.20
H-02-S	0.80	10.86	0.19	0.85	0.89	2.30
H-02-S	0.83	11.25	0.27	0.89	0.93	2.50
H-02-S	0.95	12.78	1.00	0.97	1.00	2.80
H-02-S	0.95	12.81	1.00	0.97	1.00	2.80
H-02-S	0.93	12.60	1.00	0.97	1.00	2.80
H-04-G	4.67	12.81	0.00	0.00	1.00	1.00
H-04-S	0.89	13.49	0.63	0.95	1.00	3.00
H-04-Z	2.03	13.43	0.70	0.90	1.00	1.50
H-07-H	0.49	12.23	0.28	0.94	0.98	4.00
H-07-H	0.47	11.79	0.25	0.93	0.96	4.00
H-11-AA	1.50	9.73	0.25	0.78	0.97	1.00
H-11-AA	1.43	9.25	0.32	0.81	1.00	1.00
H-11-AA	1.56	10.09	0.51	0.87	1.00	1.00
H-11-AA	1.49	9.67	0.56	0.88	1.00	1.00
H-11-AA	1.12	7.26	0.03	0.41	1.00	1.00
H-11-U	1.32	10.78	0.24	0.81	0.92	1.00
H-11-U	1.50	12.25	0.54	0.90	1.00	1.00
I-06-C	3.96	14.09	0.81	0.84	1.00	7.00
I-06-C	3.62	12.90	0.67	0.81	1.00	7.00
J-01-C	1.71	12.93	0.98	0.94	1.00	2.00
J-01-C	1.72	13.00	0.97	0.94	1.00	2.00
J-01-C	1.44	10.88	0.18	0.76	0.90	2.00
J-01-D	1.38	11.22	0.54	0.90	1.00	1.30
J-09-AB	0.84	11.86	0.88	0.96	1.00	2.00
J-09-AB	0.90	12.64	0.93	0.96	1.00	2.00
K-08-D	1.80	10.57	0.51	0.86	1.00	2.00
K-08-D	1.80	10.61	0.56	0.87	1.00	2.00
L-07-A	0.73	11.74	0.86	0.97	1.00	2.00
L-07-A	0.69	11.12	0.76	0.96	1.00	2.00

 Table11.
 Summary of Computed Pier-Scour Parameters

Pier ID	Measured Scour	Computed Scour
	Y _{sm} (ft)	Y _{sc} (ft)
C-09-AR2	0.00	2.58
C-09-AR3	2.00	1.75
E-10-A2	5.41	4.29
E-10-A3	5.41	3.92
E-10-A4	1.60	3.04
F-06-M2	5.79	7.14
F-06-M3	5.14	6.94
H-02-S2	1.07	1.46
H-02-S3	1.14	1.88
H-02-S4	2.09	1.52
H-02-S5	5.08	1.97
H-02-S6	6.53	2.62
H-02-S7	7.20	6.66
H-02-S8	6.20	6.68
H-02-S9	4.50	6.56
H-04-G2	2.90	0.00
H-04-S2	5.50	4.35
H-04-Z2	3.20	3.08
H-07-H2	0.80	2.91
H-07-H3	0.00	2.62
H-11-AA2	3.70	1.13
H-11-AA3	2.90	1.21
H-11-AA4	2.80	1.72
H-11-AA5	3.50	1.73
H-11-AA6	3.40	0.25
H-11-U2	0.00	1.07
H-11-U3	0.00	1.90
I-06-C2	13.90	9.74
I-06-C3	10.55	7.97
J-01-C2	4.50	4.57
J-01-C3	0.00	4.57
J-01-C4	1.70	1.49
J-01-D2	0.84	2.36
J-09-AB2	2.60	4.04
J-09-AB3	0.90	4.45
K-08-D2	1.56	2.90
K-08-D3	0.90	3.04
L-07-A2	3.07	4.00
L-07-A3	2.73	3.53

 Table 12.
 Summary of Computed Pier-Scour and Measured Scour

_Colorado State University

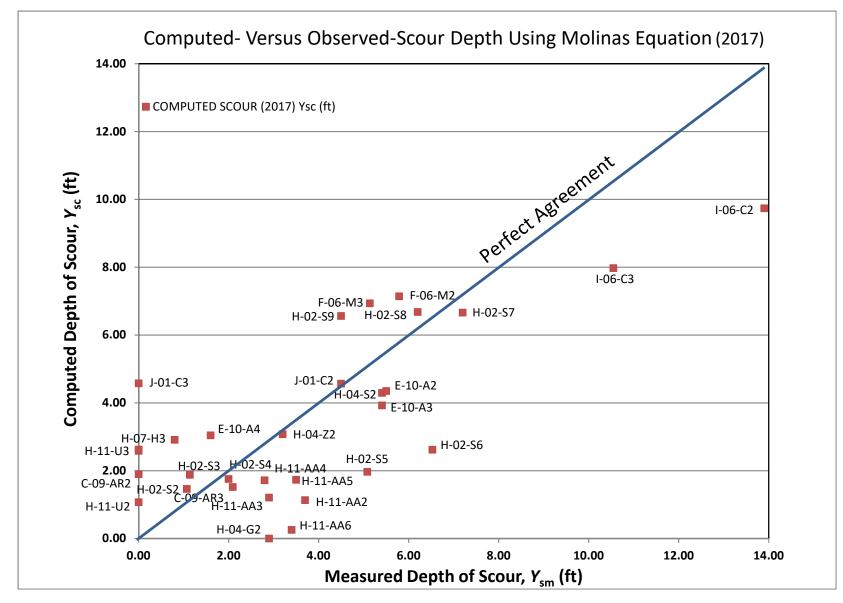


Figure 5.1 Computed Versus Observed Pier Scour at Colorado Streams Using the Newly-Developed Colorado Pier-Scour Equation

6. SUMMARY AND CONCLUSIONS

In this research study, a new bridge pier-scour equation suitable for streams flowing through mountainous regions of Colorado was developed. This equation utilizes the dimensionless excess-velocity concept, and relates this flow parameter to pier scour. Dimensionless excess velocity, by including critical and scour-initiating velocities in its definition, accommodates the presence of cobbles and boulders (through the critical-velocity term), as well as the finer sand-gravel size material (through the scour-initiating velocity term).

The development of the study's various research tasks is presented in Chapter 2. Chapter 3 presents the approach, and Chapter 4 discusses previous work conducted at Colorado State University by Dr. Molinas through a 6-year FHWA study to examine effects of gradation. Theoretical development of the new scour equation and initial steps in its derivation are presented. The general form of the equation leads to calibration coefficients relating critical and scour-initiation velocities to representative fine material (D_{35} of parent-sediment material found on the river bed), and to average coarse material that exists in abundance along mountain streams. Chapter 5 present the new scour equation and applies this equation to compute pier scour at 16 different sites scattered across mountainous parts of CDOT Regions 3 and 5.

Sources of the data used in the analysis are presented in Chapter 5. Extensive data from 16 bridges, a culmination of bridge-scour studies conducted for CDOT by Hydrau-Tech, Inc. for a Plan of Action (POA) for Scour Critical Bridges study is described. Additional coarse-material data collected for this project is described, along with methodologies employed to determine pier-scour estimates. Finally, tables related to scour computations are presented, and computed scour is compared with measured scour.

As shown in Figure 5.1, measured and computed pier-scour values for the 38 piers included in the study show very good agreement through the entire range of observed scour values, which vary from 0 to 14 ft. Considering that the coarse material in the streams varied from 2 in to 24 in, computed velocities ranged from 2 to 15 ft/sec, and the range of parent materials varied from sand and gravel to boulder sizes, it can be concluded that the equation was tested through a wide range of flow and environment conditions and has been shown to be an excellent predictor.

APPENDICES

- APPENDIX A SITE REVIEW AND PHOTOS
- APPENDIX B HYDROLOGIC ANALYSIS
- APPENDIX C CDOT INSPECTION INFORMATION
- APPENDIX D MEASURED PIER-SCOUR METHODOLOGY
- APPENDIX E EXISTING BRIDGE PLANS AND SUBSURFACE INFORMATION
- APPENDIX F HYDRAULIC ANALYSIS
- APPENDIX G SEDIMENT SIZE ANALYSIS

APPENDIX A – SITE REVIEW AND PHOTOS

Figure A.1.1. (E-10-A) Looking toward the structure entrance

Figure A.1.2. Looking toward the structure outlet

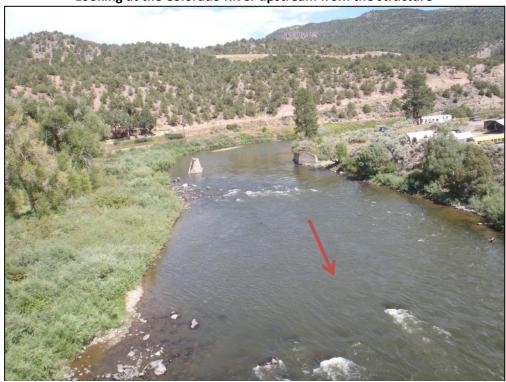


Figure A.1.3. Looking at the Colorado River upstream from the structure

Figure A.1.4. Looking at the Colorado River downstream from the structure

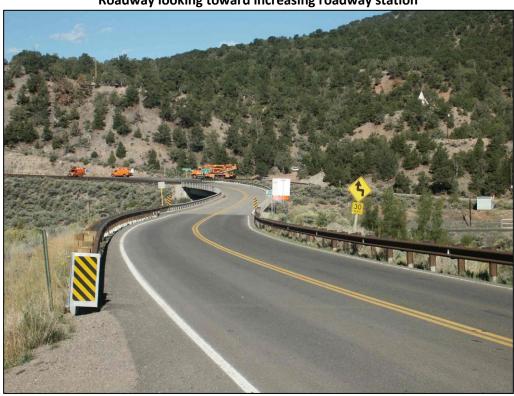


Figure A.1.5. Roadway looking toward increasing roadway station

Figure A.1.6. Roadway looking toward decreasing roadway station

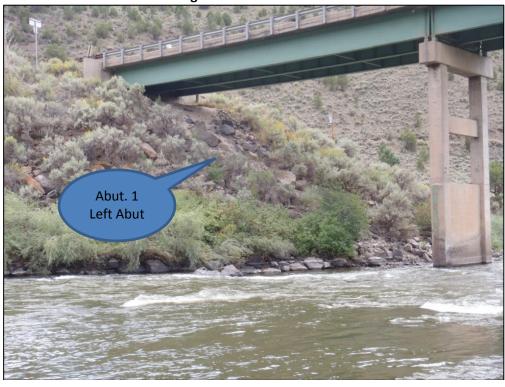


Figure A.1.7. Looking toward the left abutment

Figure A.1.8 Looking toward the right abutment

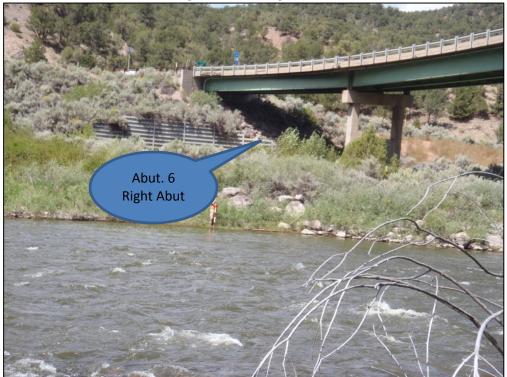


Figure A.2.1. (F-06-M) Looking toward the structure entrance

Figure A.2.2. Looking toward the structure outlet

Figure A.2.3. Looking at the Colorado River upstream from the structure

Figure A.2.4. Looking at the Colorado River downstream from the structure

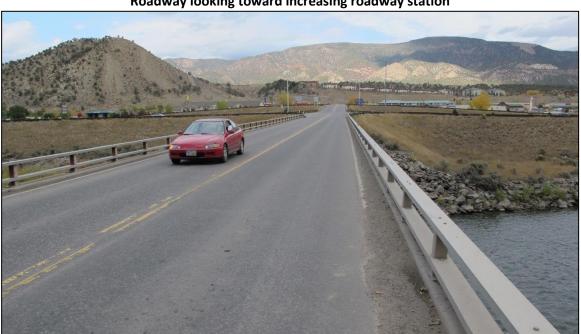


Figure A.2.5. Roadway looking toward increasing roadway station

Figure A.2.6. Roadway looking toward decreasing roadway station

Figure A.2.7. Looking toward the left abutment

Figure A.2.8. Looking toward the right abutment

Figure A.3.1. (H-02-S) Looking toward the structures entrance

Figure A.3.2. Looking toward the structures outlet

Figure A.3.3. Looking at the Colorado River upstream from the structures

Figure A.3.4. Looking at the Colorado River downstream from the structures

Figure A.3.5. Roadway looking toward increasing roadway station

Figure A.3.6. Roadway looking toward decreasing roadway station

Figure A.3.7. Looking toward the left abutment

Figure A.3.8. Looking toward the right abutments

Figure A.4.1. (H-04-Z)

Looking toward the structure entrance

Figure A.4.2. Looking toward the structure outlet

Figure A.4.3. Looking at Plateau Creek upstream from the structure

Figure A.4.4. Looking at Plateau Creek downstream from the structure

Figure A.4.5. Roadway looking toward increasing roadway station

Figure A.4.6. Roadway looking toward decreasing roadway station

Figure A.4.7. Looking toward the left abutment

Figure A.4.8. Looking toward the right abutment

Figure A.5.1. (H-07-H) Looking toward the structure entrance

Figure A.5.2. Looking toward the structure outlet

Figure A.5.3. Looking toward East Muddy Creek upstream from the structure

Figure A.5.4. Looking toward East Muddy Creek downstream from the structure

Figure A.5.5. Roadway looking toward increasing roadway station

Figure A.5.6. Roadway looking toward decreasing roadway station

Figure A.5.7. Looking toward left abutment

Figure A.5.8. Looking toward right abutment

Figure A.6.1. (H-11-AA) Looking toward the structure entrance

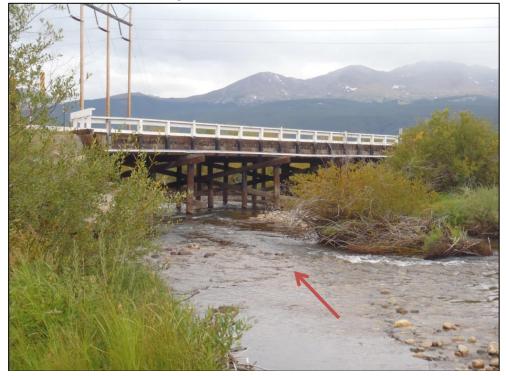


Figure A.6.2. Looking toward the structure outlet

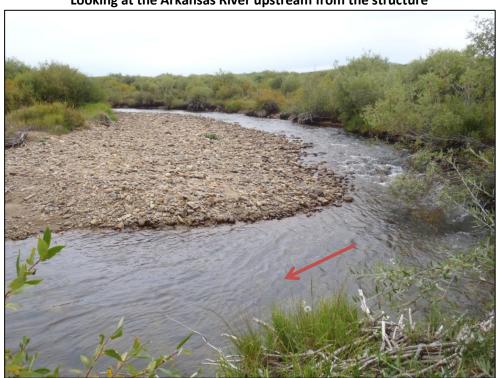


Figure A.6.3. Looking at the Arkansas River upstream from the structure

Figure A.6.4. Roadway looking toward increasing roadway station

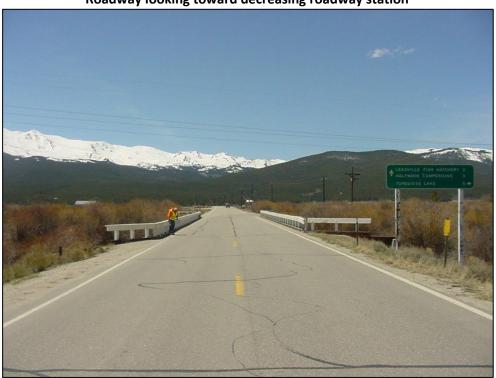


Figure A.6.5. Roadway looking toward decreasing roadway station

Figure A.6.6. Looking toward the left abutment

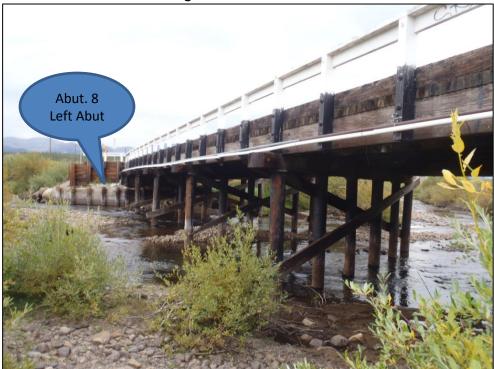


Figure A.6.7. Looking toward the right abutment

Figure A.7.1. (H-11-U) Looking toward the structure entrance

Figure A.7.2. Looking toward the structure outlet

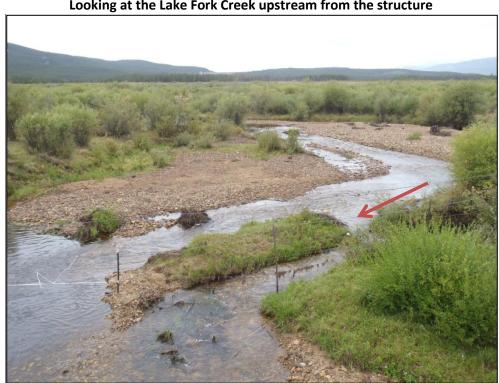


Figure A.7.3. Looking at the Lake Fork Creek upstream from the structure

Figure A.7.4. Looking at the Lake Fork Creek downstream from the structure

Figure A.7.5. Roadway looking toward increasing roadway station

Figure A.7.6. Roadway looking toward decreasing roadway station



Figure A.7.7. Looking toward the left abutment

Figure A.7.8. Looking toward the right abutment

Figure A.8.1. (I-06-C) Looking toward the structure entrance

Figure A.8.2. Looking toward the structure outlet



Figure A.8.3. Looking at the North Fork Gunnison River upstream from of the structure

Figure A.8.4. Looking at the North Fork Gunnison River downstream from the structure

Figure A.8.5. Roadway looking toward increasing roadway station

Figure A.8.6. Roadway looking toward decreasing roadway station

Figure A.8.7. Looking toward the left abutment

Figure A.8.8. Looking toward the right abutment

Figure A.9.1. (J-01-C) Looking toward the structure entrance

Figure A.9.2. Looking toward the structure outlet

Figure A.9.3. Looking at Dolores River upstream from the structure

Figure A.9.4. Looking at Dolores River downstream from the structure

Figure A.9.5. Roadway looking toward increasing roadway station

Figure A.9.6. Roadway looking toward decreasing roadway station

Figure A.9.7. Looking toward left abutment

Figure A.9.8. Looking toward right abutment

Figure A.10.1. (J-01-D) Looking toward the structure entrance

Figure A.10.2. Looking toward the structure outlet

Figure A.10.3. Looking at John Brown Creek upstream from the structure

Figure A.10.4. Looking at John Brown Creek downstream from the structure

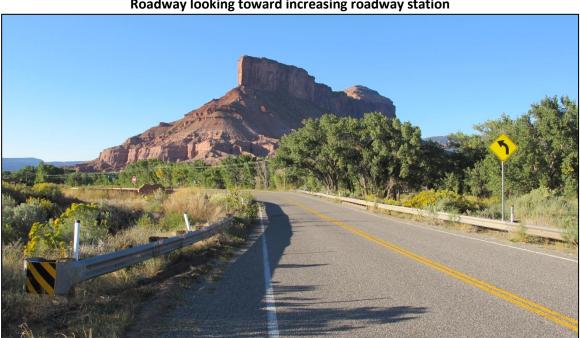


Figure A.10.5. Roadway looking toward increasing roadway station

Figure A.10.6. Roadway looking toward decreasing roadway station

Figure A.10.7. Looking toward left abutment

Figure A.10.8. Looking toward right abutment

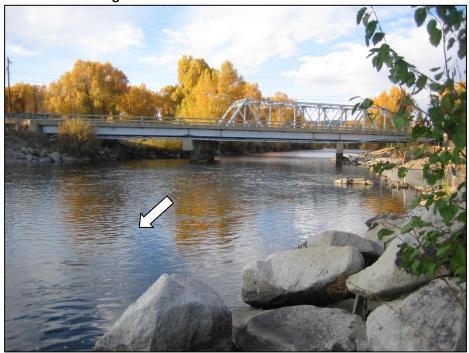


Figure A.11.1. (J-09-AB) Looking toward the downstream face of the structure

Figure A.11.2. Looking at the Gunnison River upstream from the structure

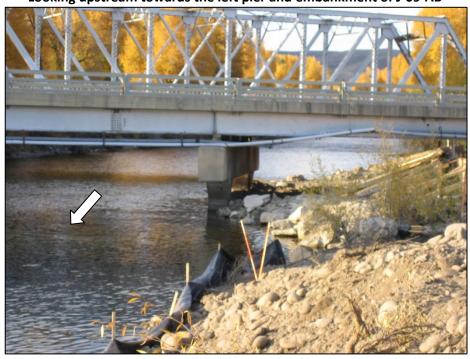


Figure A.11.3. Looking upstream towards the left pier and embankment of J-09-AB

Figure A.11.4. Looking towards the right abutment

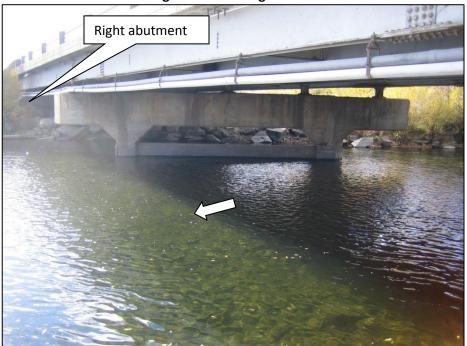


Figure A.11.5. Looking toward the downstream face of the structure

Figure A.11.6. Looking toward the downstream face of the structure

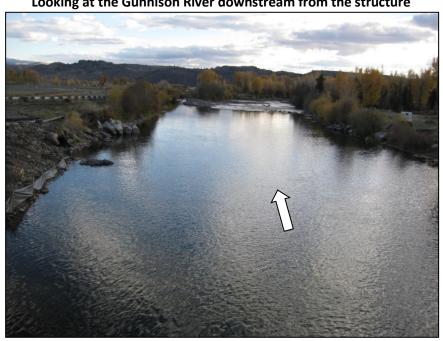


Figure A.11.7. Looking at the Gunnison River downstream from the structure

Figure A.12.1. (K-08-D) Looking toward the structure entrance

Figure A.12.2. Looking toward the structure outlet

Figure A.12.3. Looking toward Cebolla Creek upstream from the structure

Figure A.12.4. Looking toward Cebolla Creek downstream from the structure

Figure A.12.5. Roadway looking toward increasing roadway station

Figure A.12.6. Roadway looking toward decreasing roadway station

Figure A.12.7. Looking toward left abutment

Figure A.12.8. Looking toward right abutment

Figure A.12.9. Looking at drop structure downstream of bridge

Figure A.12.10. Looking at drop structure downstream of bridge

Figure A.13.1. (L-07-A) Looking toward the structure entrance

Figure A.13.2. Looking toward the structure outlet

Figure A.13.3. Looking toward Lake Fork Gunnison River upstream from the structure

Figure A.13.4. Looking toward Lake Fork Gunnison River downstream from the structure

Figure A.13.5. Roadway looking toward increasing roadway station

Figure A.13.6. Roadway looking toward decreasing roadway station

Figure A.13.7. Looking toward left abutment

Figure A.13.8. Looking toward right abutment

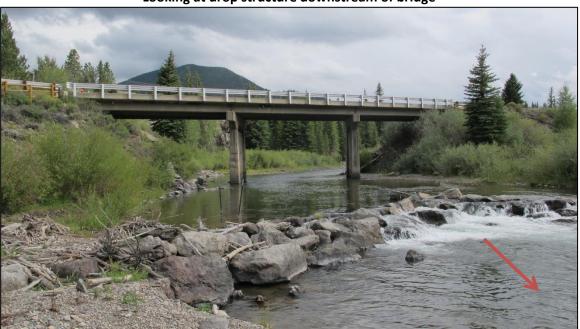


Figure A.13.9. Looking at drop structure downstream of bridge

Figure A.13.10. Looking at drop structure downstream of bridge

Figure A.13.11. Looking at multiple dikes upstream of bridge

Figure A.13.12. Looking at drop structure and dikes upstream of bridge

APPENDIX B – HYDROLOGIC ANALYSIS

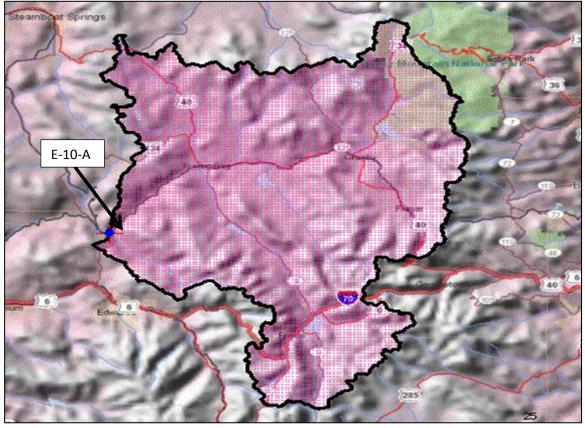


Figure B.1.1. (E-10-A) Drainage Basin at E-10-A (USGS StreamStats)

Table B.1.1.Basin Characteristics Report (USGS StreamStats)

Parameter	Value
6-hour, 100-year precipitation, in inches	2.07
Mean basin slope computed from 10 m DEM, in percent	22.9
Area that drains to a point on a stream in square miles	2660
Mean Basin Elevation in feet	7770
Mean annual precipitation, in inches	23.91
Percentage of basin above 7500 ft elevation	79.1

StreamStats Ungaged Site Report

Date:	Wed	Aug	31	2011	10:46:39	Mountain	Daylight	Time
NAD27		Latitud	e:	39.	8567	(39	51	24)
NAD27		Longitud	de:	-106	5.6499	(-106	38	60)
NAD83		Latitud	e:	39.8	8567	(39	51	24)
NAD83 L	.ongituc	le: -106.6	5505 (-	106 39 02	2)	-		-

Warning from delineation: STREAMFLOW REGULATED--EQUATIONS DO NOT APPLY

Error: ComputeFlows: No intersecting region found for PeakFlows.

Log Pearson III Gage Analysis

A log Pearson III analysis of the stream gage #9058000 was made. The gage is located near Kremmling and has 62 years of record from 1905 to 2010. The gage drainage area is 2,379 square miles. The regional skew is -0.3 from the Bulletin 17B regional skewness map. The number of years of record is greater than 50, indicating that the record length is adequate. The adopted skewness of 0.05 was applied to adjust the flood frequency curve.

Application of the 1999 and 2009 USGS Regression equations for Colorado produces much lower estimates than the gage analysis. The Colorado Stream Stats program does not compute the flood frequency due to the large drainage area that would result in extrapolation of the equations. The computation of the flood frequency using the equation typically produces larger estimates than the gage estimates because the large drainage area typically has reservoirs that tend to decrease the flood frequency estimates.

Table B.1.2 lists the log Pearson III flood frequency estimates and the 1999 and 2009 USGS regional regression equation estimates.

State Highway 131 Structure E-10-A

The Colorado River highway 131 crossing has a drainage area of 2,660 square miles. That drainage area is only 11% larger than the drainage area of the stream gage indicating no area adjustment is required. The area adjustment exponent from the Colorado 2009 equation is 0.78 to 0.74. Area adjustment increases the discharge estimates approximately 8%. Area adjustment was applied using the 2009 USGS regression equation area exponents for the mountain hydrologic region. Table B.1.2 lists the area adjusted discharge estimates. The area adjusted estimates may be used for hydraulic and scour analysis at this site.

	Table B.1.2. Flood Frequency							
	Adjusted Area							
	log	log	USGS	USGS	Adjusted Highway			
Return	Pearson	Pearson	EQ	EQ	131			
Period	III	WRC	2009	1999				
yr	cfs	cfs	cfs	cfs	cfs			
2	4014	4080	5130	3890	4373			
5	7983	8028	7210	6080	8596			
10	11613	11505	8860	7700	12319			
25	17520	16954	9700	9870	18122			
50	22950	21786	11700	11500	23287			
100	29280	27250	13300	13200	29127			
200	36541	33337	14700	14900	35634			
500	47560	42274	16400	17100	45146			

Equation show much less discharge than gage Equations are extrapolated Adjusted using regional skew -0.3 Colorado River near Kremmling Stream Gage #9058000 Area adjusted based on 2009 equations area exponents for mountain region

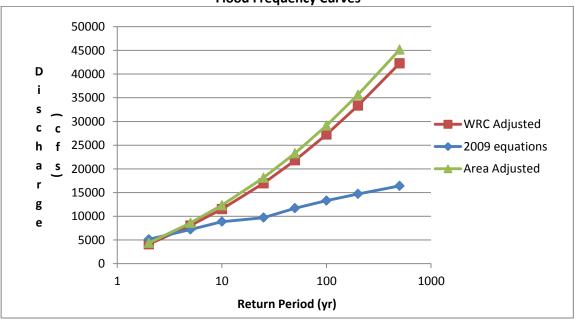


Figure B.1.2. Flood Frequency Curves

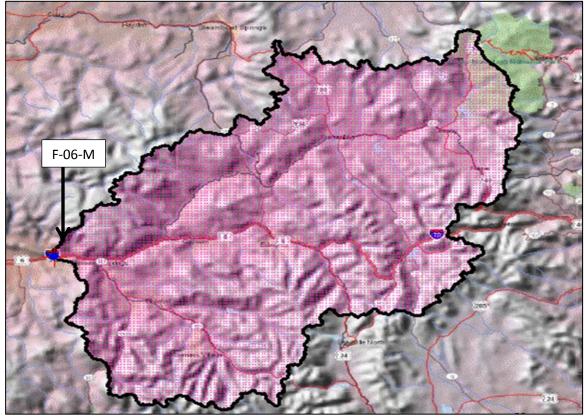


Figure B.2.1. (F-06-M) Drainage Basin at F-06-M (USGS StreamStats)

Basin Characteristics Report (USGS StreamStats)						
Parameter						
6-hour, 100-year precipitation, in inches	2.13					
Mean basin slope computed from 10 m DEM, in percent	31.3					
Area that drains to a point on a stream in square miles	6120					
Mean Basin Elevation in feet	9400					
Mean annual precipitation, in inches	25.43					
Percentage of basin above 7500 ft elevation	90.2					

Table B.2.1. Basin Characteristics Report (USGS StreamStats)

Streamstats Ungaged Site Report

Date:	Wed	Aug	31	2011	11:59:18	Mountain	Daylight	Time	
NAD27		Latitud	e:	39.	5647	(39	33	53)	
NAD27		Longitud	le:	-107	7.5165	(-107	30	60)	
NAD83		Latitud	e:	39.	5646	(39	33	53)	
NAD83 L	NAD83 Longitude: -107.5172 (-107 31 02)								

Warning from delineation: STREAMFLOW REGULATED--EQUATIONS DO NOT APPLY

Error: ComputeFlows: No intersecting region found for PeakFlows. Colorado River near Glenwood

<u>Hydrology</u>

Colorado River at Glenwood Springs has a drainage area of 1800 sq miles. The peak runoff is primarily due to snowmelt. The gage (9163500) near the Utah Border and the Kremling gage (9058000) were used to interpolate the estimate for Glenwood Canyon. The Kremling gage has a drainage area of 2379 square miles. The Utah gage has a much larger area of 16900 sq miles.

This site drainage area is 4560 sq miles near Glenwood Springs.

Conclusion

The log Pearson III gage study results were used for this site. The 100-year flood peak of 35298 cfs and 500-year peak discharge of 52931 cfs from the log Pearson III analysis of records.

noou nequency							
					Computed		
			Near				
Kremling	9058000		Utah	9163500	Glenwood		
					4560 sq		
Area	2379 sq mi		16900 sq	mi	mi		
		WRC		WRC			
	cfs	cfs	cfs	cfs	cfs		
2	4014	4038	24465	24358	7070		
2.3	4630	4657	26876	26768	7955		
5	7983	8000	37232	37222	12375		
10	11613	11575	45339	45527	16707		
25	17520	17313	55011	55583	23237		
50	22950	22519	61729	62668	28915		
100	29280	28522	67990	69348	35298		
200	36541	35333	73812	75629	42412		
500	47560	45546	80857	83321	52931		

Table B.2.2. Flood Frequency

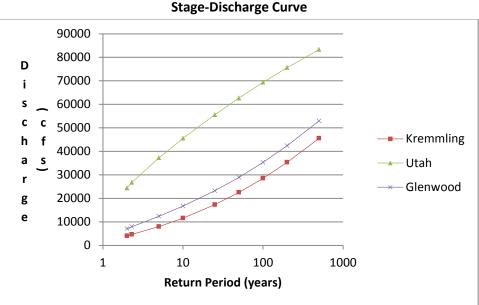


Figure B.2.2. Stage-Discharge Curve

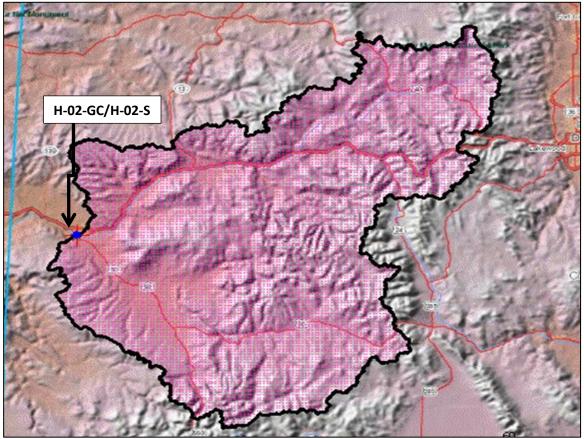


Figure B.3.1. (H-02-S) Drainage Basin at H-02-S (USGS StreamStats)

Table B.3.1.
Basin Characteristics Report (USGS StreamStats)

Parameter						
6-hour, 100-year precipitation, in inches	2.11					
Mean basin slope computed from 10 m DEM, in percent	28.3					
Area that drains to a point on a stream in square miles	16900					
Mean Basin Elevation in feet	8750					
Mean annual precipitation, in inches	22.31					
Percentage of basin above 7500 ft elevation	76					

Streamstats Ungaged Site Report

Date:	Wed	Aug	31	2011	14:30:27	Mountain	Daylight	Time
NAD27		Latitud	le:	39.	0670	(39	04	01)
NAD27		Longitue	de:	-108	3.5826	(-108	34	57)
NAD83		Latitud	le:	39.	0670	(39	04	01)
NAD83 L	ongitud	le: -108.5	5832 (-	108 34 60		-		-

Warning from delineation: STREAMFLOW REGULATED--EQUATIONS DO NOT APPLY

Error: ComputeFlows: No intersecting region found for PeakFlows.

Log Pearson III Gage Analysis

A log Pearson III analysis of the stream gage # 9153000 was made. The gage is located near the Utah Border with 61 years of record from 1951 to 2010. The gage drainage area is 17,843 square miles. The regional skew is -0.3 from the Bulletin 17B regional skewness map. Both the unadjusted and adjusted estimates are listed in Table B.3.2. Application of the 1999 and 2009 USGS Regression equations for Colorado produces lower estimates than the gage. The Colorado Stream stats program does not compute the flood frequency due to the large drainage area that would result in extrapolation of the equations outside of recommended ranges. Application of the equations however provides some insight as to how well they may extrapolate and if there may be some reservoir storage affect in the gage analysis. Table B.3.2. lists the log Pearson III flood frequency estimates and the 1999 and 2009 USGS regional regression equation estimates.

State Highway 340 Structure H-02-S and H02-GC

The Colorado River highway 340 crossing has a drainage area of 16900 square miles. The site drainage area is only 5% smaller than the drainage area of the stream gage indicating that area adjustment is minor. Table B.3.2. lists the area adjusted discharge estimates that are recommended to be used for hydraulic and scour analysis at this site.

Colorado Stream stats

The Colorado Stream Stats program indicates this site is outside the range of the regression equations due to regulation of stream flows and the large drainage area. The 2009 equations were applied outside of the Colorado Stream Stats environment since it provides results useful in comparison to stream gage analysis. The equations expectedly produced larger peak flood estimates than the stream gage analysis.

Colorado Stream Stats Basin Characteristics

H-02-S State Highway 340 **Basin Characteristics Report** H-02-S H-02-GC **Colorado River Basin Characteristics Report** Date: Sun Oct 16 2011 20:39:27 Mountain Daylight Time NAD27 Latitude: 39.0669 (39 04 01) NAD27 Longitude: -108.5819 (-108 34 55) NAD83 Latitude: 39.0669 (39 04 01) NAD83 Longitude: -108.5825 (-108 34 57) Value Parameter 6-hour, 100-year precipitation, in inches2.11 Mean basin slope computed from 10 m DEM, in percent 28.3 Area that drains to a point on a stream in square miles 16900 Mean Basin Elevation in feet 8750 Mean annual precipitation, in inches 22.32 Percentage of basin above 7500 ft elevation 76.1

Table B.3.2. USGS StreamStats Flood Frequency and Confidence Limits

Z09163500	USGS Stre		Frequency a	and Confidence	LIMITS
H09163	500 3907	7581090135000)808077SW14	01000517849	17843 4325
N09163	500 COLC	DRADO RIVER N	NEAR COLORA	DO-UTAH STATI	E LINE
		UNA	ADJUSTED	WRC	ADJUSTED
PERCENT	RECURRENCE	K		K	
CHANCE	INTERVAL		FLOW		FLOW
	YEARS		CFS		CFS
99.0	1.0	-2.68670	5418.	-2.65149	5523.
98.0	1.0	-2.31459	6635.	-2.28995	6724.
96.0	1.0	-1.91245	8259.	-1.89783	8325.
90.0	1.1	-1.32121	11395.	-1.31841	11412.
80.0	1.3	80505	15091.	80936	15056.
66.6	1.5	35417	19290.	36187	19209.
50.0	2.0	.08238	24465.	.07427	24358.
42.9	2.3	.25498	26876.	.24759	26768.
20.0	5.0	.85369	37232.	.85321	37222.
10.0	10.0	1.21555	45339.	1.22315	45527.
4.0	25.0	1.57074	55011.	1.58975	55583.
2.0	50.0	1.78238	61729.	1.81012	62668.
1.0	100.0	1.95983	67990.	1.99615	69348.
.5	200.0	2.11077	73812.	2.15542	75629.
.2	500.0	2.27820	80857.	2.33334	83321.

Confidence limits upper and lower at two Standard Errors 95 % chance estimate is between limits 97.5 % chance below upper limit Confidence limits upper and lower at one Standard Errors 68 % chance estimate is between limits 84 % chance below upper limit

Probability	Recurrence yr	95% Lower Limit	68%Lower Limit	WRC	68% Upper Limit	95% Upper Limit
99.0	1.0	3884.1	4673.7	5523.0	6361.8	7126.4
98.0	1.0	4915.3	5793.4	6724.4	7634.6	8458.9
96.0	1.0	6335.9	7307.1	8324.6	9311.8	10202.7
90.0	1.1	9177.6	10272.8	11411.9	12517.1	13520.9
80.0	1.3	12611.1	13802.5	15056.1	16295.9	17449.9
66.6	1.5	16510.3	17804.5	19209.5	20653.2	22055.5
50.0	2.0	21198.9	22675.1	24357.6	26183.7	28063.1
42.9	2.3	23323.1	24914.1	26767.7	28828.0	31001.0
20.0	5.0	32068.0	34357.9	37222.2	40658.3	44576.8
10.0	10.0	38610.6	41624.8	45526.9	50385.4	56142.5
4.0	25.0	46215.1	50233.6	55583.3	62452.3	70860.0
2.0	50.0	51415.9	56202.5	62668.1	71107.5	81620.3
1.0	100.0	56224.0	61770.1	69347.5	79367.0	92024.5
.5	200.0	60673.3	66960.2	75629.0	87213.4	102017.8
.2	500.0	66038.3	73262.1	83320.9	96916.2	114509.2
	R LIMIT 1096			0		
LOW OUTLIEF	R LIMIT 499	2.42 cfs T	2.83700			

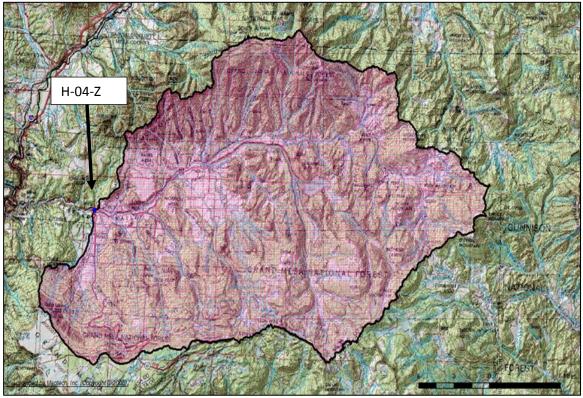


Figure B.4.1. (H-04-Z) Drainage Basin at H-04-Z (USGS StreamStats)

 Table B.4.1.

 Basin Characteristics Report (USGS StreamStats)

Parameter						
Mean basin slope computed from 10 m DEM, in percent	21.9					
Area that drains to a point on a stream in square miles	546					
Mean Basin Elevation in feet	8390					

Peak-Flows Streamflow Statistics Area-Averaged				
Statistic	Flow (ft ³ /s)	Prediction Error (percent)	Equivalent years of record	
PK2	1870	68		
PK5	2760	57		
PK10	3380	52		
PK25	3980	50		
PK50	4720	50		
PK100	5420	48		
PK200	5930	48		
PK500	6790	47		

Table B.4.2.USGS StreamStats Peak-Flows Streamflow Statistics

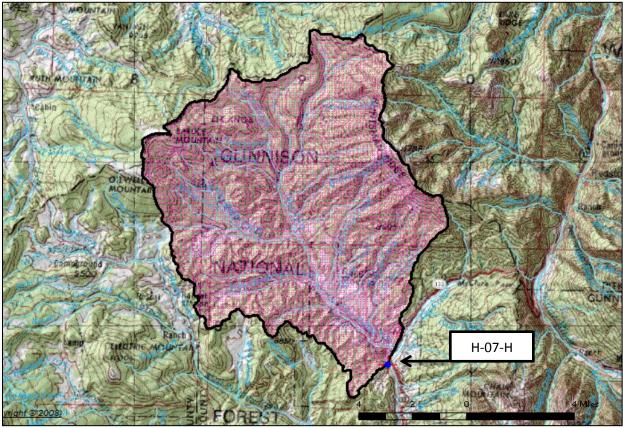


Figure B.5.1. (H-07-H) Drainage Basin at H-07-H (USGS StreamStats)

Basin Characteristics Report (USGS StreamStats)			
Parameter			
6-hour, 100-year precipitation, in inches	2.27		
Mean basin slope computed from 10 m DEM, in percent	27.3		
Area that drains to a point on a stream in square miles	113		
Mean Basin Elevation in feet	8720		
Mean annual precipitation, in inches	28.85		
Percentage of basin above 7500 ft elevation	89.9		

Table B.5.1. Basin Characteristics Report (USGS StreamStats)

Peak-Flows Basin Characteristics				
89% Mountain Region Peak Flow	w (81.4	mi2)		
Devenedar	Value	Regression Equation Valid Range		
Parameter		Min	Max	
Drainage Area	91			
Mean Basin Slope from 10m DEM				
Mean Annual Precipitation	28.46			
11% Northwest Region Peak Flo	w (9.58	3 mi2)		
Parameter	Value	Regression Equation Valid Range		
Parameter		Min	Max	
Drainage Area	91			
Percent above 7500 ft				
Mean Annual Precipitation	28.46			

Table B.5.2.USGS StreamStats Basin Characteristics

Table B.5.3.

USGS StreamStats Peak-Flows Streamflow Statistics Area-Averaged

Peak-Flows Streamflow Statistics Area-Averaged				
Statistic	Flow (ft³/s)	Prediction Error (percent)	Equivalent years of record	
PK2	708	56		
PK5	990	49		
PK10	1180	45		
PK25	1360	44		
PK50	1610	43		
PK100	1800	40		
PK200	1950	40		
PK500	2210	38		

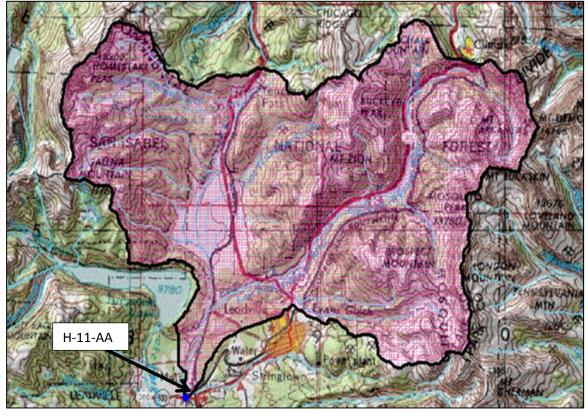


Figure B.6.1. (H-11-AA) Drainage Basin at H-11-AA (USGS StreamStats)

Basin Characteristics Report (USGS StreamStats)			
Parameter	Value		
6-hour, 100-year precipitation, in inches	2.18		
Mean basin slope computed from 10 m DEM, in percent	27.4		
Area that drains to a point on a stream in square miles	102		
Mean Basin Elevation in feet	11100		
Mean annual precipitation, in inches	23.36		
Percentage of basin above 7500 ft elevation	100		

Table B.6.1. Basin Characteristics Report (USGS StreamStats)

Peak-Flows Streamflow Statistics					
Statistic	Flow (ft ³ /s)	Prediction Error (percent)	Equivalent years of record	90-Percent Prediction Interval	
				Minimum	Maximum
PK2	431	49			
PK5	628	44			
PK10	772	41			
PK25	906	40			
PK50	1100	39			
PK100	1240	36			
PK200	1370	36			
PK500	1590	33			

 Table B.6.2.

 USGS StreamStats Peak-Flows Streamflow Statistics

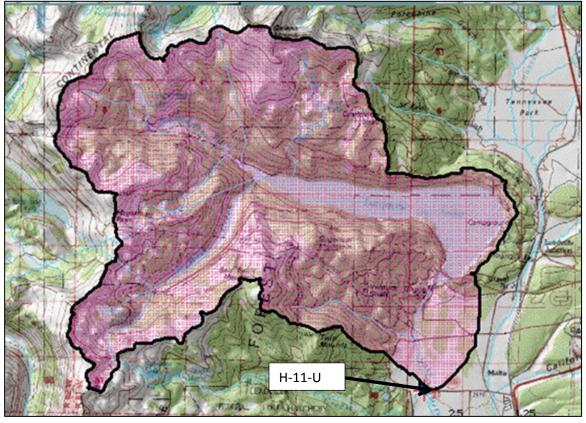


Figure B.7.1. (H-11-U) Drainage Basin at H-11-U (USGS StreamStats)

Basin characteristics hepoint (0505 Streamstats)				
Parameter	Value			
6-hour, 100-year precipitation, in inches	2.33			
Mean basin slope computed from 10 m DEM, in percent	27.9			
Area that drains to a point on a stream in square miles	34.4			
Mean Basin Elevation in feet	10800			
Mean annual precipitation, in inches	27.50			
Percentage of basin above 7500 ft elevation	100			

 Table B.7.1.

 Basin Characteristics Report (USGS StreamStats)

Peak-Flows Streamflow Statistics							
	2		Equivalent years of record	90-Percent Prediction Interval			
Statistic	Flow (ft³/s)	Prediction Error (percent)		Minimum	Maximum		
PK2	261	49					
PK5	369	44					
PK10	443	41					
PK25	518	40					
PK50	618	39					
PK100	688	36					
PK200	748	36					
PK500	860	33					

Table B.7.2.USGS StreamStats Peak-Flows Streamflow Statistics

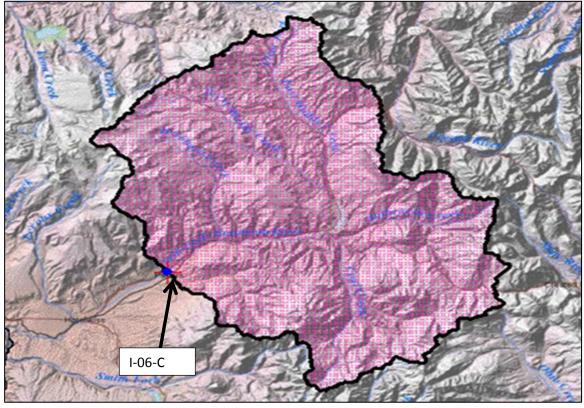


Figure B.8.1. (I-06-C) Drainage Basin at I-06-C (USGS StreamStats)

Parameter	Value
6-hour, 100-year precipitation, in inches	2.26
Mean basin slope computed from 10 m DEM, in percent	32
Area that drains to a point on a stream in square miles	721
Mean Basin Elevation in feet	8680
Mean annual precipitation, in inches	27.12
Percentage of basin above 7500 ft elevation	82.6

Table B.8.1. Basin Characteristics Report (USGS StreamStats)

Peak-Flows Basin Characteristics						
82% Mountain Region Peak Flow (592	mi2)					
	Value	Regression I	Equation Valid			
Parameter		Ra	nge			
		Min	Max			
Drainage Area (square miles)	721	1	1060			
Mean Basin Slope from 10m DEM	32	7.6	60.2			
(percent)						
Mean Annual Precipitation (inches)	27.12	18	47			
18% Northwest Region Peak Flow (129) mi2)					
	Value	Regression I	Equation Valid			
Parameter		Ra	ange			
		Min	Max			
Drainage Area (square miles)	721	1	5250			
Percent above 7500 ft (percent)	82.6	0	99			
Mean Annual Precipitation (inches)	27.12	8	49			

Table B.8.2.USGS StreamStats Basin Characteristics

Table B.8.3.

USGS StreamStats Peak-Flows Streamflow Statistics Area-Averaged

	Peak-Flows Streamflow Statistics Area-Averaged						
Statistic	Flow (ft ³ /s)	(ft ³ /s) Prediction Error (percent) Equi					
PK2	2630	60					
PK5	3720	52					
PK10	4480	48					
PK25	5110	46					
PK50	6050	45					
PK100	6810	43					
PK200	7400	43					
PK500	8380	41					

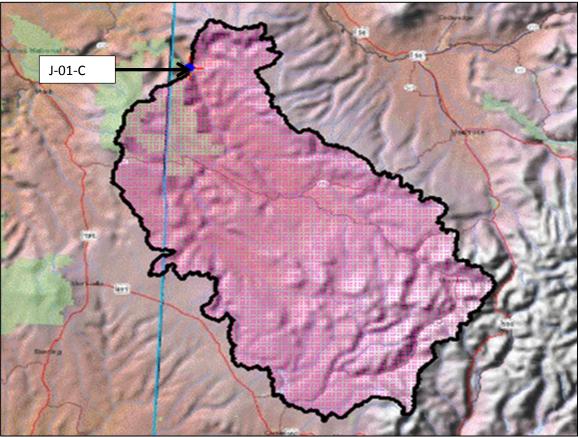


Figure B.9.1. (J-01-C) Drainage Basin at J-01-C (USGS StreamStats)

Table B.9.1.Basin Characteristics Report (USGS StreamStats)

Parameter	Value
6-hour, 100-year precipitation, in inches	2.20
Mean basin slope computed from 10 m DEM, in percent	23.1
Area that drains to a point on a stream in square miles	4360
Mean Basin Elevation in feet	7750
Mean annual precipitation, in inches	21.33
Percentage of basin above 7500 ft elevation	52.4

StreamStats Ungaged Site Report

Date:	Fri	Sep	9	2011	10:50:54	Mountain	Daylight	Time
NAD27		Latitu	de:	38	3.6806	(38	40	50)
NAD27		Longitu	ıde:	-10	08.9793	(-108	58	45)
NAD83		Latitu	de:	38	3.6806	(38	40	50)
NAD83 L	.ongitu	de: -108	.9799	(-108 58 4	18)	-		-

Warning from delineation: STREAMFLOW REGULATED--EQUATIONS DO NOT APPLY

Error: ComputeFlows: No intersecting region found for PeakFlows.

<u>Hydrology:</u>

The Delores River crossing of highway 141 has a drainage area of 4360 square miles. Stream gage 9169500 has a drainage area of 2025 square miles. The watershed is located in the Southwest hydrologic region portions of which are mountainous.

Colorado Stream stats

The Colorado Stream Stats program indicates this site is outside the range of the regression equations due to regulation of stream flows and the large drainage area. The 2009 equations were applied outside of the Colorado Stream Stats environment since it provides results useful in comparison to stream gage analysis. The equations expectedly produced larger peak flood estimates than the stream gage analysis.

<u>Stream Gage</u>

The Delores River stream gage 9-169500 has a drainage area of 2025 square miles. The gage has records from 1918 to 2010. Some years of record however are missing. A total of 44 years were used in the analysis. A log Pearson III analysis was performed on this gage data. The regional skew of -0.1 was used. The station skew was computed to be -.51 and the weighted skew of -0.44 was used to produce the skew adjusted estimates. Area adjustment of the log Pearson III gage analysis was made based on the gage and site drainage areas. The gage area is approximated one half the site area indication substantial extrapolation. The area adjustment exponents for the mountain region were used. The area adjusted gage estimates are similar to the 2009 mountain equations. The 2009 equations however are larger than may be attributed to regulation or the watershed. A comparison with the Colorado River was also made since the Delores is a tributary. The Delores flood frequency peak is less that the Colorado River flood frequency curves as related to drainage area; the unit discharge per square miles is less for Delores than for the Colorado River. The peak runoff is primarily due to snowmelt. The gage (9163500) near the Utah Border and the Kremmling gage (9058000) were used to interpolate the estimate for Glenwood Canyon. The Kremmling gage has a drainage area of 2379 square miles. The Utah gage has a much larger area

of 16900 square miles. The Delores results were plotted to see how they line up with the Colorado River gage analysis. That

Conclusion

The area adjusted log Pearson III gage study results are recommended for this site. The 100-year flood peak of 20080cfs and 500-year peak discharge of 25936cfs are recommended for scour analysis.

Table B.9.2. Flood Frequency						
		Adjusted	Mountain	Mountain	Area	
	log	log	USGS	USGS	Adjusted	USGS
Return	Pearson	Pearson	EQ	EQ	gage	Southwest
Period	III	WRC	2009	1999	WRC	2009
yr	cfs	cfs	cfs	cfs	cfs	cfs
2	3097	3051	6480	5850	5549	6720
5	5397	5391	9320	9200	8595	11500
10	6998	7096	11600	11700	11313	15300
25	9027	9347	12800	15100	14723	21400
50	10501	11053	15700	17600	17410	25200
100	11920	12748	18000	20300	20080	30900
200	13274	14419	20000	22900	22712	34000
500	14954	16566	22500	26500	25936	44700

Colorado Stream Stats indicates no application Equations are extrapolated Adjusted using regional skew -0.3 Delores site area 4360 square miles Stream Gage #9169500 gage area 2025 square miles Area adjusted based on 2009 equations area exponents for mountain region

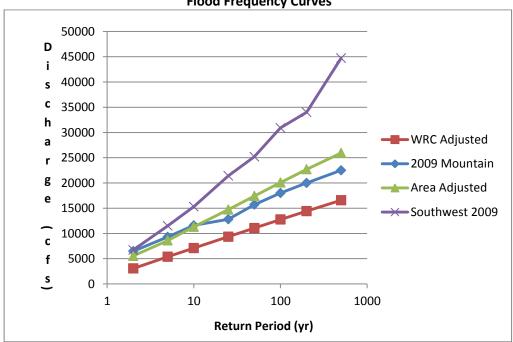


Figure B.9.2. Flood Frequency Curves

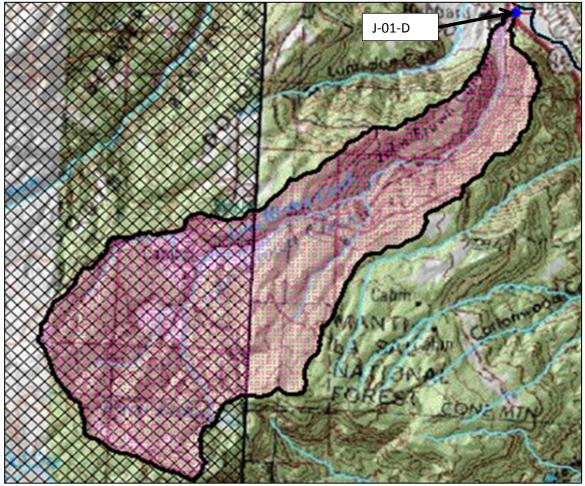


Figure B.10.1. (J-01-D) Drainage Basin at J-01-D (USGS StreamStats)

Table B.10.1.Basin Characteristics Report (USGS StreamStats)

Parameter	Value
6-hour, 100-year precipitation, in inches	2.10
Mean basin slope computed from 10 m DEM, in percent	21.2
Area that drains to a point on a stream in square miles	26.8
Mean Basin Elevation in feet	7550
Mean annual precipitation, in inches	22.50
Percentage of basin above 7500 ft elevation	68.9

Peak-Flows Basin Characteristics						
100% Southwest Region Peak Flow (26.8 mi2)						
Devenueter	Value	Regression Equ	ation Valid Range			
Parameter		Min	Max			
Drainage Area (square miles)	26.8	1	4390			
Percent above 7500 ft (percent)	68.9	0	99			

Table B.10.2. USGS StreamStats Basin Characteristics

Table B.10.3.
USGS StreamStats Peak-Flows Streamflow Statistics

	Peak-Flows Streamflow Statistics							
Statistic	Flow	Prediction Error	Equivalent years of	90-Percent Prediction Interval				
	(ft ³ /s)	(percent)	record	Minimum	Maximum			
PK2	251	90						
PK5	462	71						
PK10	641	67						
PK25	931	66						
PK50	1150	67						
PK100	1390	69						
PK200	1600	71						
PK500	2080	75						

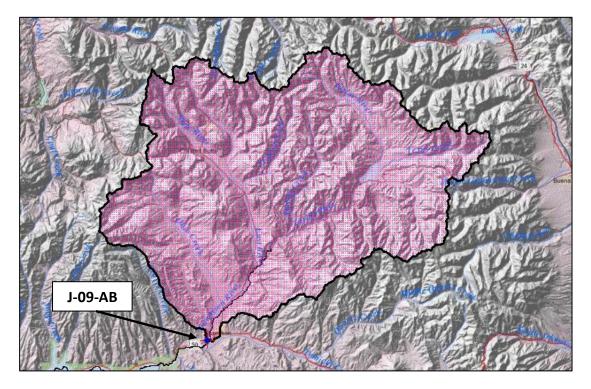
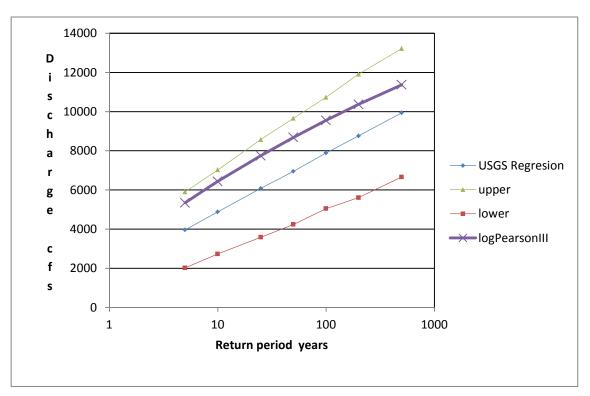


Figure B.11.1. (J-09-AB) Gunnison River Basin above Bridge J-09-AB

The Gunnison River is located in the Mountainous hydrologic region where the peak runoff is primarily due to snowmelt. In general, in Colorado rainfall events at higher elevations (above 7,500ft) have much less intensity than the events occurring at lower elevations. Rainfall on snow is a potential that may produce large peak runoffs. In previous FEMA hydrologic studies for the Gunnison River, stream gage analysis was used. Table B.11.1 summarizes the flood frequency estimates from the USGS regression equations, the current log-Pearson Type III analysis using Water Resources Council Bulletin 17B methodology with the most current gage data (1911 up to 2009), and the results of the 1989 FEMA National Flood Insurance Study.

Table B.11.1.

			FEMA					
Return	USGS Regression	Log-Pearson Type III	(1989)					
Period	Discharge	WRC Adjusted	Discharge					
Years	cfs	Dischargecfs	cfs					
2	2670	3627						
5	3960	5348						
10	4880	6443	5762					
25	6080	7759						
50	6950	8682	7967					
100	7890	9554	8930					
200	8760	10369						
500	9940	11371	11256					
Basin Slop	oe = 0.298 ft/ft							
Basin Drai	Basin Drainage area= 1,012 square miles							


Summary of Gunnison River discharges near Gunnison, Colorado.

StreamStats USGS Regression

The Colorado Stream Stats program was used to estimate the watershed characteristics. The drainage area was estimated to be 1,012 square miles (Figure B.11.1). The mean basin slope is reported to be 0.298, mean elevation is given as 10,200ft, and the mean annual precipitation is reported to be 25.6 inches. The 6-hr, 100-year precipitation is given as 2.19 inches. The Colorado StreamStats program did not provide flood frequency estimates using the regression equations. The StreamStats program indicated that the regression equations were not valid because the Gunnison River is regulated at Bridge J-09-AB. The USGS regression equations were developed to produce the flood frequency for unregulated watershed conditions. The valid range of these regression equations is 1 to 1,060 square miles. The USGS strictly indicates that the regression equations to estimate the flood frequency for unregulated conditions. For the Gunnison River case, the regression equations estimated lower discharge values than the log-Pearson Type III method.

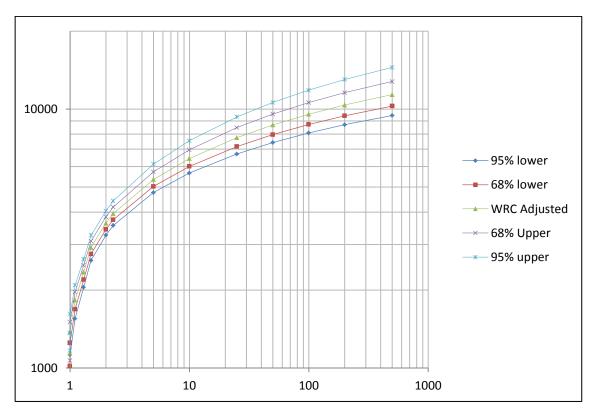
These lower estimates are not attributed to the regulation effects. Rather, the error of estimates using the regression equations may be the reason for the lower estimates than the log- Pearson Type III discharges. All of the regression equation estimates are lower than the 68% lower log-Pearson Type III confidence interval. The upper band of confidence interval for the regression equations, however, is within 68% lower band of the log-Pearson Type III discharges. The log-Pearson Type III analysis also has error of estimate as shown in Table B.11.2 and in the graph of the flood frequency estimates.

The StreamStats restrictive implementation of the regression equations is likely to prevent the novice user from getting estimates that may be questionable without further study. The Blue Mesa Reservoir is located downstream and does not affect the flood frequency at the highway 50 crossing. The regulatory conditions above the highway 50 crossing would be irrigation diversions.

Figure B.11.2.

Comparison of USGS Regression Equation with Log-Pearson Type III Results

Log-Pearson Type III Analysis


The Water Resource Council (WRC) Bulletin 17B methodology was used in order to compute the log-Pearson Type III flood-frequency distribution. For this purpose, the FORTRAN computer program given in WRC Bulletin 17B was used in the analysis. The regional skew of 0.0 was used in

the adjusted flood frequency curve. The regional skew is weighted with the computed station skew based on the number of years of record.

The log-Pearson Type III analysis was conducted using USGS stream gage record at Gunnison from 1911 through 2009 for the gage 09114500. In this period of record, the largest peak of 11,400cfs occurred in 1918. This discharge is computed to be approximately a 500-year event.

The high outlier for the log-Pearson Type III distribution is 15,119cfs. The largest peak in 1918 did not exceed the high outlier. The low outlier is 813cfs. The 1977 discharge of 708cfs is lower than the low outlier threshold. The low outlier was not adjusted since it is not significantly below the low outlier estimate.

Figure B.11.3.

Log-Pearson Type III Analysis Results for the Gunnison River

Table B.11.2.

ecurrence Interval Years	Lower Limit Discharge	Lower Limit	WRC Adjusted	Limit	Upper			
Interval			Adiusted	l incit				
Years	Discharge		· , · · · · ·	Limit	Limit			
		Discharge	Discharge	Discharge	Discharge			
	cfs	cfs	cfs	cfs	cfs			
1	737	843.9	957.2	1067.9	1168.1			
1	902.7	1018.5	1140	1258	1364.2			
1	1124.3	1249	1378.9	1504.3	1617			
1.1	1551.7	1687.4	1828.3	1964.7	2088			
1.3	2050.5	2194.4	2345.6	2494.5	2632			
1.5	2603.5	2757.1	2923.2	3092.1	3253.6			
2	3258.5	3431.6	3626.7	3834.6	4043			
2.3	3553.3	3739.1	3952.5	4184.5	4422			
5	4760.8	5025.3	5348	5722	6130.4			
10	5661.4	6007.7	6442.6	6962.6	7548.7			
25	6707.7	7167.5	7758.7	8483.8	9322.8			
50	7424.1	7970.8	8682.4	9567.1	10605.2			
100	8087.6	8720.4	9551.9	10596.8	11836.9			
200	8703.1	9420	10369.4	11572.8	13014.3			
500	9447.5	10271.2	11371	12778.2	14480.6			
High Outlier 15,119cfs								
Low outlier 813.4cfs								
Station Skew41								
Computed Skew51								
	1 1 1.1 1.3 1.5 2 2.3 5 10 25 50 100 255 50 100 200 500 5,119cfs 3.4cfs 41	1 902.7 1 1124.3 1.1 1551.7 1.3 2050.5 1.5 2603.5 2 3258.5 2.3 3553.3 5 4760.8 10 5661.4 25 6707.7 50 7424.1 100 8087.6 200 8703.1 500 9447.5 5,119cfs 3.4cfs 41 3.4cfs	1 902.7 1018.5 1 1124.3 1249 1.1 1551.7 1687.4 1.3 2050.5 2194.4 1.5 2603.5 2757.1 2 3258.5 3431.6 2.3 3553.3 3739.1 5 4760.8 5025.3 10 5661.4 6007.7 25 6707.7 7167.5 50 7424.1 7970.8 100 8087.6 8720.4 200 8703.1 9420 500 9447.5 10271.2 5,119cfs 3.4cfs 3.4cfs	1 902.7 1018.5 1140 1 1124.3 1249 1378.9 1.1 1551.7 1687.4 1828.3 1.3 2050.5 2194.4 2345.6 1.5 2603.5 2757.1 2923.2 2 3258.5 3431.6 3626.7 2.3 3553.3 3739.1 3952.5 5 4760.8 5025.3 5348 10 5661.4 6007.7 6442.6 25 6707.7 7167.5 7758.7 50 7424.1 7970.8 8682.4 100 8087.6 8720.4 9551.9 200 8703.1 9420 10369.4 500 9447.5 10271.2 11371 5,119cfs 3455 3455 3455	1 902.7 1018.5 1140 1258 1 1124.3 1249 1378.9 1504.3 1.1 1551.7 1687.4 1828.3 1964.7 1.3 2050.5 2194.4 2345.6 2494.5 1.5 2603.5 2757.1 2923.2 3092.1 2 3258.5 3431.6 3626.7 3834.6 2.3 3553.3 3739.1 3952.5 4184.5 5 4760.8 5025.3 5348 5722 10 5661.4 6007.7 6442.6 6962.6 25 6707.7 7167.5 7758.7 8483.8 50 7424.1 7970.8 8682.4 9567.1 100 8087.6 8720.4 9551.9 10596.8 200 8703.1 9420 10369.4 11572.8 50 9447.5 10271.2 11371 12778.2 5.119cfs			

WRC Bulletin 17B log-Pearson Type III Analysis Results

Regional skew 0.0

The log-Pearson Type III analysis was considered to be the best suited method of flood frequency estimation for this study. The USGS regression equations appear to underestimate the flood frequency when compared with the log-Pearson Type III analysis. In this report, the effects of irrigation diversions on the log-Pearson Type III analysis was not studied. The gage data on which the log Pearson III analysis is based on would include the effects of the irrigation diversions and return flows to the gage. Base flow was not subtracted from the gage discharges to estimate log-Pearson. However, for flooding events effects of irrigation diversions are minimal.

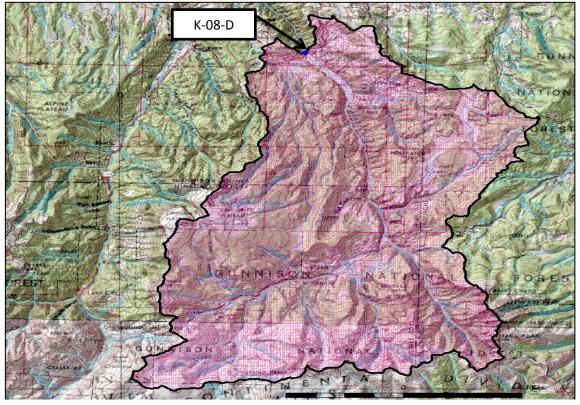


Figure B.12.1. (K-08-D) Drainage Basin at K-08-D (USGS StreamStats)

Table B.12.1.Basin Characteristics Report (USGS StreamStats)

Parameter						
6-hour, 100-year precipitation, in inches	2.25					
Mean basin slope computed from 10 m DEM, in percent	26.4					
Area that drains to a point on a stream in square miles	340					
Mean Basin Elevation in feet	10400					
Mean annual precipitation, in inches	21.08					
Percentage of basin above 7500 ft elevation	100					

Peak-Flows Basin Characteristics							
100% Mountain Region Peak Flow (340 mi2)							
Parameter	Value	e Regression Equation Valid Ran					
Falameter		Min	Max				
Drainage Area (square miles)	340	1	1060				
Mean Basin Slope from 10m DEM (percent)	26.4	7.6	60.2				
Mean Annual Precipitation (inches)	21.09	18	47				

Table B.12.2. USGS StreamStats Basin Characteristics

Table B.12.3.

r	USUS Streamstats Feak-Flows Streammow Statistics Area-Averaged										
	Peak-Flows Streamflow Statistics										
Statistic	$Elow(ft^3/c)$	Prediction Error (percent)	Equivalent years of	90-Percent Pre	diction Interval						
Statistic	11000 (12 / 3)		record	Minimum	Maximum						
PK2	885	49									
PK5	1310	44									
PK10	1630	41									
PK25	1900	40									
PK50	2320	39									
PK100	2660	36									
PK200	2960	36									
PK500	3440	33									

USGS StreamStats Peak-Flows Streamflow Statistics Area-Averaged

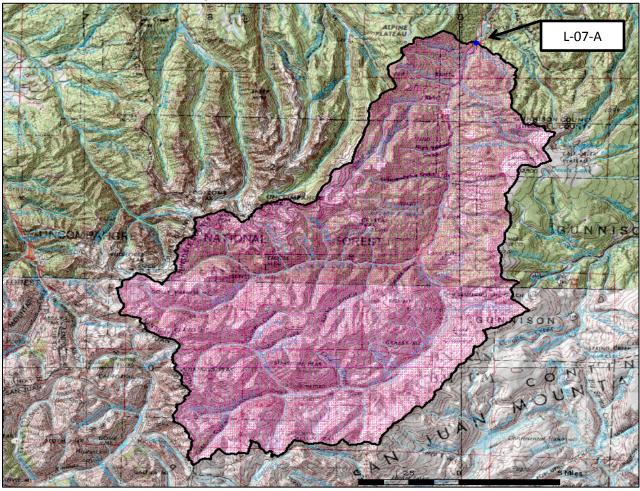


Figure B.13.1. (L-07-A) Drainage Basin at L-07-A (USGS StreamStats)

Table B.13.1.Basin Characteristics Report (USGS StreamStats)

Parameter						
6-hour, 100-year precipitation, in inches	2.42					
Mean basin slope computed from 10 m DEM, in percent	43.9					
Area that drains to a point on a stream in square miles	305					
Mean Basin Elevation in feet	11100					
Mean annual precipitation, in inches	29.57					
Percentage of basin above 7500 ft elevation	100					

Peak-Flows Basin Characteristics								
100% Mountain Region Peak Flow (305 mi2)								
Parameter		lue Regression Equation Valid Ra						
		Min	Max					
Drainage Area (square miles)	305	1	1060					
Mean Basin Slope from 10m DEM (percent)	43.9	7.6	60.2					
Mean Annual Precipitation (inches)	29.56	18	47					

Table B.13.2.USGS StreamStats Basin Characteristics

Table B.13.3.

USGS StreamStats Peak-Flows Streamflow Statistics Area-Averaged

Peak-Flows Streamflow Statistics										
Statistic	Flow (ft ³ /s)	Prediction Error	Equivalent years of	90-Percent Prediction Interval						
	(11/5)	(percent)	record	Minimum	Maximum					
PK2	1800	49								
PK5	2440	44								
PK10	2870	41								
PK25	3200	40								
PK50	3790	39								
PK100	4160	36								
PK200	4470	36								
PK500	5030	33								

Appendix C – CDOT Inspection Information

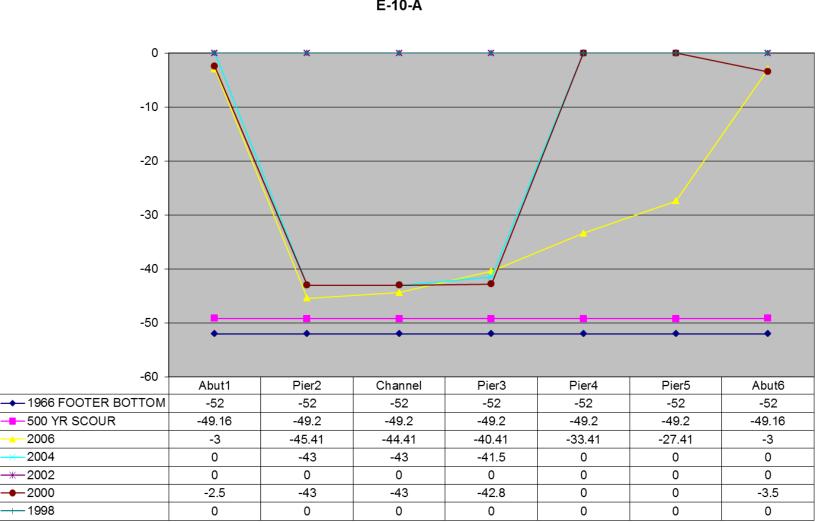


Figure C.1.1. (E-10-A) **CDOT Scour Inspection Charts**

E-10-A

Bridge Number	E-10-A		Scour	5			
Highway	131	Drainage area	1000 Square Miles				
Span/type	WGK	Stream	Colorado River				
	Abut1	Pier2	Channel	Pier3	Pier4	Pier5	Abut6
1966 FOOTER BOTTOM	-52	-52	-52	-52	-52	-52	-52
500 YR SCOUR	-49.16	-49.2	-49.2	-49.2	-49.2	-49.2	-49.16
2006	-3	-45.41	-44.41	-40.41	-33.41	-27.41	-3
2004	0	-43	-43	-41.5	0	0	0
2002	0	0	0	0	0	0	0
2000	-2.5	-43	-43	-42.8	0	0	-3.5
1998	0	0	0	0	0	0	0
1996	0	0	0	0	0	0	0
1994	0	0	0	0	0	0	0
1992	0	0	0	0	0	0	0
1990	0	*40.0	-39	*39.00	0	0	0
1988	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1981	0	0	0	0	0	0	0
1977	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Figure C.1.2. CDOT Scour Inspection Measurements

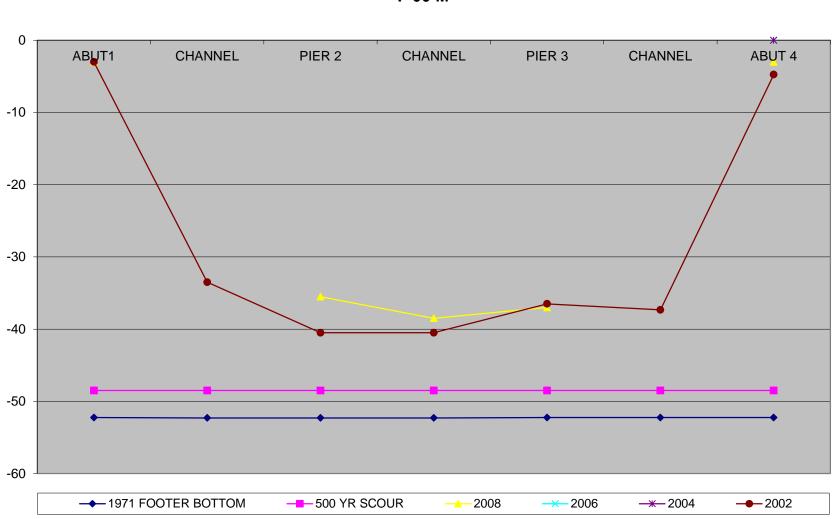
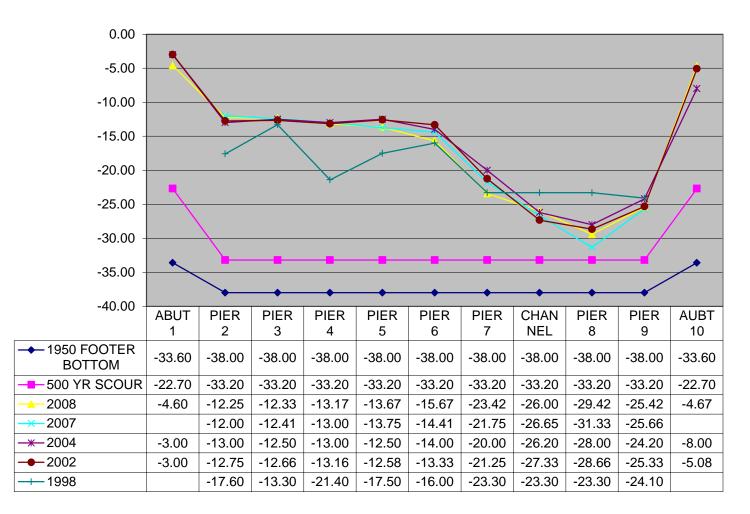


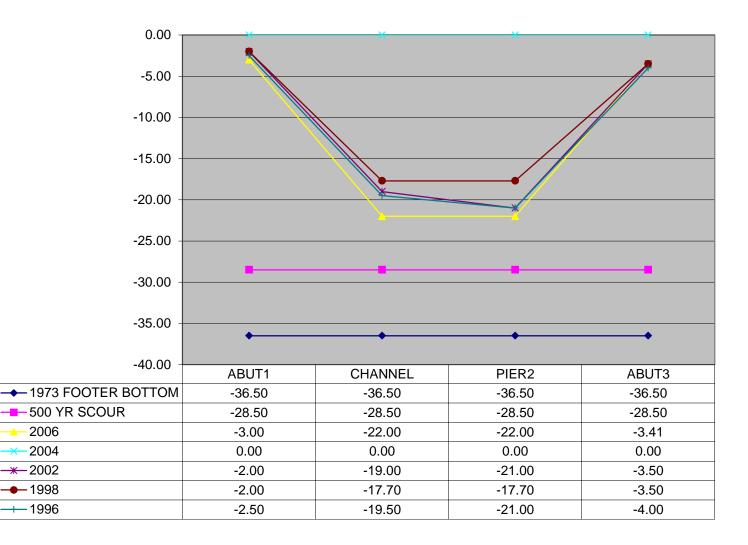
Figure C.2.1. (F-06-M) CDOT Scour Inspection Charts


F-06-M

BRIDGE NUMBER	F-06-M		Scour	3				
HIGHWAY	70		DRAINAGE AREA	10,000 Square miles				
STR. TYPE	WGC		STREAM	COLORADO RIVER				
	ABUT1	CHANNEL	PIER 2	CHANNEL	PIER 3	CHANNEL	ABUT 4	
1971 FOOTER BOTTOM	-52.25	-52.3	-52.3	-52.3	-52.25	-52.25	-52.25	
500 YR SCOUR	-48.5	-48.5	-48.5	-48.5	-48.5	-48.5	-48.5	
2008	-3.0		-35.5	-38.5	-37.0		-3.0	
2006							0	
2004							0	
2002	-3	-33.5	-40.5	-40.5	-36.5	-37.33	-4.75	
2000	-4	-38.5	-38.5	-38.5	-38.5		-5	
1996	0	0	0	0			0	*Too Swift
1994	-2.5	-30.4	-38.4	-38.4	-39.7	-38.0	0.0	
1991	-2.7	-30.25	-38.41	-38.41	-39.16	-37.75	-2.5	
1989	-2.6	-30.3	-38.3	-38.0	-38.8	-37.7	-2.5	
1985	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Adequate
1977	0.0	0.0	0.0	0.0	0.0	0.0	0.0	·

Figure C.2.2. CDOT Scour Inspection Measurements

Figure C.3.1. (H-02-S) CDOT Scour Inspection Charts



			CDOT Scour hisp		leasurem	ents					
BRIDGE NUMBER	H-02-S		Scour Item 113	85*3							
HIGHWAY	34	DRAINAGE ARE	16750 Square Miles								
STR. TYPE	SDGC	STREAM	COLORADO RIVER								
	ABUT 1	PIER 2	PIER 3	PIER 4	PIER 5	PIER 6	PIER 7	CHANNEL	PIER 8	PIER 9	AUBT10
1950 FOOTER BOTTOM	-33.60	-38.00	-38.00	-38.00	-38.00	-38.00	-38.00	-38.00	-38.00	-38.00	-33.60
500 YR SCOUR	-22.70	-33.20	-33.20	-33.20	-33.20	-33.20	-33.20	-33.20	-33.20	-33.20	-22.70
2008	-4.60	-12.25	-12.33	-13.17	-13.67	-15.67	-23.42	-26.00	-29.42	-25.42	-4.67
2007		-12.00	-12.41	-13.00	-13.75	-14.41	-21.75	-26.65	-31.33	-25.66	
2004	-3.00	-13.00	-12.50	-13.00	-12.50	-14.00	-20.00	-26.20	-28.00	-24.20	-8.00
2002	-3.00	-12.75	-12.66	-13.16	-12.58	-13.33	-21.25	-27.33	-28.66	-25.33	-5.08
1998		-17.60	-13.30	-21.40	-17.50	-16.00	-23.30	-23.30	-23.30	-24.10	
1996	-6.90	-15.50	-15.30	-14.70	-15.30	-15.50	-22.80	-25.30	-27.10	-25.50	-5.00
1991	-6.90	-15.50	-15.30	-14.70	-15.30	-15.30	-23.90	-23.00	-25.50	-22.90	
1989		-15.10	-17.60	-22.00	-19.60	-15.70	-17.70	-23.00	-15.50	-12.60	
1987	-3.00	-15.20	-16.50	-21.90	-19.80	-15.80	-17.80	-17.80	-15.00	-12.50	-5.00
1983	-3.00	-15.20	-17.30	-21.90	-19.60	-15.80	-17.80	-17.80	-15.00	-12.50	-5.00
1981	-3.00	-15.20	-17.20	-21.90	-19.80	-15.20	-17.80	-17.80	-15.00	-12.50	-5.00
1971	-4.80	-14.40	-18.10	-19.90	-21.80	-25.90	-28.90	-28.90	-24.30	-18.20	-4.50

Figure C.3.2. CDOT Scour Inspection Measurements

Figure C.4.1. (H-04-Z) CDOT Scour Inspection Charts

CDOT Scour inspection Measurements								
BRIDGE NUMBER	H-04-Z	Scour	3					
HIGHWAY	133	DRAINAGE AREA	561 Square Miles					
STR. TYPE	CSGC	STREAM	Plateau Creek					
	ABUT1	CHANNEL	PIER2	ABUT3				
1973 FOOTER BOTTOM	-36.50	-36.50	-36.50	-36.50				
500 YR SCOUR	-28.50	-28.50	-28.50	-28.50				
2006	-3.00	-22.00	-22.00	-3.41				
2004	0.00	0.00	0.00	0.00				
2002	-2.00	-19.00	-21.00	-3.50				
1998	-2.00	-17.70	-17.70	-3.50				
1996	-2.50	-19.50	-21.00	-4.00				
1994	-3.00	-17.50	-19.00	-3.00				
1991	-3.00	-17.50	-19.00	-3.00				
1989	-3.00	-17.00	-20.40	-2.80				
1987	-3.00	-17.10	-20.30	-2.10				
1985	-3.60	-17.10	-20.40	-3.40				
1973	-2.70	-14.00	-14.00	-3.00				

Figure C.4.2. CDOT Scour Inspection Measurements

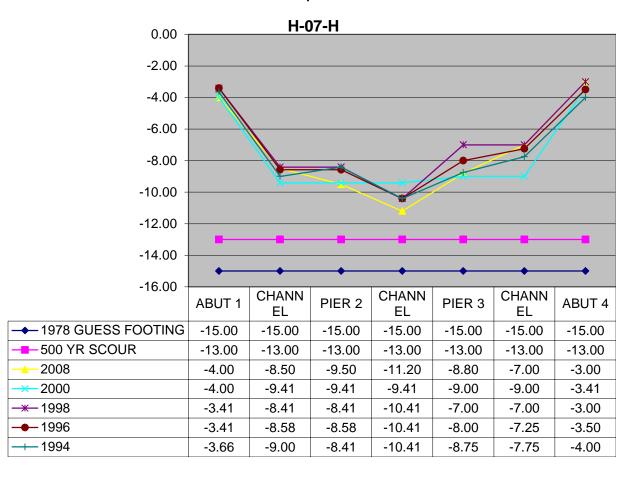


Figure C.5.1. (H-07-H) CDOT Scour Inspection Charts

STRUCTURE NUMBER	H-07-H	ITEM 113 =	3-UNK				
HIGHWAY	133	DRAINAGE AREA	UNK				
STR. TYPE	CSGC	STREAM	EAST MUDDY CREEK				
	ABUT 1	CHANNEL	PIER 2	CHANNEL	PIER 3	CHANNEL	ABUT 4
1978 GUESS FOOTING	-15.00	-15.00	-15.00	-15.00	-15.00	-15.00	-15.00
500 YR SCOUR	-13.00	-13.00	-13.00	-13.00	-13.00	-13.00	-13.00
2008	-4.00	-8.50	-9.50	-11.20	-8.80	-7.00	-3.00
2000	-4.00	-9.41	-9.41	-9.41	-9.00	-9.00	-3.41
1998	-3.41	-8.41	-8.41	-10.41	-7.00	-7.00	-3.00
1996	-3.41	-8.58	-8.58	-10.41	-8.00	-7.25	-3.50
1994	-3.66	-9.00	-8.41	-10.41	-8.75	-7.75	-4.00
1992	-3.41	-8.41	-8.41	-10.41	-7.00	-7.00	-3.00
1989	-3.41	-8.41	-8.41	-10.41	-7.00	-7.00	-3.00
1987	-3.16	-11.00	-11.00	-11.41	-11.41	-9.00	-3.00
1985	-3.41	-7.50	-7.50	-9.41	-9.41	-7.16	-3.10
1979	-4.00	-8.00	-8.00	-9.00	-9.00	-8.00	-4.00

Figure C.5.2. CDOT Scour Inspection Measurements

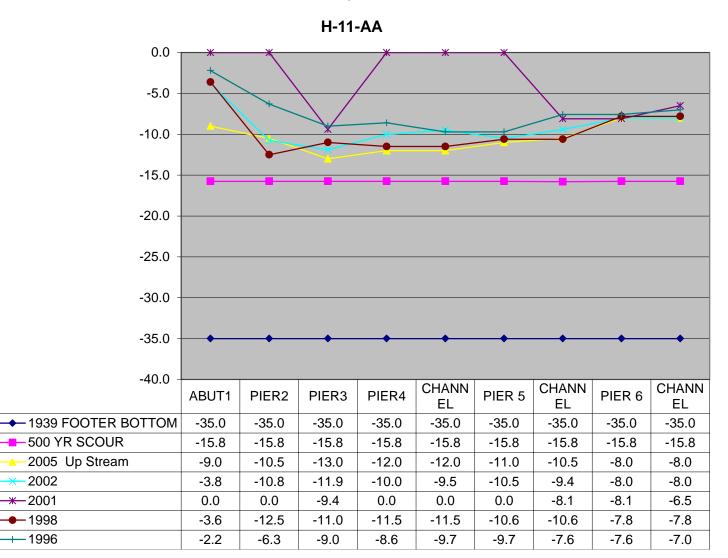
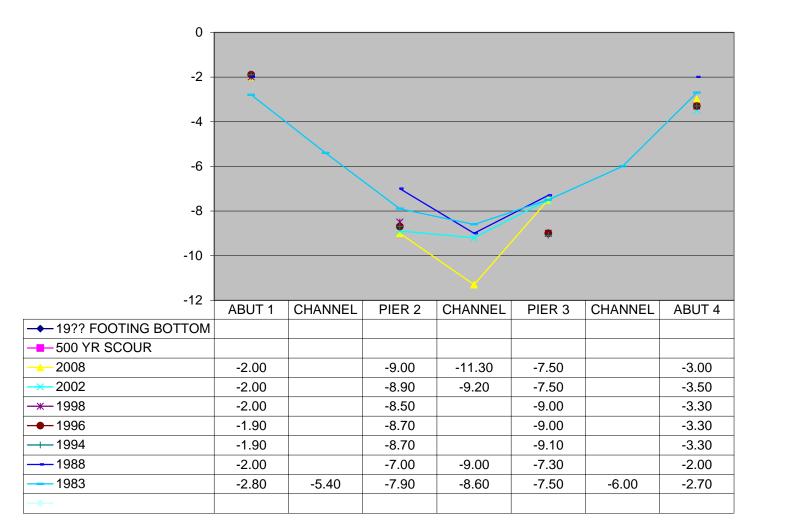



Figure C.6.1. (H-11-AA) CDOT Scour Inspection Charts

BRIDGE NUMBER	H-11-AA											
HIGHWAY	300		104									
STR. TYPE	TTS	STREAM	ARKANSAS									
	ABUT1	PIER2	PIER3	PIER4	-		CHANNEL	PIER 6	CHANNEL	PIER 7	CHANNEL	ABUT 8
1939 FOOTER BOTTOM	-35.0	-35.0	-35.0	-35.0	-35.0	-35.0	-35.0	-35.0	-35.0	-35.0	-35.0	-35.0
500 YR SCOUR	-15.8	-15.8	-15.8	-15.8	-15.8	-15.8	-15.8	-15.8	-15.8	-15.8	-15.8	-15.8
2007	-7.1	-10.8	-11.0	-11.0	-11.0	-9.7	-7.5	-7.5	-7.3	-7.0	-6.4	-6.5
2006	-5.0	-6.4	-9.0	-9.0	-9.4	-10.0	-13.0	-13.0	-13.0	-9	-6.0	-6
2005 Down Stream	-5.4	-6.0	-6.4	-10.0	-10.0	-10.0	-8.0	-10.4	-7.4	-6.4	-6.4	-6.4
2005 Up Stream	-9.0	-10.5	-13.0	-12.0	-12.0	-11.0	-10.5	-8.0	-8.0	-6.4	-6.4	-6.4
2004	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2003	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2002	-3.8	-10.8	-11.9	-10.0	-9.5	-10.5	-9.4	-8.0	-8.0	-6.5	-6.4	-3.2
2001	0.0	0.0	-9.4	0.0	0.0	0.0	-8.1	-8.1	-6.5	-6.5	-6.5	-3.2
2000	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1998	-3.6	-12.5	-11.0	-11.5	-11.5	-10.6	-10.6	-7.8	-7.8	-6.4	-6.4	-3.0
1996	-2.2	-6.3	-9.0	-8.6	-9.7	-9.7	-7.6	-7.6	-7.0	-7.0	-7.0	-3.2
1994	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1993	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1992	-2.3	-6.2	-8.9	-8.6	-9.6	-9.6	-7.5	-7.5	-6.8	-6.8	-6.8	-3.5
1991	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1990	0.0	-6.2	-6.4	-9.0	-10.0	-7.2	-7.2	-8.0	-8.0	-6.5	-6.5	0.0
1989	-6.5	-7.0	-7.1	-10.3	-10.3	-9.7	-9.7	-7.0	-7.0	-7.1	-7.1	-6.2
1988	-6.4	-7.0	-7.0	-10.5	-10.5	-7.0	-7.0	-7.0	-7.0	-6.4	-6.4	-4.0
1986	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1985	-4.7	-6.9	-8.3	-10.8	-10.1	-7.1	-7.1	-6.8	-6.8	-6.1	-6.1	-4.4
1983	-1.4	-5.8	-9.7	-11.8	-10.0	-7.8	-7.8	-7.8	-6.2	-6.2	-6.2	-3.4
1981	-1.4	-5.7	-9.6	-11.6	-9.8	-7.6	-7.6	-7.8	-6.3	-6.3	-4.8	0.0
1979	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1975	-3.0	-6.7	-7.6	-7.3	-11.1	-12.3	-10.4	-10.4	-7.3	-7.3	-6.6	-3.2
1973	-3.3	-6.6	-8.1	-7.5	-7.5	-10.0	-10.2	-10.2	-6.6	-6.6		-5.8
1971	-6.3	-6.7	-7.6	-7.8	-11.3	-12.1	-9.9	-9.9	-7.3	-7.3	-4.4	-3.3
1967	-6.6	-6.6	-8.0	-7.0	-7.0	-10.7	-10.2	-10.2	-7.4	-7.4		-6.7

Figure C.6.2. CDOT Scour Inspection Measurements

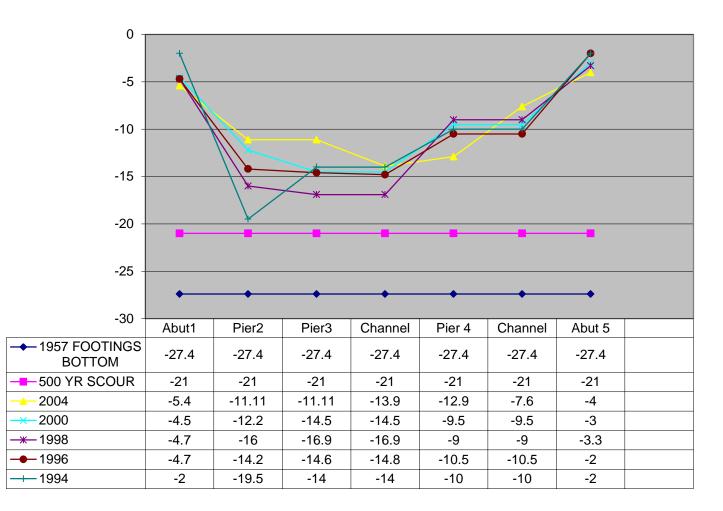
Figure C.7.1. (H-11-U) CDOT Scour Inspection Charts

H-11-U

STRUCTURE	H-11-U	Scour	3				
HIGHWAY	300	DRAINAGE AREA	34.4				
STR. TYPE	TTS	STREAM	LAKE FORK CK				
	ABUT 1	CHANNEL	PIER 2	CHANNEL	PIER 3	CHANNEL	ABUT 4
19?? FOOTING BOTTOM							
500 YR SCOUR							
2008	-2.00		-9.00	-11.30	-7.50		-3.00
2002	-2.00		-8.90	-9.20	-7.50		-3.50
1998	-2.00		-8.50		-9.00		-3.30
1996	-1.90		-8.70		-9.00		-3.30
1994	-1.90		-8.70		-9.10		-3.30
1988	-2.00		-7.00	-9.00	-7.30		-2.00
1983	-2.80	-5.40	-7.90	-8.60	-7.50	-6.00	-2.70

Figure C.7.2. CDOT Scour Inspection Measurements

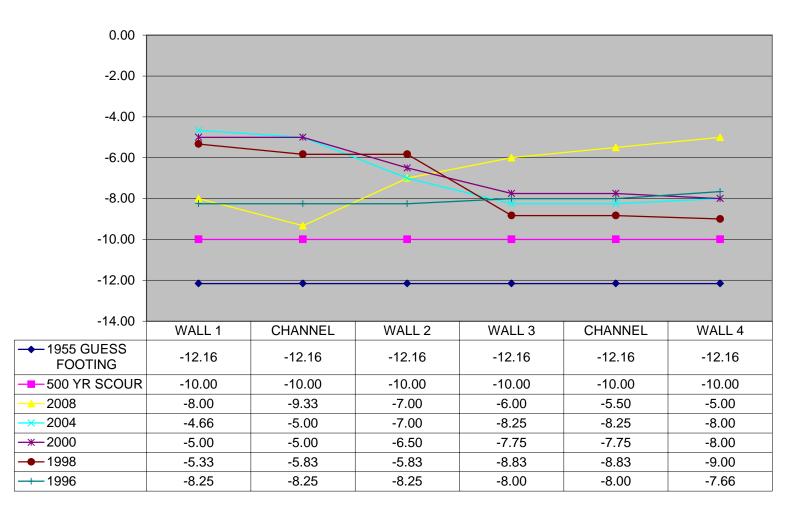
		I-(06-C					
0.00	*	*			*	*	*	*
-5.00 -							/	/-
-10.00 -						/		/
-15.00 -								
-20.00 -					$ \rightarrow $			
-25.00 -								
-30.00 -								
-35.00 -								
-40.00 -								
-45.00 -	•	•	•	•	_	_	•	
-50.00 -			•		•	•	•	
00.00	ABUT 1	CHANN EL	PIER 2	CHANN EL	PIER 3	CHANN EL	PIER 4	ABUT 5
→ 1984 PILE TIP ELEVATION	-46.50	-46.50	-46.50	-46.50	-46.50	-46.50	-46.50	
	-29.40	-29.40	-29.40	-29.40	-29.40	-29.40	-29.40	
<u>−</u> 2006	-4.16	-9.25	-14.33	-21.41	-21.16	-21.75	-15.00	-2.75
<u></u>	-3.25	-14.00	-14.83	-20.58	-21.16	-24.00	-14.00	-2.75
-*-2002	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	-4.00	-9.54	-15.08	-21.58	-25.25	-23.00	-17.00	-5.0
<u>→</u> 1998	0.00	-17.00	-22.00	-21.25	-21.25	-15.08	0.00	0.0


Figure C.8.1. (I-06-C) CDOT Scour Inspection Charts

BRIDGE NUMBER	I-06-C			Scour Critical	3				
HIGHWAY	187	DRAINAGE AREA	600 Square Miles						
STR. TYPE	CIC	STREAM	N. FK. GUNNISON RIVER						
	ABUT 1	CHANNEL	PIER 2	CHANNEL	PIER 3	CHANNEL	PIER 4	ABUT 5	
1984 PILE TIP ELEVATION	-46.50	-46.50	-46.50	-46.50	-46.50	-46.50	-46.50		
500 YR SCOUR	-29.40	-29.40	-29.40	-29.40	-29.40	-29.40	-29.40		
2006	-4.16	-9.25	-14.33	-21.41	-21.16	-21.75	-15.00	-2.75	
2004	-3.25	-14.00	-14.83	-20.58	-21.16	-24.00	-14.00	-2.75	
2002	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
2000	-4.00	-9.54	-15.08	-21.58	-25.25	-23.00	-17.00	-5.0	
1998	0.00	-17.00	-22.00	-21.25	-21.25	-15.08	0.00	0.0	
1996	-4.00	-9.70	-15.41	*-26.0	-22.00	-15.00	-15.00	-5.0	2 FEET SCOUR
1994	-3.00	-9.33	*-15.66	-18.00	*-21.58	-12.37	-12.37	-3.2	2 FEET SCOUR
1992	-2.58	-12.50	-15.16	-17.25	-18.00	-21.41	-11.50	-2.6	CONCRETE BLOCK
1989	-3.00	-15.41	-15.41	-17.00	-17.00	-21.41	-18.41	-3.0	
1985	-3.3	-15.0	-15.7	-17.4	-23.3	-23.3	-19.16	-1.3	
1973	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0	
1971	-3.3	-12.7	-16.3	-14.4	-12.5	-13.0	-13.25	-5.3	
1967	-5.2	-10.0	-15.0	-14.8	-14.7	-15.5	-16.00	-5.3	

Figure C.8.2. CDOT Scour Inspection Measurements

Figure C.9.1. (J-01-C) CDOT Scour Inspection Charts



Bridge Number	J-01-C		Scour	3			
Highway	141		Drainage area	1,321 Sq. Miles			
Span/type	4 CIC		Stream	Dolores River			
	Abut1	Pier2	Pier3	Channel	Pier 4	Channel	Abut 5
1957 FOOTINGS BOTTOM	-27.4	-27.4	-27.4	-27.4	-27.4	-27.4	-27.4
500 YR SCOUR	-21	-21	-21	-21	-21	-21	-21
2006	0	0	0	0	0	0	0
2004	-5.4	-11.11	-11.11	-13.9	-12.9	-7.6	-4
2000	-4.5	-12.2	-14.5	-14.5	-9.5	-9.5	-3
1998	-4.7	-16	-16.9	-16.9	-9	-9	-3.3
1996	-4.7	-14.2	-14.6	-14.8	-10.5	-10.5	-2
1994	-2	-19.5	-14	-14	-10	-10	-2
1992	-2	-19.2	-14	-14	-10	-10	-2
1991	-2	-16.9	-13.3	-15	-10.6	-8	-2
1988	-4.3	-17	-13	-15	-9.6	-8.2	-1.8
1987	-4.3	-17	-13	-15	-9.6	-8.1	-1.7
1985	-2.1	-17.1	-12.9	-11.3	-11.2	-9.3	-1.9
1981	-1	-11.3	-11.8	-11.8	-17.7	-12.6	-1.4
1971	-1.4	-15.8	-13.2	-13.2	-13	-13	-3.4
1967	-1.6	-13.2	-12.8	-12.8	-14	-10.8	-2.3

Figure C.9.2. CDOT Scour Inspection Measurements

Figure C.10.1. (J-01-D) CDOT Scour Inspection Charts

Figure C.10.2.

STRUCTURE NUMBER	J-01-D	ITEM 113 =	UNK			
HIGHWAY	141	DRAINAGE AREA	10 Square Miles			
STR. TYPE	SSM	STREAM	JOHN BROWN CREEK			
	WALL 1	CHANNEL	WALL 2	WALL 3	CHANNEL	WALL 4
1955 GUESS FOOTING	-12.16	-12.16	-12.16	-12.16	-12.16	-12.16
500 YR SCOUR	-10.00	-10.00	-10.00	-10.00	-10.00	-10.00
2008	-8.00	-9.33	-7.00	-6.00	-5.50	-5.00
2004	-4.66	-5.00	-7.00	-8.25	-8.25	-8.00
2000	-5.00	-5.00	-6.50	-7.75	-7.75	-8.00
1998	-5.33	-5.83	-5.83	-8.83	-8.83	-9.00
1996	-8.25	-8.25	-8.25	-8.00	-8.00	-7.66
1994	-7.08	-9.08	-9.08	-7.58	-9.41	-8.00
1992	-7.00	-8.83	-7.58	-8.16	-9.25	-7.91
1990	-7.58	-8.66	-8.00	-8.00	9.08	-8.08
1988	-8.25	-8.25	-6.70	-6.66	-6.66	-7.08
1987	-6.50	-6.50	-6.66	-7.75	-7.75	-8.00
1985	-8.16	-8.16	-7.00	-6.33	-7.16	-6.66
1981	-7.58	-7.58	-8.25	-7.66	-7.66	-8.41
1975	-8.66	-8.66	-8.75	-8.75	-9.00	-9.00
1973	-6.58	-9.58	-9.00	-9.00	-6.58	-6.58
1971	-6.25	-6.25	-7.33	-7.33	-6.66	-6.66
1967	-8.16	-8.16	-8.16	-8.16	-8.16	-8.16

CDOT Scour Inspection Measurements

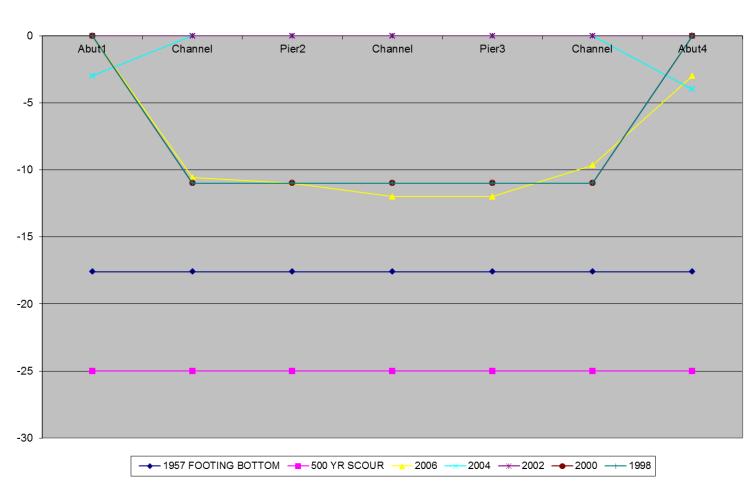


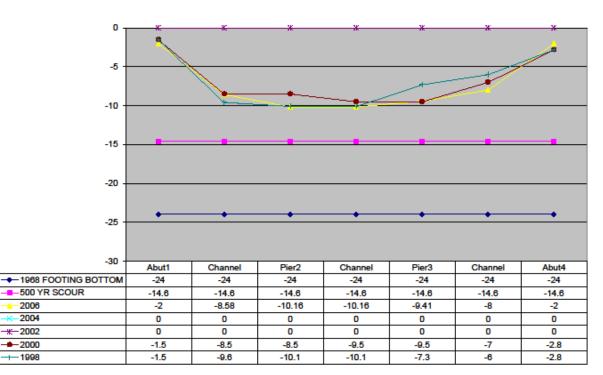
Figure C.11.1. (J-09-AB) CDOT Scour Inspection Charts

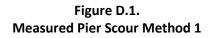
J-09-AB

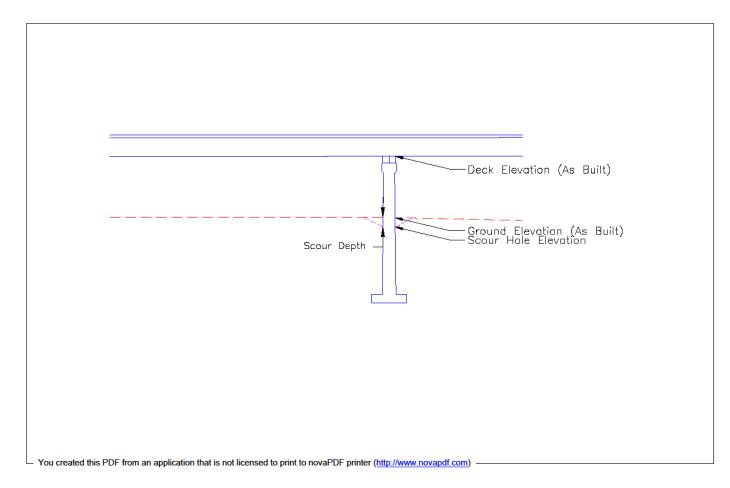
J-09-AB				Scour Critical	3		
3 CIC	50		Drainage area Stream	1023 Sq. Miles GUNNISON RIVER			
Abut1		Channel	Pier2	Channel	Pier3	Channel	Abut4
-	-17.6	-17.6	-17.	6 -17.6	-17.6	-17.6	-17.6
	-25	-25	-2	5 -25	-25	-25	-25
	0	-10.58	-1	1 -12	-12	-9.66	-3
	-3	0		0 0	0	0	-4
	0	0		0 0	0	0	C
	0	-11	-1	1 -11	-11	-11	C
	0	-11	-1	1 -11	-11	-11	C
-	-2.41	-8.66	-10.4	1 -11.08	-11	8.66	-3.41
	-2.5	-8.8	-10.	5 -11.1	-11	-8.8	-3.5
	-2.9	-9.1	-10.	7 -11.5	-11.5	-9	-4.3
	-3	-13.7	-13.	7 -15	-9	-9	-3
	-2	-9.6	-1	1 -11	-11	-9	-2
	-2.3	-10.5	-10.	5 -10.5	-10.5	-10.5	-1.5
	-2.2	-9.4	-10.	4 -10.6	-9.8	-9	-2
	-2.2	-9.4	-11.	2 -10.6	-10.4	-9	-2

Figure C.11.2. CDOT Scour Inspection Measurements

Figure C.12.1. (K-08-D) CDOT Scour Inspection Charts



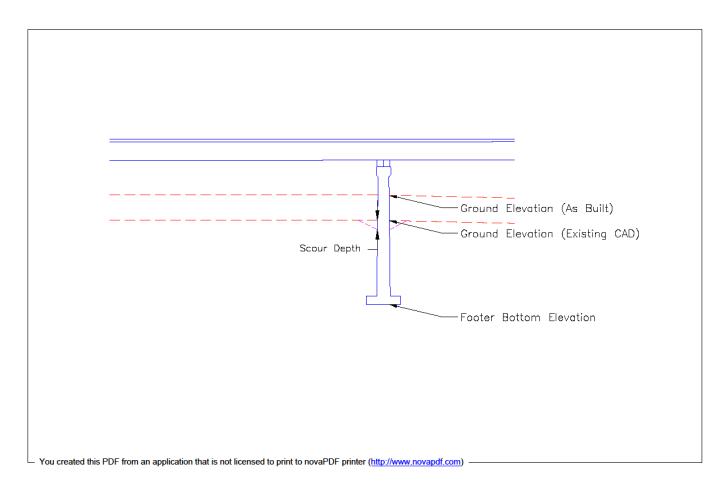

Figure C.13.1. (L-07-A)


0 - -10 - -20 - -30 -			*	*			
-40 - -50 -	•	•	-	-	-	-	-
-60 -	Abut1	Channel	Pier2	Channel	Pier3	Channel	Abut4
	-49.8	-49.8	-49.8	-49.8	-49.8	-49.8	-49.8
	-37.7	-37.7	-37.7	-37.7	-37.7	-37.7	-37.7
	0	0	-22	-22	-25.41	0	0
<u></u> ¥-2004	0	0	0	0	0	0	0
-*-2002	-1	-19.5	-19.5	-23.5	-23.5	0	0
	0	-20	-23	-23	-19	0	0
	-1	-19	-23	-23	-25	-25	-1

L-07-A

-- 1957 FOOTING BOTTOM --- 500 YR SCOUR --- 2006 --- 2004 ---- 2002 ----- 1998

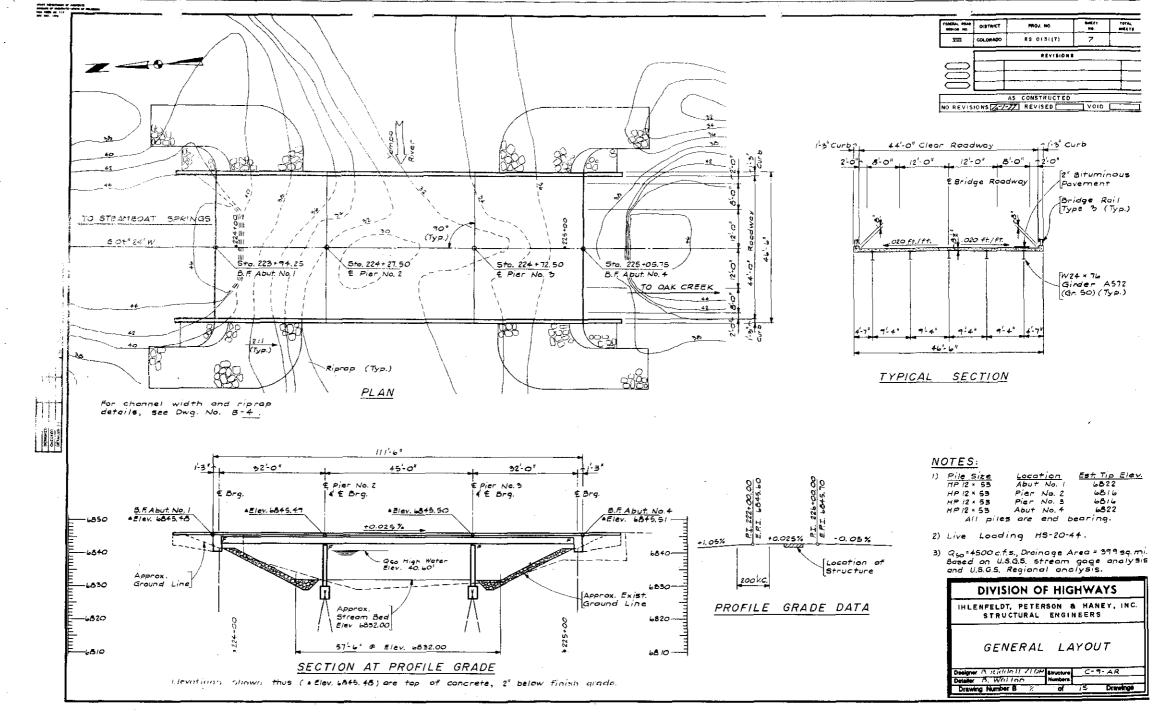
APPENDIX D – MEASURED PIER SCOUR METHODOLOGY



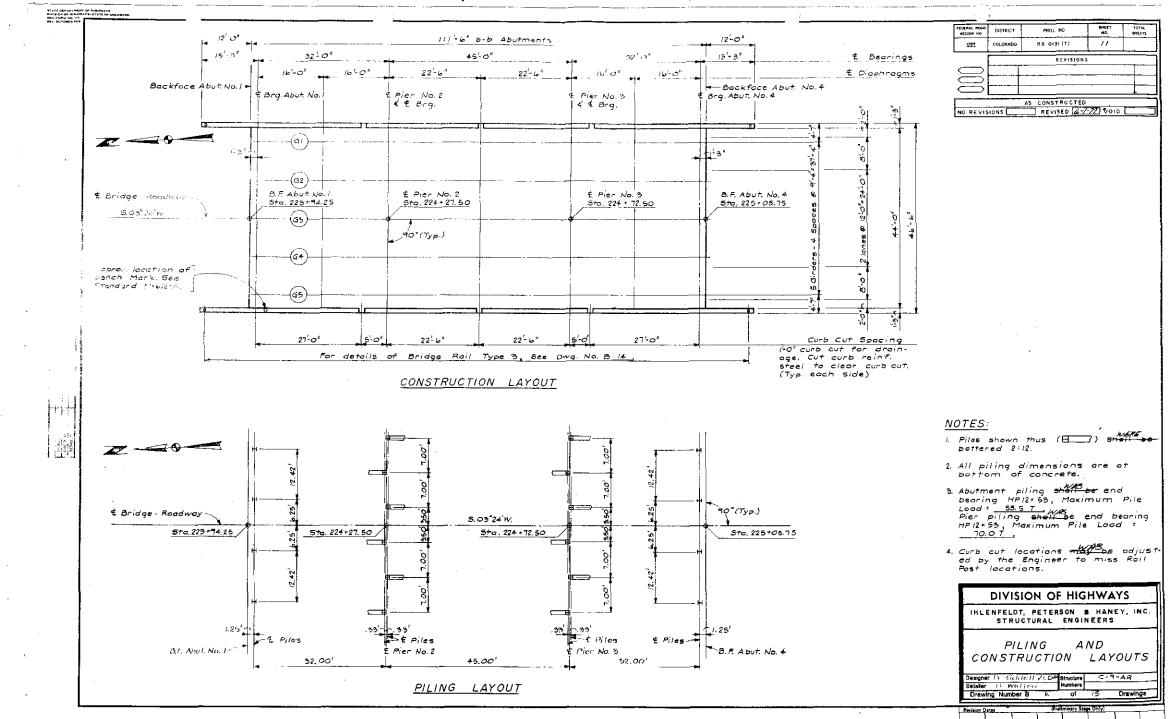
Method 1

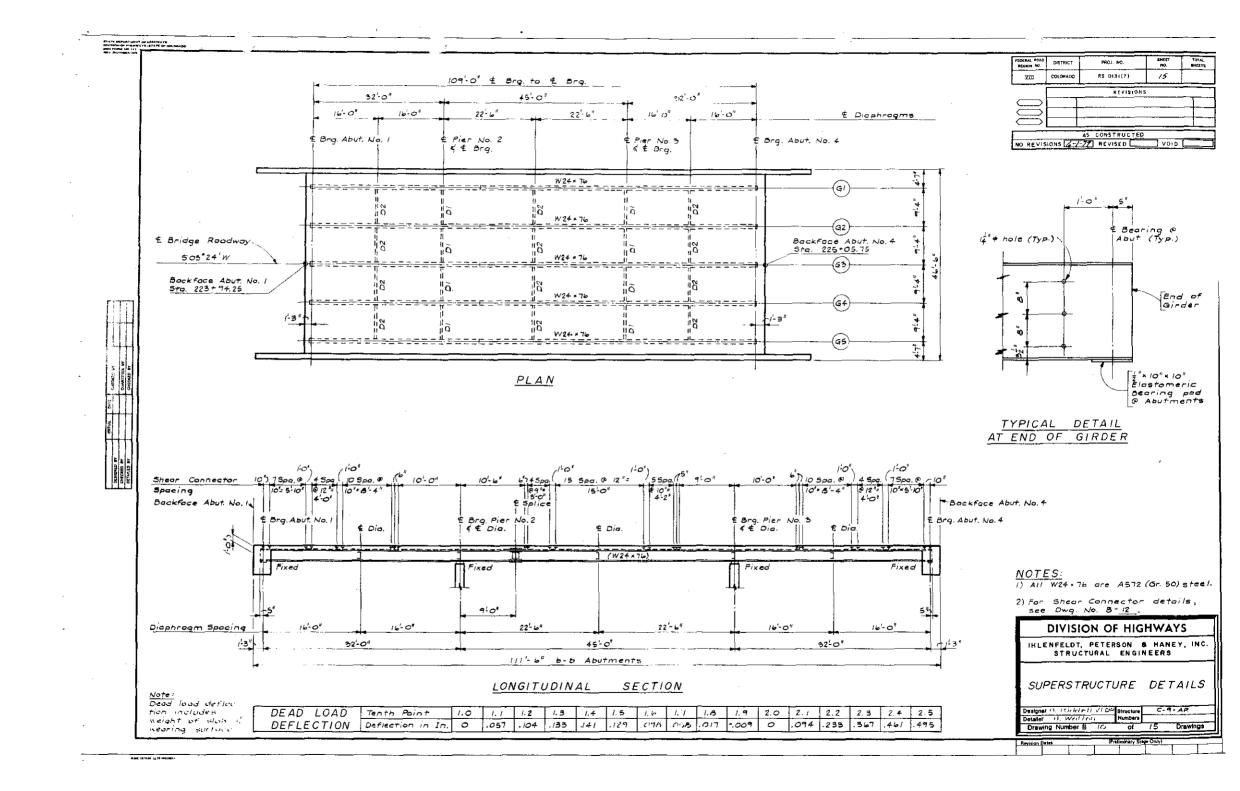
Deck Elevation – Largest Scour Depth (from CDOT Scour Chart) = Elevation of Scour Hole Bottom Ground Elevation – Elevation of Scour Hole = **Scour Depth**

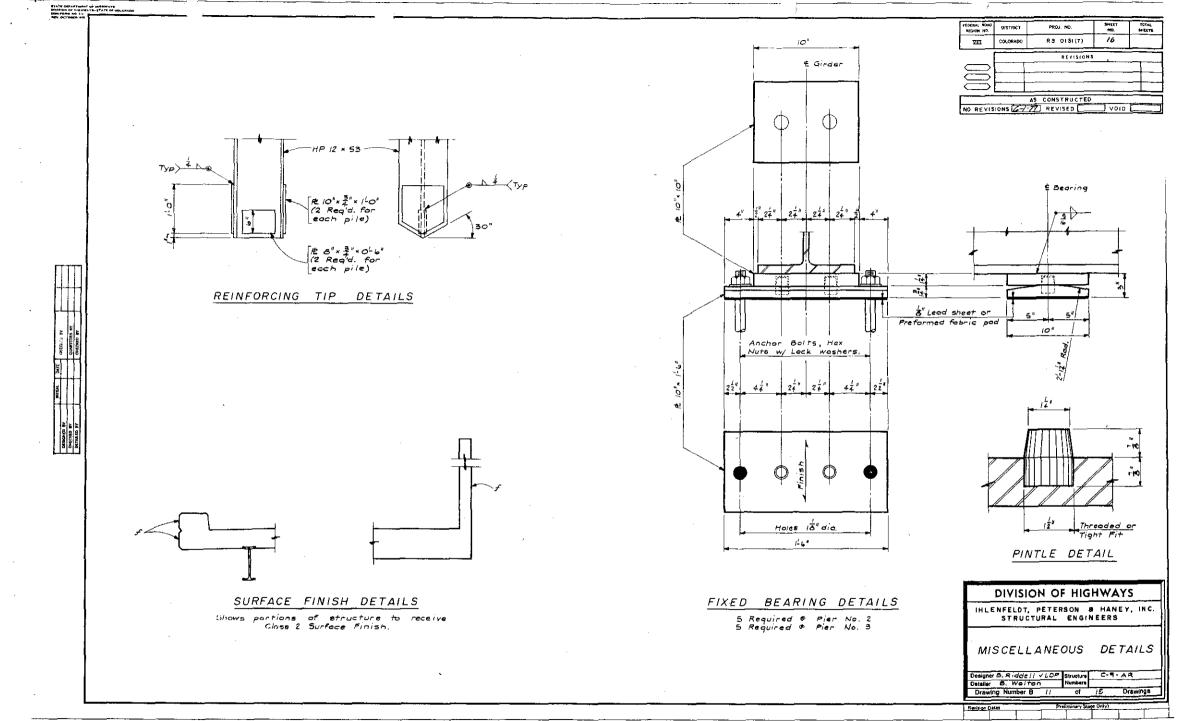
Figure D.2. Measured Pier Scour Method 2

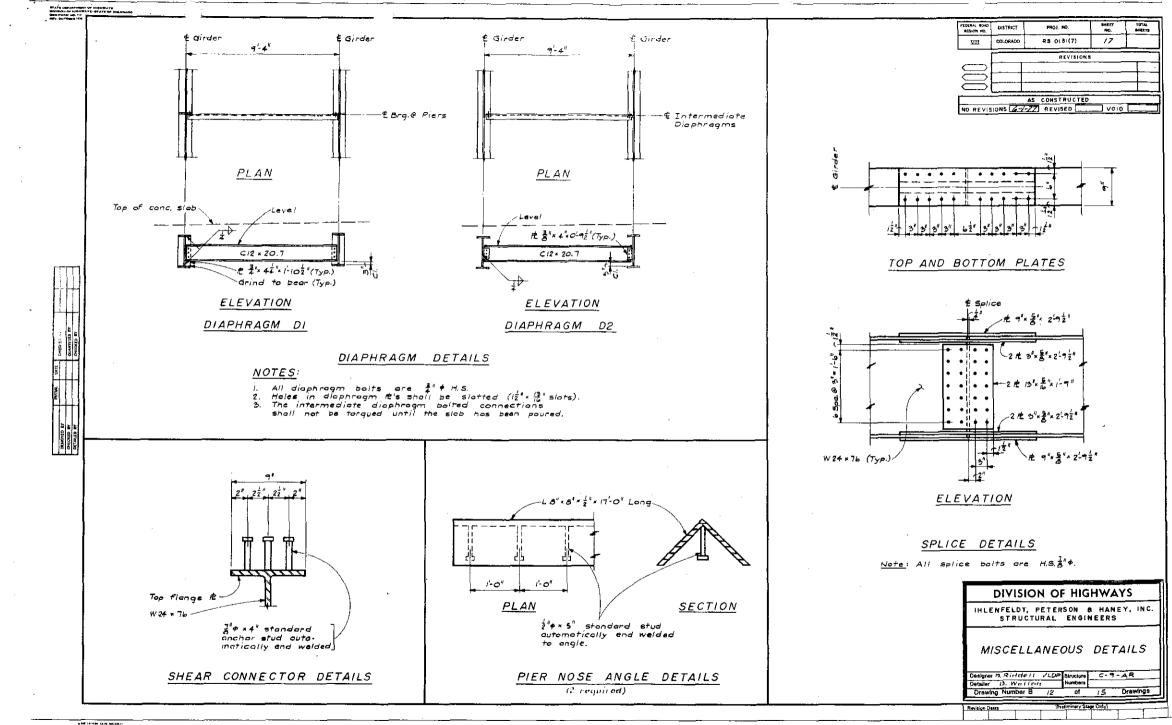

Method 2

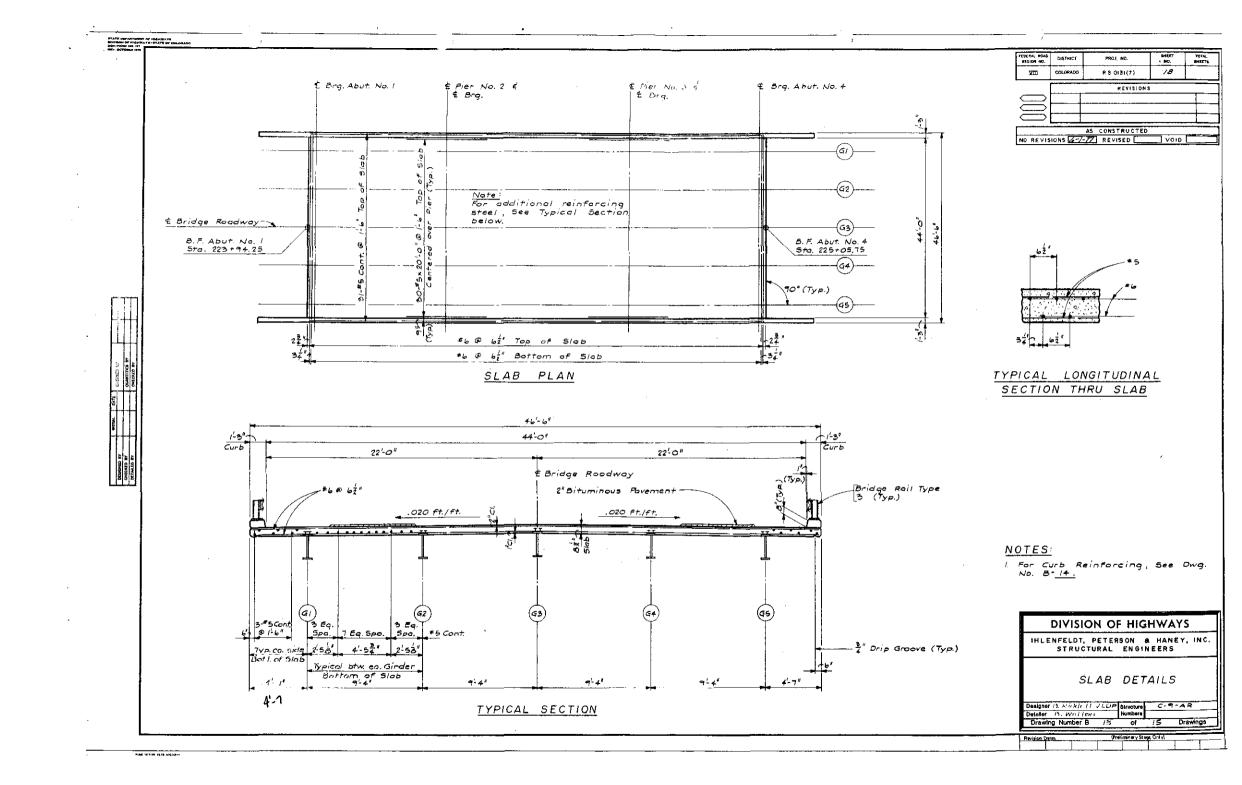
[Ground Elevation (from As Built) – Footer Bottom Elevation (from As Built)] – [Ground Elevation (from Existing CAD) – Footer Bottom Elevation (from Existing CAD)] = **Scour Depth**

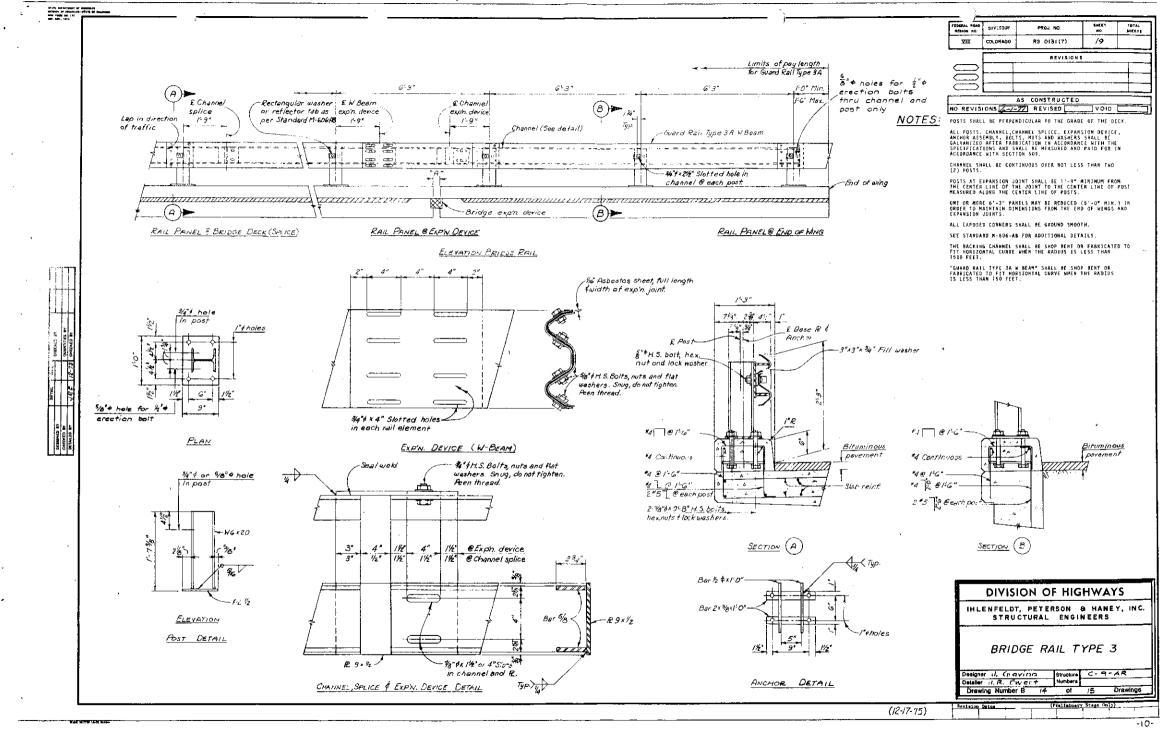

APPENDIX E – EXISTING BRIDGE PLANS & SUBSURFACE INFORMATION


LOAD FACTO	R RATING SUN		Structure # State highway # Batch I.D.	C-09-AR 131 IRTIS BID #130
Asphalt thickness Colorado legal	loads	W1-}	Structure type Parallel structure #	CICK
Structural member	INTERIOR GIRDER G01	deck slab		
	Metric tons (Tons)		terrente de la constante de la Constante de la constante de la	
Inventory	28 (31) 31 (35) () (*
Operating	47 (52) 53 (59) () (
Type 3 truck	() () () (
Type 3S2 truck	() () () (
Type 3-2 truck	() () () * (
Permit truck	104 (115) () () (
The OTHER		Type 3S2 Truck Interstate 34.5 metric tons (38 h Colorado 38.6 metric tons (42.5	tons) interstate tons) 35.4 met	3-2 Truck ric tons (39 tons) Ic tons (42.5 ton)
<u> </u>		etric tons Tons	D Metric tor	s Tons
Colorado 24.5 metr	<u> </u>	etric tons Tons	0° °0 <u>°</u>	() is Tons
Metric tons To	<u> </u>	etric tons Tons	0° °0 <u>°</u>) is Tons
Metric tons To	<u> </u>	etric tons Tons	0° °0 <u>°</u>	Tons
Metric tons To	<u> </u>	etric tons Tons	0° °0 <u>°</u>	Tons
Metric tons To	Ē	etric tons Tons	D Metric tor	

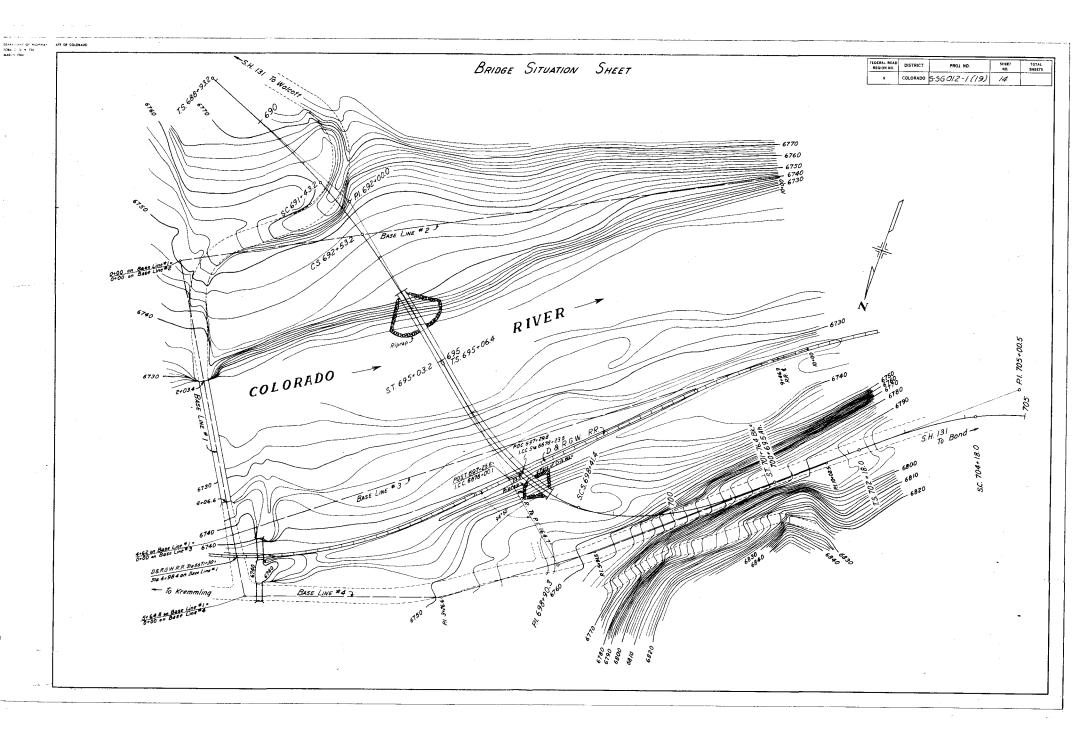

													REGION HO DISTRICT	PROJ. NO.	SHEET NO.
1	GENERAL NO	OTES					10		0 A T 4 .				VIII COLORADO	R9 DL31(7)	6
	D All work shell Stondord Specif	fications of the Division of	9)All concrete ch unless otherwise	amfers 1 noted.	SHOT DO	s 🛔 inch		ADING		0. H5-20-	- 44			A 6 V 1 S 10	N S
	to the Project.		10)Expansion joint A.A.S.H.TO, Specifi	moterio cotion j	ni shott r M213-65 a	neet the	Dec	od load :		s 25 l bs . p ous paven	per sq. ft. f ment.	ìor		AS CONSTRUCTE	
	symbol f as sha	infaces morked with the ₁₁₀ nown on Dwg. No. 8-11 shall s 2 surface finish.	included in the p II)All structural ste be A.A.S.H.T.O. Spe	eel not	otherwise	e noted 🖨	1011						INDEX OF		
	accordance with When different a	depth of footings etc. in the best avgjjable data. conditions and encountered,	12) All structural ste shall be pointed	eel not Lin acco	otherwise ordonce	e noted µ with Sec	VAS						Dwg. No. B-1	General In Summery d	iformati of Quani
	the Aridge Engin mine if redesign	neer will inspect and deter-	tion 509 for 5 WERE 13) All bolts shell b				DE	SIGN L	DATA:	YR.OF C	Constra=19	76	Dwg. No. B-2	Generoi Lo	yout
	4) When excaveting inches in depth &	for footings, the final six Hall be done by hand labor	Strength, Unless	otherwi	use noted	<i>.</i>					except as n EMado		Dwg. No. 8-3		
	metrods	the formed but	H)No welding of any on the flanges o	of steel	girders .	unless	l Rei Ste	inforcing eel:	#5 bors Élarger	-1f = 20.	,000 psi e 0,000 psi in	n Fr=400r	Dwg. No. 8-4		
P (V/Public	byrean hugs in roex £nine⊬⊸berpiaced i	shall not-be formed but against undisturbed rock.	specifically call 15)Grade 60 reinfar		-				#4 bors	_fs = 20,	,000 psi	slab. = 60 KSZ	Dwg. No. B-6	Piling and	
VI 6		tructure excavation and 11, See Standard M-206-AB.	#5 bars and larg 60 may be fur	ger. Gro hished	ade 40 c for #4 b	pr Grade bars.	Str	-uctural		Fs :20,0	00 ibs.per s	q. in.	Dwg. No. 8-7	Layouts	
		ium icp for common bar sizes:	16)Abbreviations :		Cross R	Reference	5te	ee/:	A572 Grade 50		000 lbs. per se	q. in.	Dwg. No. B-7 Dwg. No. B-8		
		4 5 6 7 8 9 10 11 0° 1-2" 1-8" 2-3" 3-0" 3-10 4-10 6-0"	E.F. = Each Face N.F. = Near Face E.E. = Far Face		Drowing Section Identi	g Number <u>n or Peta</u> ification	<u>11</u> Cor	ncrete:		Fc = 1,20 n = 10	00 ibs. per s	q. in.	Dwg. No. 8-9	Pier No.2 an	
. • : •		construction joints	17)Concrete deck		receive		5+			Fc= 300	o PSi		Dwg. No. 8-10	Details Superstruct	ture Dei
	s héiï be approv	ved by the Engineer.	verse fiber bi	room f	finish.								Dwg. No. 8-11		
									BOOK				Dwg. No. 8-12		
		······································	SUMMARY	OF OL	JANTITI	ES					٦		Own Mar Brits	Slob Detail	5
1											ļ		DW9. NO. D 13		
↓ 	Ŧ	tem No. Description		Unit 1	Super- structure	Abut. No. 1	Pier No 2	Pier No. 3	Abut. No. 4	Total	4		Dwg. No. 5-14		Туре З
		tem Description No. Description 202 Removal of Bridge		Unit 1				Pier No. 3		Total I	4 			Bridge Rail	
AMALSO	2	No. Description		Unit				Pier No. 3		Total 1 			Dwg. No. 8-14	Bridge Rail Structure N	
Maketon Maketon Maketon Maketon		No. Description 202 Removal of Bridge		Unit : Eech		No. 1	No. Z	No. 3	No. 4	1			Dwg. No. 8-14	Bridge Rail Structure N	
Manual Control of Cont	2	No. Description 202 Removal of Bridge 204 Structure Excavation	(o = 5 2)	Unit Each Cu.yd.		<u>25</u>	No. 2	70	25	1			Dwg. No. 8-14 Dwg. No. 8-15	Bridge Rail Structure N Standard	lumber
Kitako Kitako Kitako Kitako Kitako Kitako		No. Description 202 Removal of Bridge 206 Structure Excavation 206 Structure Backfill (Cl	(055 2) (m+ (Gr E) (M - A)	Unit Eech Cu.yd. Cu.yd.	structure	<u>25</u>	No. 2	<u>No. 3</u> <u>70</u> 45	25 20	/ /90 /90 /90	Page 25'		Dwg. No. 8-14 Dwg. No. 8-15 BRIDGE	Bridge Rail Structure N	lumber I ON
Kinder Kinder Sincer Sincer		No. Description 202 Removal of Bridge 204 Structure Excavation 206 Structure Backfill (Cl 403 Hot Bituminous Poveme	(055 2) (m+ (Gr E) (M - A) 3) (Unit Eech Cu.Yd. Cu.Yd. Ten	structure	<u>25</u> 20	No. 2 70 45	<u>No. 3</u> <u>70</u> 45	25 20	/ /90 /90 /90	Page 25'		Dwg. No. 5-14 Dwg. No. 8-15 <u>BRIDGE</u> 3 Simple Sp Concrete St	Bridge Rail Structure N Stendard DESCRIPT Dens (32 ¹⁰ , 4	lumber 10N 5'0", 32'0
Hadden of the second seco		No. Description 202 Removal of Bridge 204 Structure Excavation 206 Structure Backfill (Cl 403 Hot Bituminous Poveme 502 Steel Piling (HP 12×51 502 Reinforcing Tip	(055 2) ent (Sr E) (M - A) 3) (Unit Each Cu.yd. Cu.yd. Cu.yd. Tan J.n. Ft.	structure	No. 1 25 20 60 81.1	No. 2 70 45 70 59,4	No. 3 70 45 1	No. 4	/ /90 /30 58	-		Dwg. No. 5-14 Dwg. No. 5-15 BRIDGE 3 Simple Sp Concrete Si Over Yampu 44-0" Road	Bridge Rail Structure N Standard DESCRIPT Dens (32 ¹ 0 ⁴ , 4) ob and I-be o River way curb to	10N 5:0", 32:0 am Brid curb, 90
Katalo Katalo Martin Ma		No. Description 202 Removal of Bridge 204 Structure Excavation 206 Structure Backfill (Cl 403 Hot Bituminous Poveme 502 Steel Piling (HP 12×51 502 Reinforcing Tip	(055 2) (055 2) (055 2) (H - A) 3) (L (C - C) (H - A) (C - C) (C -	Unit Each Cu.Yd. Cu.Yd. Tan In. Ft. Each Eu.Yd.	structure	No. 1 25 20 60 81.1 4	No. 2 70 45 70 59,4	No. 3 70 45 1	No. 4	/ /90 /90 58 6 200 287 20	-		Dwg. No. 8-14 Dwg. No. 8-15 <u>BRIDGE</u> 3 Simple Sp Goocrete Si Over Yampi 44-0" Road 1-3" Curbs 1	Bridge Rail Structure K Standard DESCRIPT Dans (32 ¹⁰ , 4 ob and I-be River way curb to with Bridge	ION 5'0", 32'd am Brid curb, 90' Reil Ty
Kiaka, Kiaka, Junto V		No. Description 202 Removal of Bridge 204 Structure Excavation 206 Structure Backfill (Cl 403 Hot Bituminous Poveme 502 Steel Piling (HP 12×5) 502 Reinforcing Tip 504 Riprop	(0 55 2) (N - A) 2) (L - A) 3) (L - C) (N - A)	Unit = Each Cu.Yd. Cu.Yd. Ton In. Ft. Each U.Yd. Lb.	50 50	No. 1 25 20 60 81.1 4	No. 2 70 45 70 594 6	No. 3	No. 4	1 190 130 58 9 300 287 20 540 576	-		Dwg. No. 8-14 Dwg. No. 8-15 BRIDGE 3 Simple Sp Concrete Sh Over Yampi 44-0" Road 1-3" Curbs 1 Sta 223+74. South of S	Bridge Rail Structure K Standard DESCRIPT Dans (32'0', 4) ob and I-ba or River way curb to with Bridge 25 to 225+ Steamboat	ION 5:0", 32:0 am Brid curb, 90 Reil Ty 05.75 Springs
Manual Control of Cont		No. Description 202 Removal of Bridge 204 Structure Excavation 206 Structure Backfill (Cl 403 Hot Bituminous Poveme 502 Steel Piling (HP 12×53 502 Reinfording Tip 504 Riprop 504 Structurel Steel	(055 2) (20+ (G-E)(N-A) 3) ((conized)	Unit = Each Cu.Yd. Cu.Yd. Ton In. Ft. Each U.Yd. Lb.	50 50 48,600	No. 1 25 20 60 81.1 4	No. 2 70 45 70 594 6	No. 3	No. 4	1 190 130 58 58 50 20 50,840 50,840	-		Dwg. No. 8-14 Dwg. No. 8-15 BRIDGE 3 Simple Sp Concrete Sh Over Yampi 44-0" Road 1-3" Curbs 1 Sta 223+74. South of S	Bridge Rail Structure N Standard DESCRIPT Dens (32'0', 4 ob and I-be o River way curb to with Bridge 25 to 225+	ION 5:0", 32:0 am Brid curb, 90 Reil Ty 05.75 Springs
International Action of the Ac		No. Description 202 Removal of Bridge 204 Structure Excavation 206 Structure Backfill (Cl 403 Hot Bituminous Paveme 502 Steel Piling (HP 12×53 502 Reinfording Tie 504 Riprop 509 Structural Steel 509 Structural Steel (Galv 509 Structural Steel (Galv	(055 2) (C m+ (Gr E) (M - A) 3) (C 3) (C 4 (0) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Unit = Each Cu.yd. Cu.yd. Tan In. Ft. Each Lb. Lb. Lb. Lb. Lb. Lb. Lb. Lb. Lb.	50 50 48,600 14,050	No. 1 25 20 80 81.1 4 270	No. 2 70 45 70 58,1 6 1,13 0	No. 3	No. 4 25 20 20 8 	1 190 130 58 20 540 576 50,860 14,050 119,6	-		Dwg. No. 8-14 Dwg. No. 8-15 BRIDGE 3 Simple Sp Concrete Sh Over Yampi 44-0" Road 1-3" Curbs 1 Sta 223+74. South of S	Bridge Rail Structure K Standard DESCRIPT Dans (32'0', 4) ob and I-ba or River way curb to with Bridge 25 to 225+ Steamboat	ION 5:0", 32:0 am Brid curb, 90 Reil Ty 05.75 Springs
Manager		No. Description 202 Removal of Bridge 204 Structure Excavation 206 Structure Backfill (Cl 403 Hat Bituminous Poveme 502 Steel Piling (HP 12×51 502 Reinforcing Tip 504 Riprop 509 Structural Steel 509 Structural Steel 509 Structural Steel (Galv 501 Cancrete Class D (Br 601 Concrete Class D (Br	(055 2) (C m+ (Gr E) (M - A) 3) (C 3) (C 4 (0) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Unit : Each Cu.Yd. Cu.Yd. Ton in Ft. Each U.Yd. Lb. Lb. Lb. Lb. Lb. Lb. Lb. Lb. Lb. Lb	50 50 14,050 145.2	No. 1 25 20 €⊕ 81.1 4 27.0 12.1	No. 2 70 45 	No. 3	No. 4	1 190 130 58 20 540 287 20 50,840 14,050 1/4,050 1/4,6 165.2	-		Dwg. No. 8-14 Dwg. No. 8-15 BRIDGE 3 Simple Sp Concrete Si Over Yampe 44-0" Road 1-3" Curbs 1 Sta 223+94. South of S Sect. 16	Bridge Rail Structure N Stendard DESCRIPT Dens (32 ¹ 0 ⁴ , 4 ¹ ob and I-be o River way curb to with Bridge 25 to 225+ Steamboat S T. 5 N., R.84	lumber 5'0", 32'c am Brid curb, 90' Rail Ty. 05.75 5prings W:
Kitako		No. Description 202 Removal of Bridge 204 Structure Excavation 204 Structure Backfill (Cl 403 Hot Bituminous Poveme 502 Steel Piling (HP 12×51 502 Reinfording Tip 504 Riprop 504 Structural Steel 509 Structural Steel 500 Concrete Class D (Br 500 Reinfording Steel	(055 2) (M - A) 3) (J (055 2	Unit = Each Cu.Yd. Cu.Yd. Tan In.Ft. Each U.Yd. Lb. Lb. Cu.Yd. Cu.Yd. Cu.Yd. Lb.	56 56 48,600 14,050 14,050 165.2 41,450	No. 1 25 20 €⊕ 81.1 4 27.0 12.1	No. 2 70 45 	No. 3	No. 4	1 190 190 58 20 540 50,840 14,050 14,050 119.6 165.2 49,990	-	Ren Prov	Dwg. No. 5-14 Dwg. No. 5-15 BRIDGE 3 Simple Sp Concrete Si Over Yample 44-0" Road 1-3" Curbs 1 Sta 223+94. South of 5 Sect. 16 , 1	Bridge Rail Structure N Standard DESCRIPT Dans (32 ¹⁰ , 4 ob and 1-be River way curb to with Bridge 25 to 225+ Steamboat 5 T. 5 N., R.84	IUMber ION 5:0", 92% am Brid curb, 90° Reil Ty 05.75 5prings W: SHWAYS
Hadden		No. Description 202 Removal of Bridge 204 Structure Excavation 206 Structure Backfill (Cl 403 Hat Bituminous Poveme 502 Steel Piling (HP 12×51 502 Reinforcing Tip 504 Riprop 509 Structural Steel 509 Structural Steel 509 Structural Steel (Galv 501 Cancrete Class D (Br 601 Concrete Class D (Br	(055 2) (M - A) 3) (J (055 2	Unit = Each Cu.Yd. Cu.Yd. Tan In.Ft. Each U.Yd. Lb. Lb. Cu.Yd. Cu.Yd. Cu.Yd. Lb.	50 50 14,050 145.2	No. 1 25 20 €⊕ 81.1 4 27.0 12.1	No. 2 70 45 	No. 3	No. 4	1 190 130 58 20 540 287 20 50,840 14,050 1/4,050 1/4,6 165.2	-	flow Place	Dwg. No. 8-14 Dwg. No. 8-15 BRIDGE 3 Simple Sp Concrete Si Over Yampic 44-0" Road 1-3" Curbs 1 Sta 223+94. South of S Sect. 16 , 1 DIVIS	Bridge Rail Structure N Stendard DESCRIPT Dens (32 ¹ 0 ⁴ , 4 ¹ ob and I-be o River way curb to with Bridge 25 to 225+ Steamboat S T. 5 N., R.84	ION 5:0", 324 am Brid curb, 90 Rail Ty 05,75 5prings W. GHWAYS
Kitako		No. Description 202 Removal of Bridge 204 Structure Excavation 205 Structure Backfill (Cl 403 Hat Bituminous Paveme 507 Steel Piling (HP 12+5) 502 Reinforcing Tis 504 Riprop 509 Structural Steel 509 Structural Steel 509 Structural Steel (Galv 501 Concrete Class D (Br 502 Reinforcing Steel 502 Reinforcing Steel 504 Guard Rail Type 3A	(055 2) (C ent (Gr E) (H - A) 3) (L 	Unit : Each Cu.yd. Cu.yd. Ton in Ft. Each U. Yd. Lb. Lb. Lb. Lb. Lb. Lb. Lb. Lb. Lb. Lb	50 50 48,600 14,050 165.2 41,450 275	No. 1 25 20 €⊕ 81.1 4 27.0 12.1	No. 2 70 45 	No. 3	No. 4	1 190 190 58 20 540 50,840 14,050 14,050 119.6 165.2 49,990	-	flow Place of	Dwg. No. 8-14 Dwg. No. 8-15 BRIDGE 3 Simple Sp Concrete Si Over Yampi 44-0" Road 1-3" Curbs I Sta 223+74. South of S Sect. 16 IHLENFELD STRU	Bridge Rail Structure N Standard DESCRIPT Dans (92 ¹ 0 ⁴ , 4) ob and I-be o River way curb to with Bridge 25 to 225+ Steamboat S T. 5 N., R.84	ION 5:0", 32' om Brid curb, 90' Reil Ty 05.75 5prings W: SHWAYS BHWAYS
Kitaku, Kitaku, Kitaku, Kitaku,		No. Description 202 Removal of Bridge 204 Structure Excavation 204 Structure Backfill (Cl 403 Hot Bituminous Paveme 502 Steel Piling (HP 12×51 502 Reinforcing Tie 504 Rigrep 509 Structural Steel 509 Structural S	(055 2) (C ent (Gr E) (H - A) 3) (L 	Unit : Each Cu.yd. Cu.yd. Ton in Ft. Each U. Yd. Lb. Lb. Lb. Lb. Lb. Lb. Lb. Lb. Lb. Lb	50 50 48,600 14,050 165.2 41,450 275	No. 1 25 20 €⊕ 81.1 4 27.0 12.1	No. 2 70 45 	No. 3	No. 4	1 190 190 58 20 540 50,840 14,050 14,050 119.6 165.2 49,990	-	film Ptracy	Dwg. No. 8-14 Dwg. No. 8-15 Dwg. No. 8-15 Simple Sp Concre Yampi 44-0" Road 1-3" Curbs I Sta 223+94. South of 5 Sect. 16 IHLENFELD STRI GENER.	Bridge Rail Structure N Standard DESCRIPT Dans (32 ¹ 0 ⁴ , 4) ab and I-be o River way curb to with Bridge 25 to 225+ Steamboat S T. 5 N., R.84 SION OF HIC DT, PETERSON JCTURAL ENG	ION 5:0", 32 ¹ am Brid curb, 90 Rail Ty 05.75 5prings W: GHWAYS NEERS RMATIC
History History Among Among		No. Description 202 Removal of Bridge 204 Structure Excavation 206 Structure Backfill (Cl 403 Hot Bituminous Paveme 502 Steel Piling (HP 12×51 502 Reinfording Tie 504 Riprep 509 Structural Steel 509 Structural S	(ess 2) (H - A) ant (G - E) (H - A) 3) (L conized) (dge) (C ridge) (C r	Unit = Each Cu.yd. Cu.yd. Cu.yd. Ton In. Ft. Each Cu.yd. Lb. Cu.yd. Lb. Cu.yd. Lb. Cu.yd. Lb. Cu.yd.	50 50 48,600 14,050 165.2 41,450 275	No. 1 25 20 €⊕ 81.1 4 27.0 12.1	No. 2 70 45 	No. 3	No. 4	1 190 190 58 20 540 50,840 14,050 14,050 119.6 165.2 49,990	-	floor Pterry	Dwg. No. 8-14 Dwg. No. 8-15 Dwg. No. 8-15 Simple Sp Concrete Sp Concrete Sp 44-0" Road 1-3" Curbs 1 Sta 223+74. South of S Sect. 16 , S DIVIS IHLENFELD STRU GENER, SUMMAT Deligner D. Rid Deligner D. Rid	Bridge Rail Structure N Standard DESCRIPT Dans (32'0', 4) ab and I-be on River way curb to with Bridge 25 to 225+ Steamboat 5 T. 5 N., R.84 SION OF HIC DICTURAL ENG AL INFOR RY OF Q Internet Structure Internet Structure Stru	ION 5:0", 32:0 am Brid curb, 90 Reil Ty 05.75 5 W: GHWAYS CHW
Kitaka Kita Kitaka Kitaka Kitaka Kita Kitaka Kitaka Kitaka Kitaka Kitaka Kitaka Kitaka Kitaka Kitaka		No. Description 202 Removal of Bridge 204 Structure Excavation 205 Structure Backfill (Cl 403 Hot Bituminous Paveme 502 Steel Piling (HP 12×51 502 Reinforcing Tis 504 Riprop 509 Structural Steel 509 Structural S	(ess 2) (H - A) ant (G - E) (H - A) 3) (L conized) (dge) (C ridge) (C r	Unit = Each Cu.yd. Cu.yd. Cu.yd. Ton In. Ft. Each Cu.yd. Lb. Cu.yd. Lb. Cu.yd. Lb. Cu.yd. Lb. Cu.yd.	50 50 48,600 14,050 165.2 41,450 275	No. 1 25 20 €⊕ 81.1 4 27.0 12.1	No. 2 70 45 	No. 3	No. 4	1 190 190 58 20 540 50,840 14,050 14,050 119.6 165.2 49,990	-	flue Part	Dwg. No. 8-14 Dwg. No. 8-15 BRIDGE 3 Simple Sp Concrete Si Over Yampi 44-0" Road 1-3" Curbs I Sta 223+94. South of S Sect. 16 IHLENFELD STRU GENER. SUMMAF	Bridge Rail Structure N Standard DESCRIPT Dans (32'0', 4) ab and I-be on River way curb to with Bridge 25 to 225+ Steamboat 5 T. 5 N., R.84 SION OF HIC DICTURAL ENG AL INFOR RY OF Q Internet Structure Internet Structure Stru	ION 5:0", 32' om Brid curb, 90' Reil Ty. 05.75 50rings W: SHWAYS SHWAYS NEERS RMATIC UANTIT

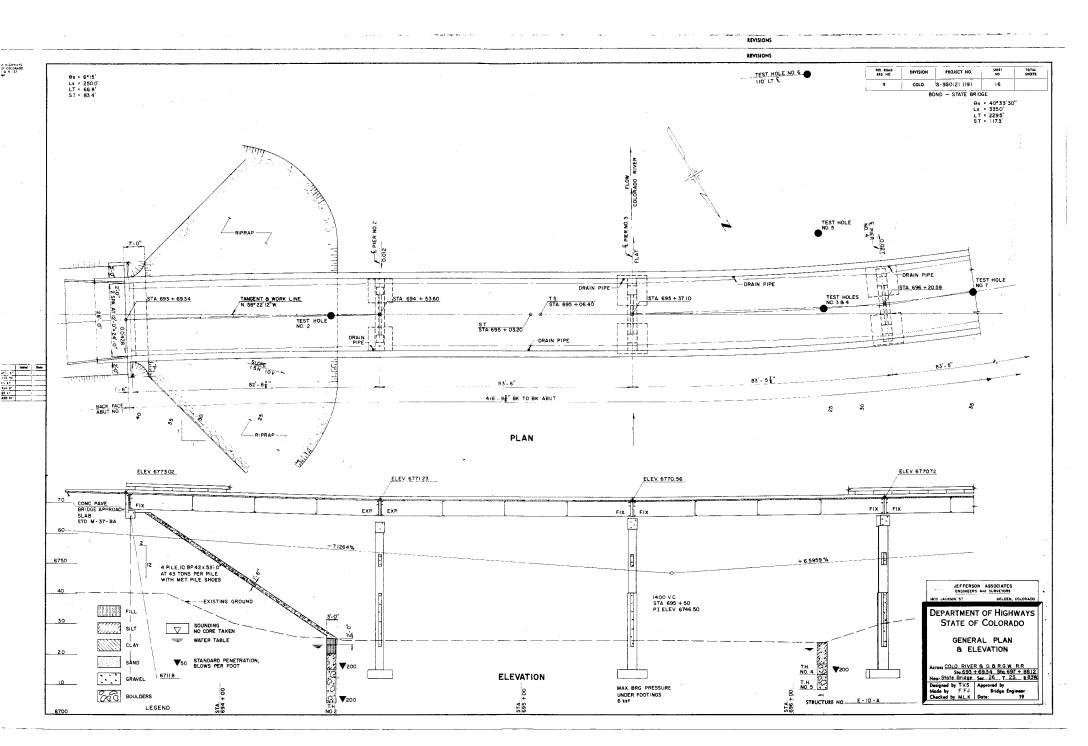

______.

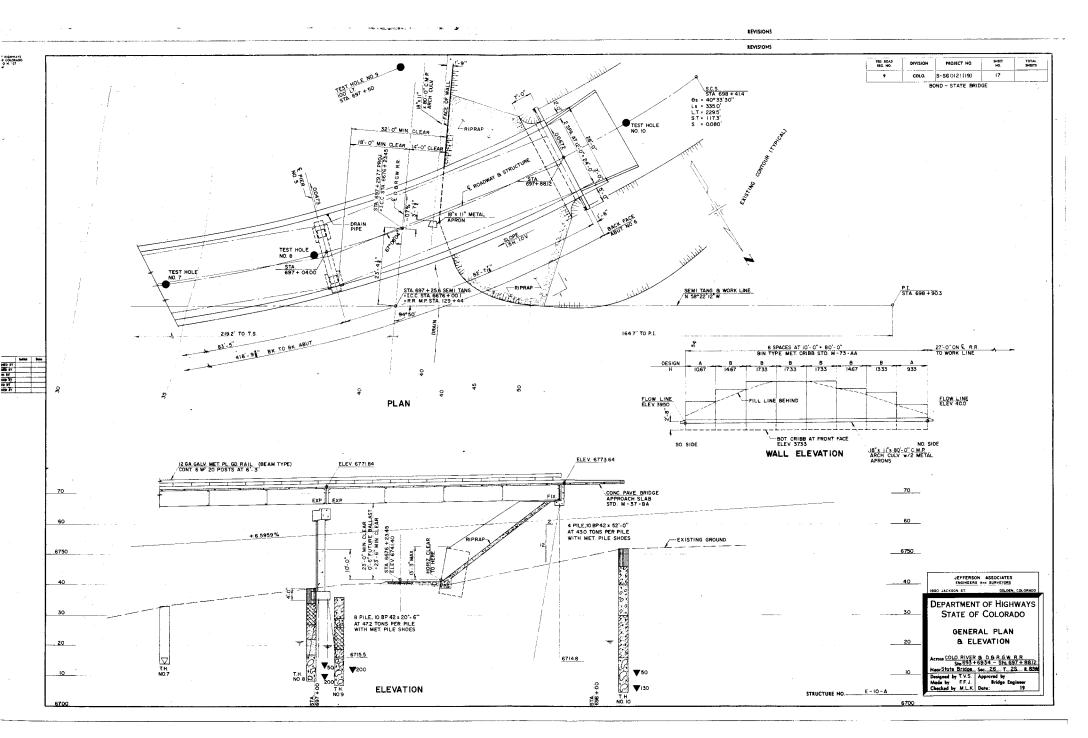


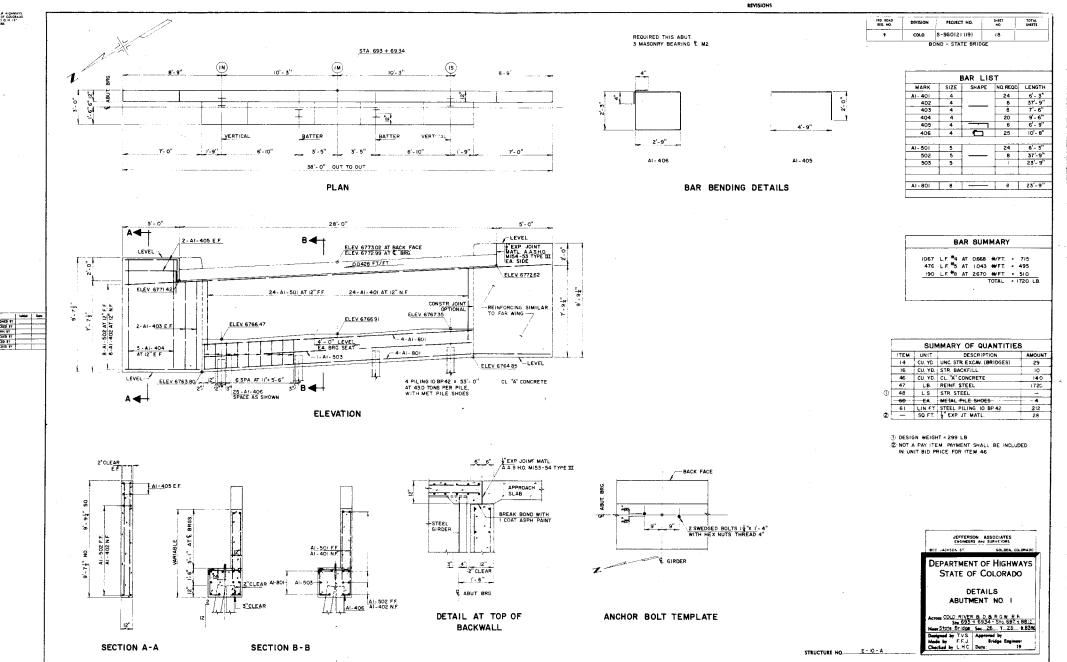


Net 10710 13-75 MCHar-

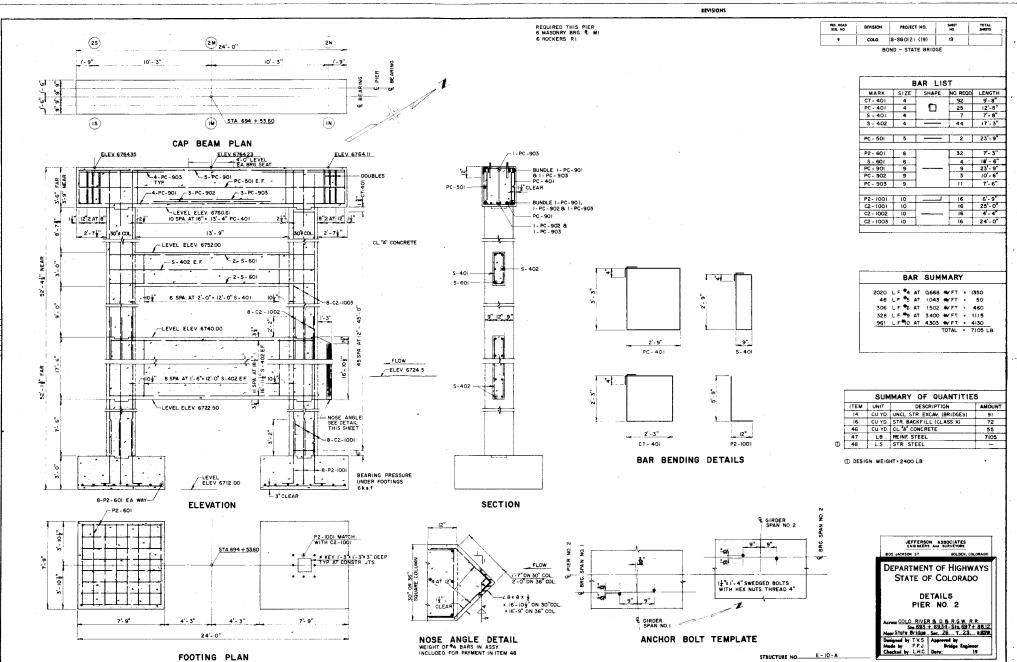





.


-

-.

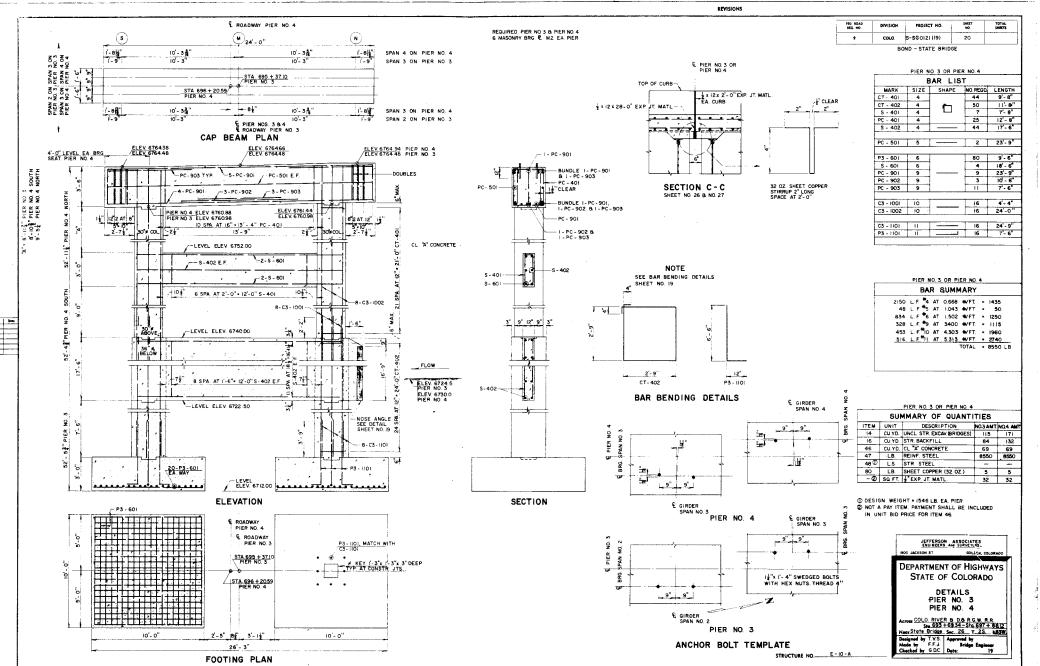

SHED BY XED BY WH BY XED PT

TO BY

TED 17

REVISIONS

REVISIONS

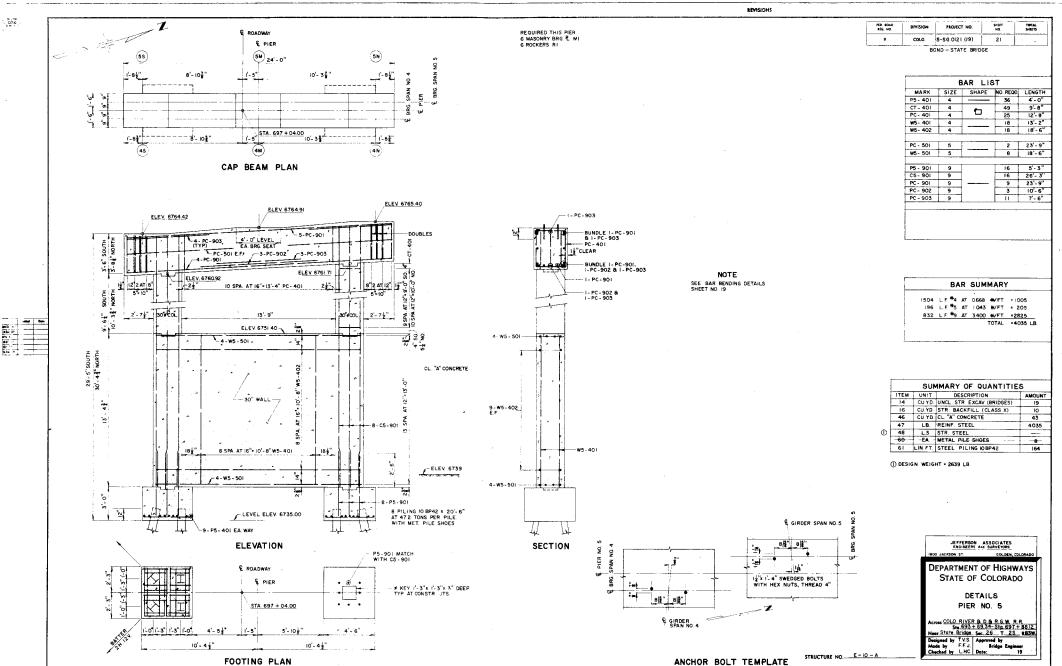

 Lighted
 Date

 Billit
 Date

 Station
 Date

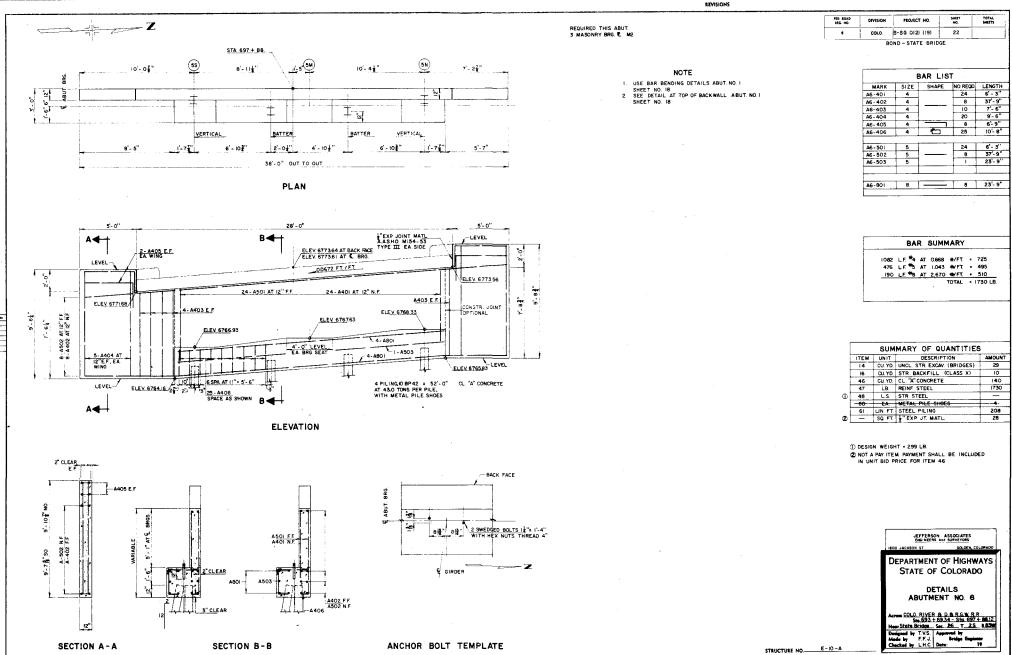
AYS

REVISIONS



NF ALL HYMATS OF CL LUBADO 1 QL P 1.7 44

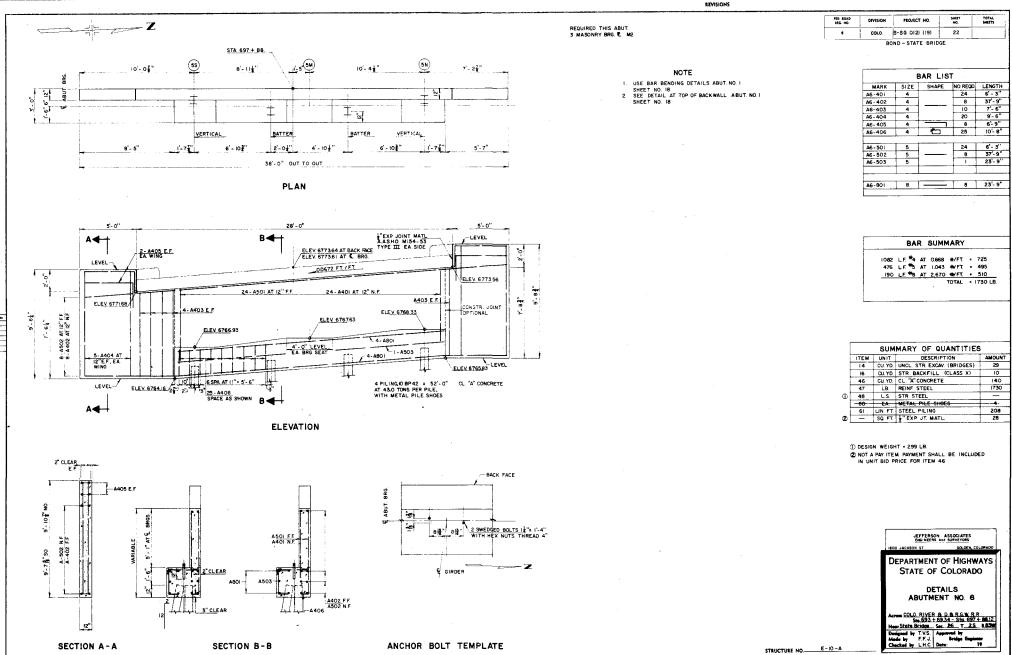
ante sy atte sy atte sy atte sy atte sy



REVISIONS

ceto.

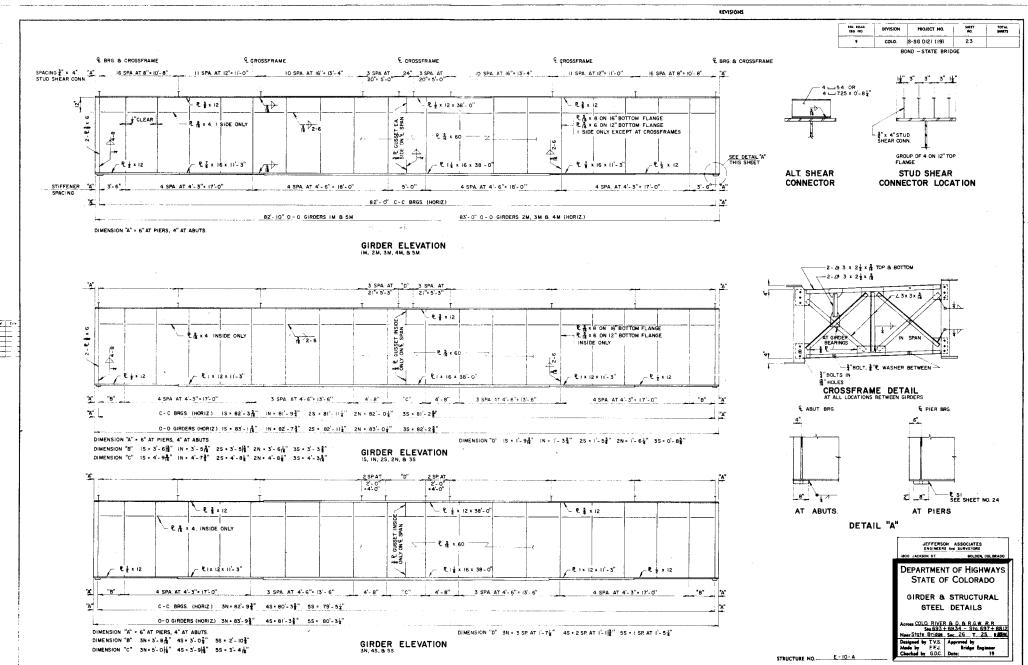
RÉVISIONS



r

LED BY CD BY CD BY CD BY CD BY CD BY

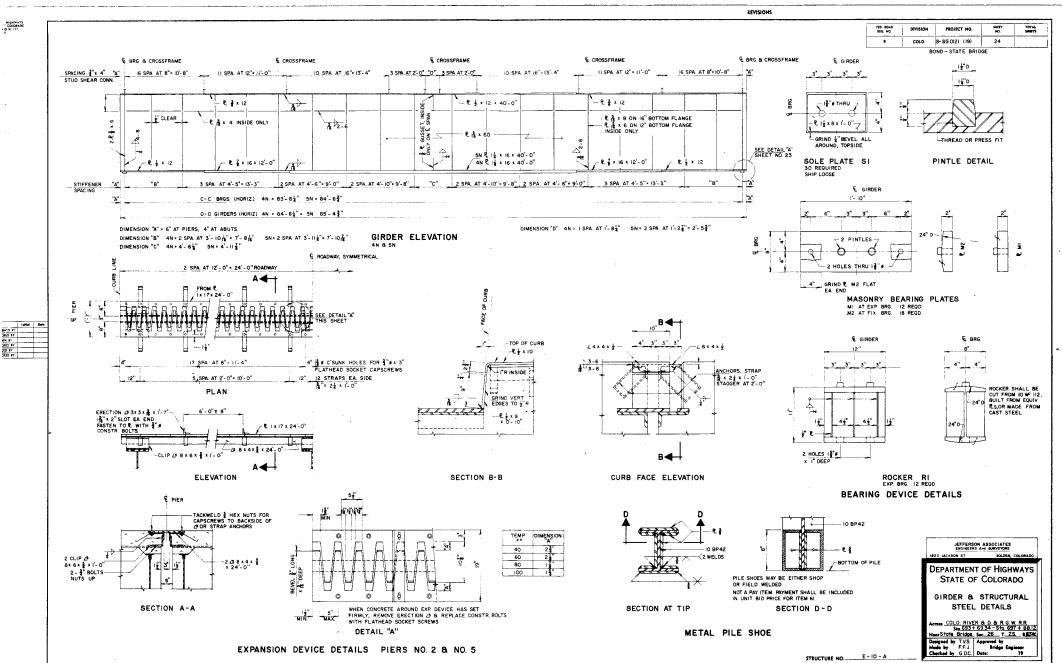
NIGHWATS SF COLOBADO L O. H. 137


RÉVISIONS

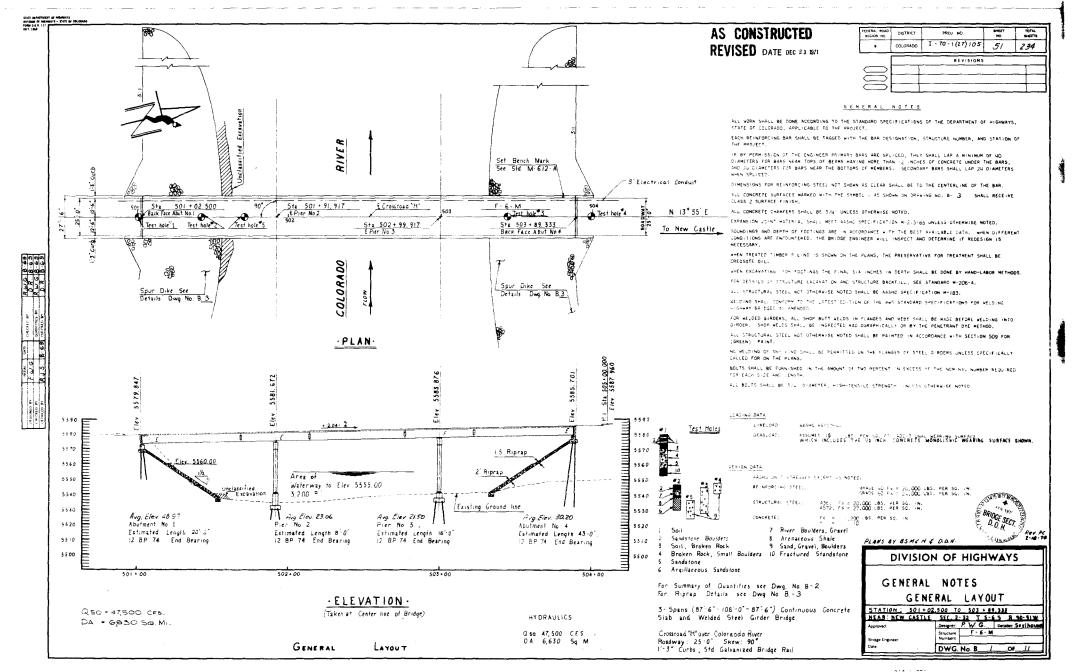
r

LED BY CD BY CD BY CD BY CD BY CD BY

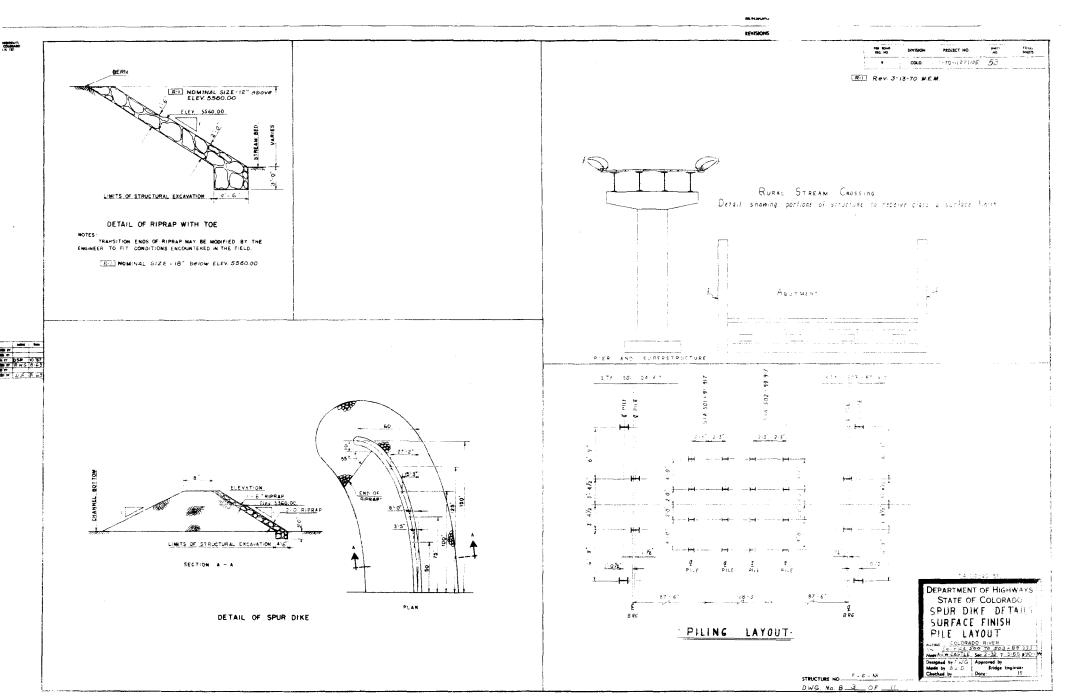
NIGHWATS SF COLOBADO L O. H. 137

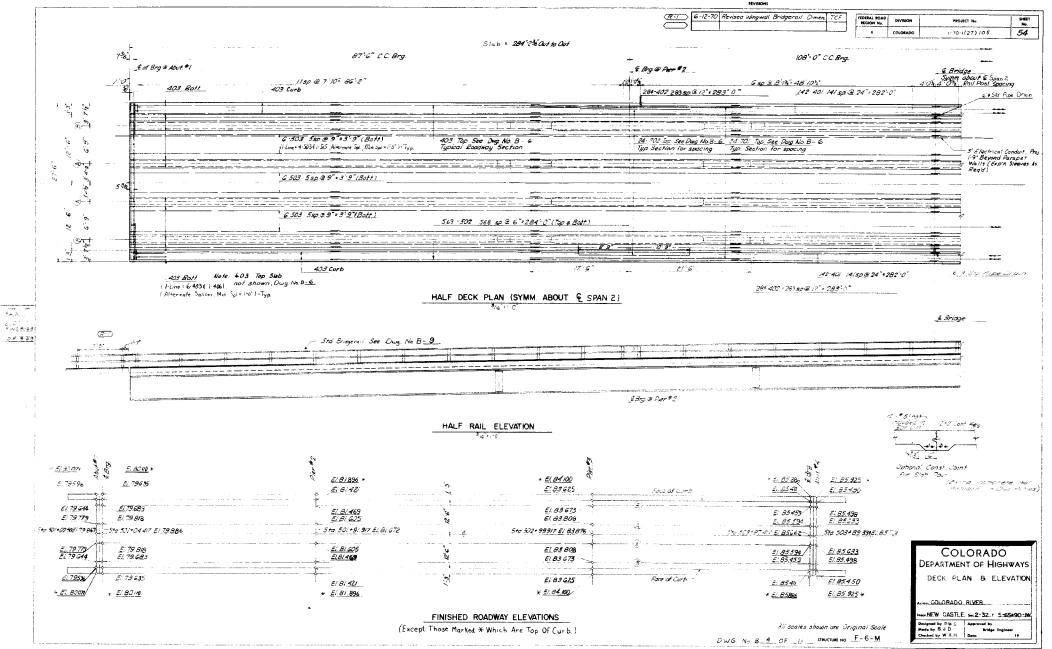


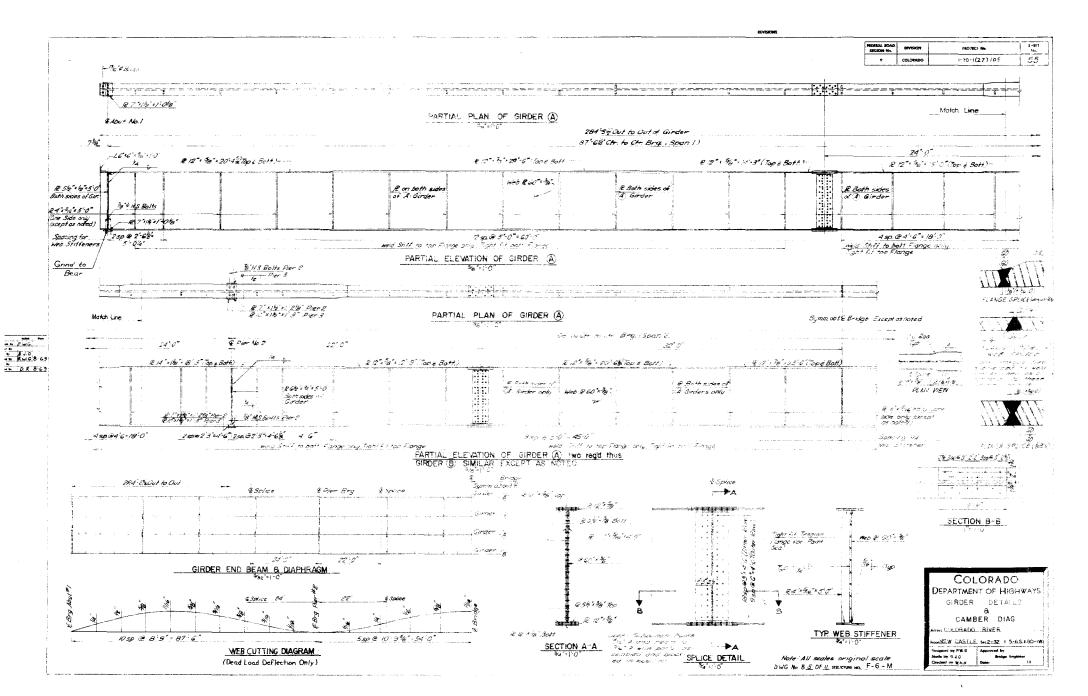
REVISIONS

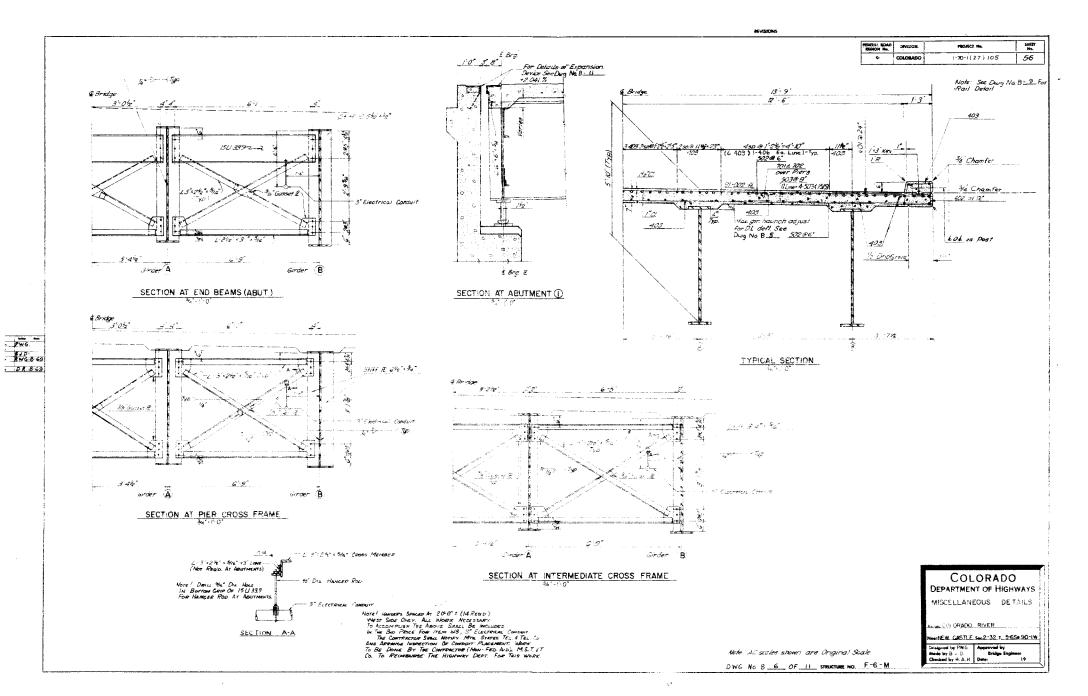

i Lánaí

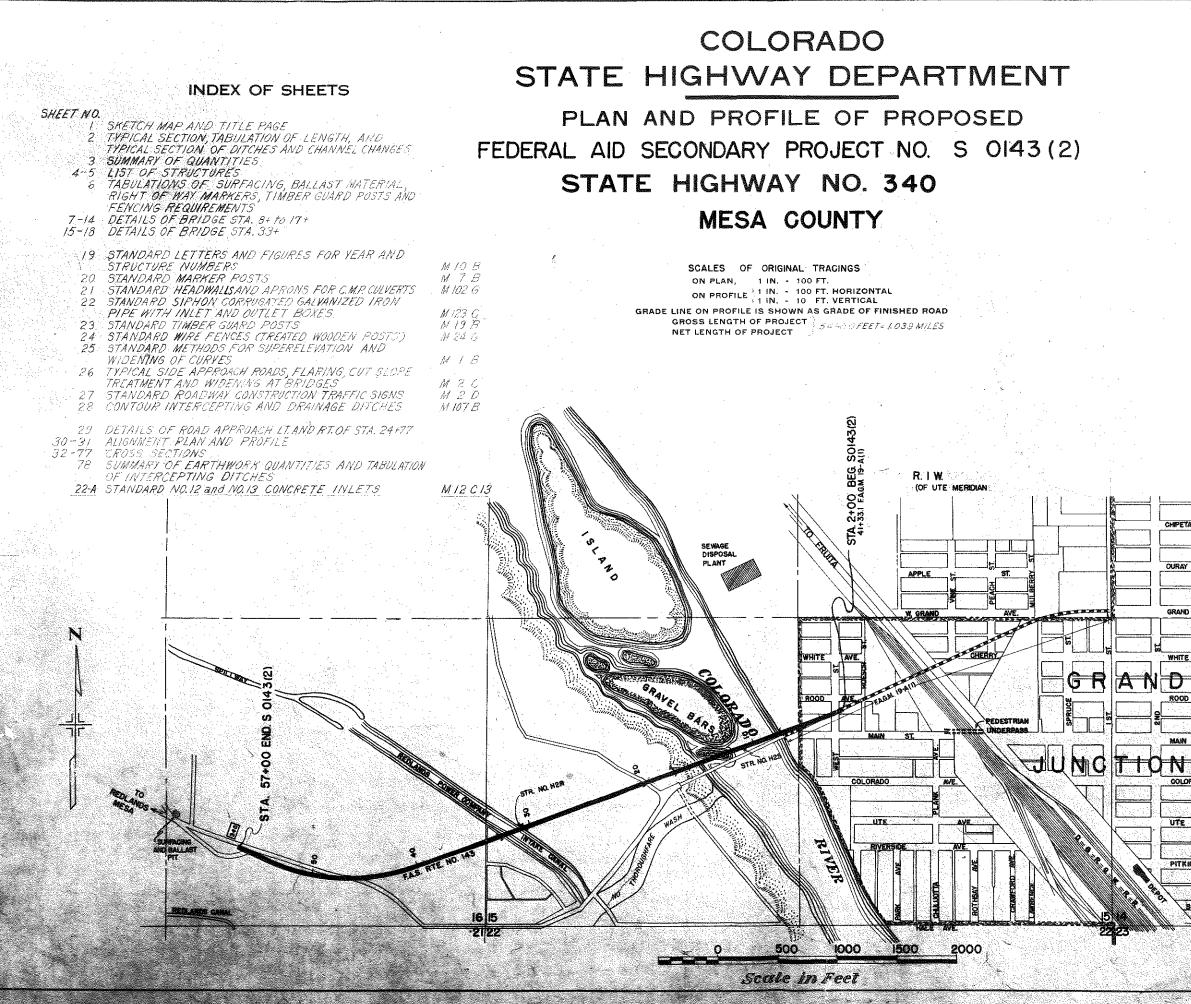
SF HIGHWAYS OF COLDIADC 2 O.H 137

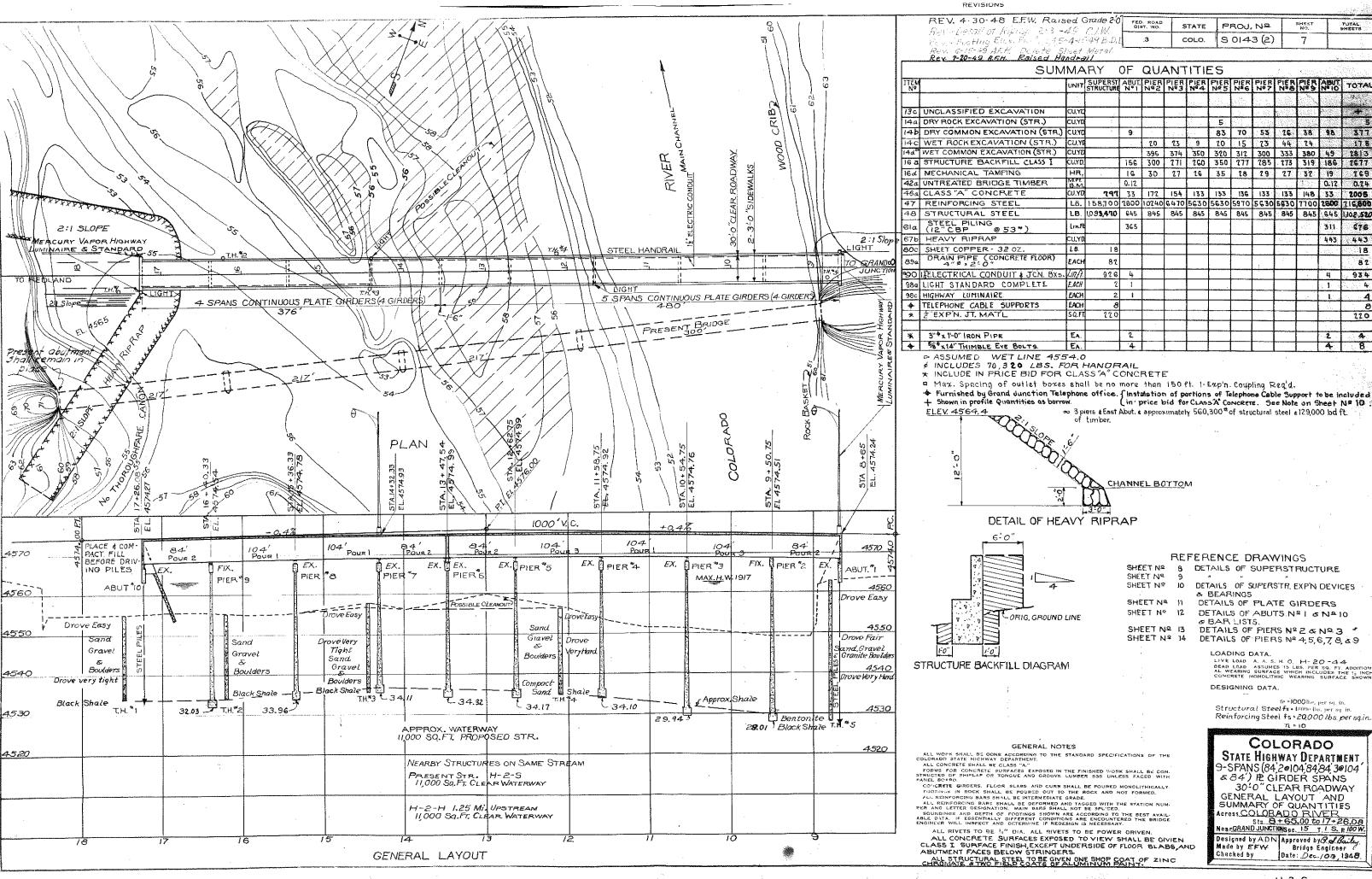

GHED 4Y P CRED 9Y WN 2Y CRED 9Y CRED 9Y CRED 9Y CRED 9Y CRED 9Y



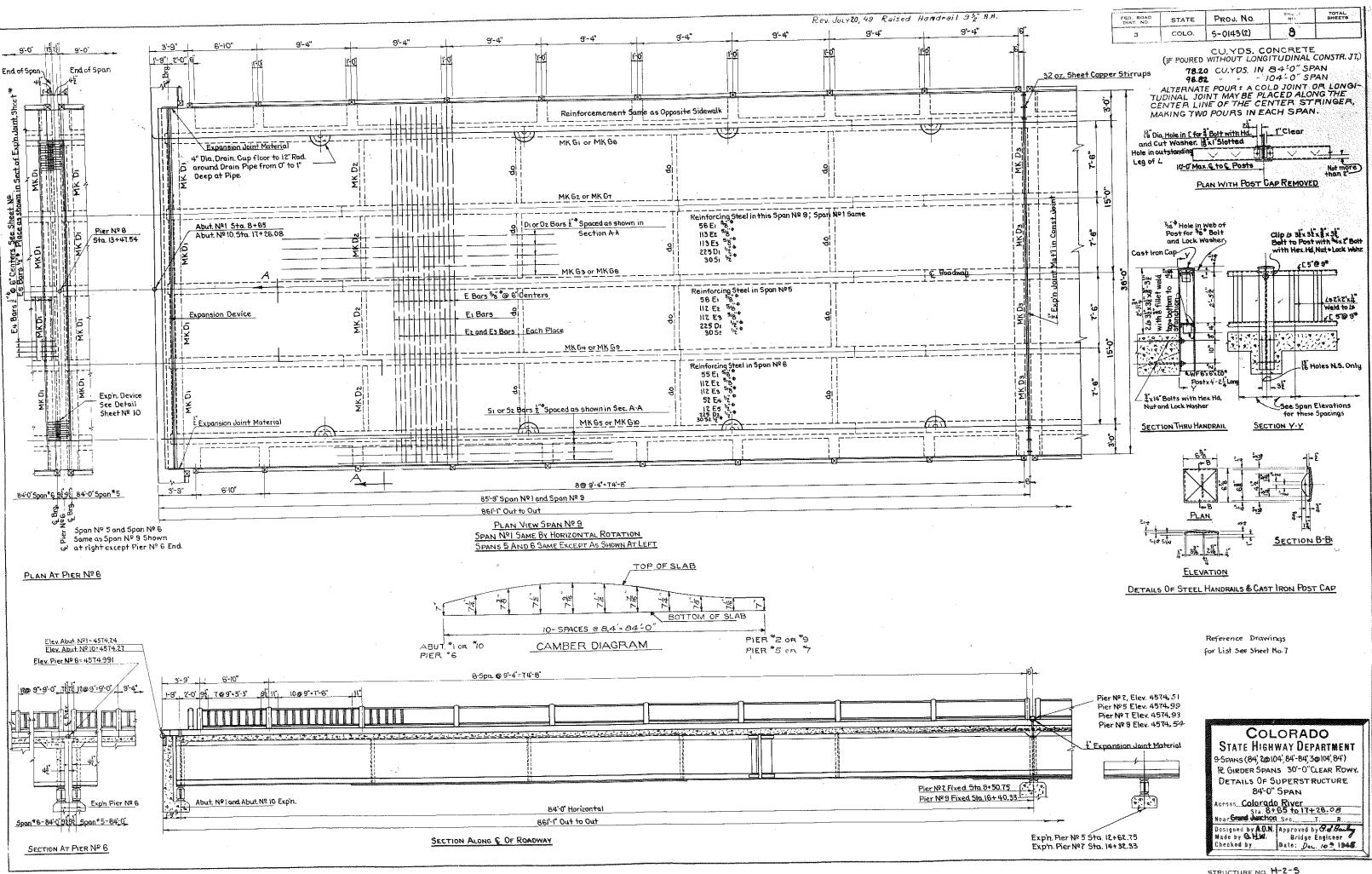

REVISIONS

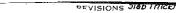



	and an		AS CONSTRUCTED REVISED DATE DEC 23 637	ТОСКА КОЛО DISTRICT PROJ. NO. НО. НО. НО. НОТА 12000 NO DISTRICT PROJ. NO. НО. НО. НОТА 9 COLGRADO 170-1(27) /0.5 52 234
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Bar LIST Speckstructure MAR NC LENSTHUCTURE 400 284 419 41 401 284 419 41 402 284 419 41 403 284 419 41 403 284 419 41 403 284 410 31 404 76 51 51 403 2846 410 31 404 76 51 51 502 1138 2712 51 503 72 62 51 503 72 62 51 503 72 62 51 704 48 19 51 705 18 42 51 704 48 19 51 705 48 19 51 704 48 19 51 705 48	EENDING DIASRAM (DIMENSIONS OUT TO OUT OF EAR)	
A CONTRACT OF A	14.000000000000000000000000000000000000	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 1

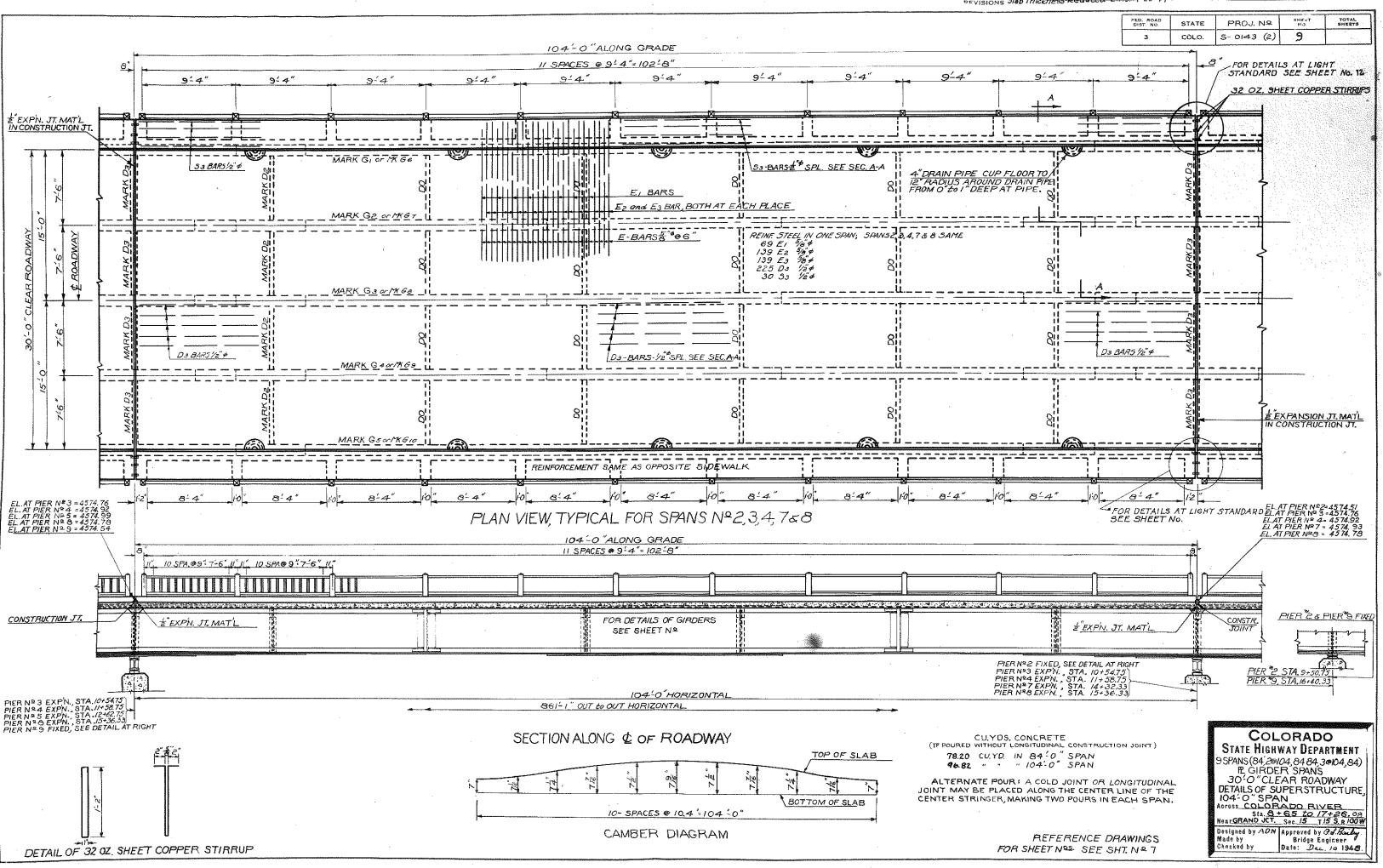


SHEET NO TOTAL SHEETS FED. ROAD DIV. NO. STATE PROJ. NO 9 COLO. S 0143(2) Rev. - Index of Sheets - 2-3-49 CJW. the ... CONVENTIONAL SIGNS CENTER LINE OF SURVEY RIGHT OF WAY LINE SECTION LINE ONE QUARTER SECTION LINE CITY LIMITS BARBED WIRE FENCE COMBINATION WIRE FENCE BOARD FENCE WATER PIPE LINE SEWER PIPE LINE TELEPH. & TELEG. LINE POWER LINE RAILROADS NOTE : It is recommended that bidders on this Project go over the plan details with one of the following field representatives of this Department Geo. N. Miles - District Engineer-Grand Junction, Colo. Homer Gray - Construction Engineer-Grand Junction, Colo. RECOMMENDED FOR APPROV spraul 12-29-48 Man a. Weeting TIS. STATE HIGHWAY ENGINEER DATE (OF UTE BASE LINE) RECOMMENDED FOR APPROV PUBLIC ROADS ADMINISTRAT COLORA PITKIN

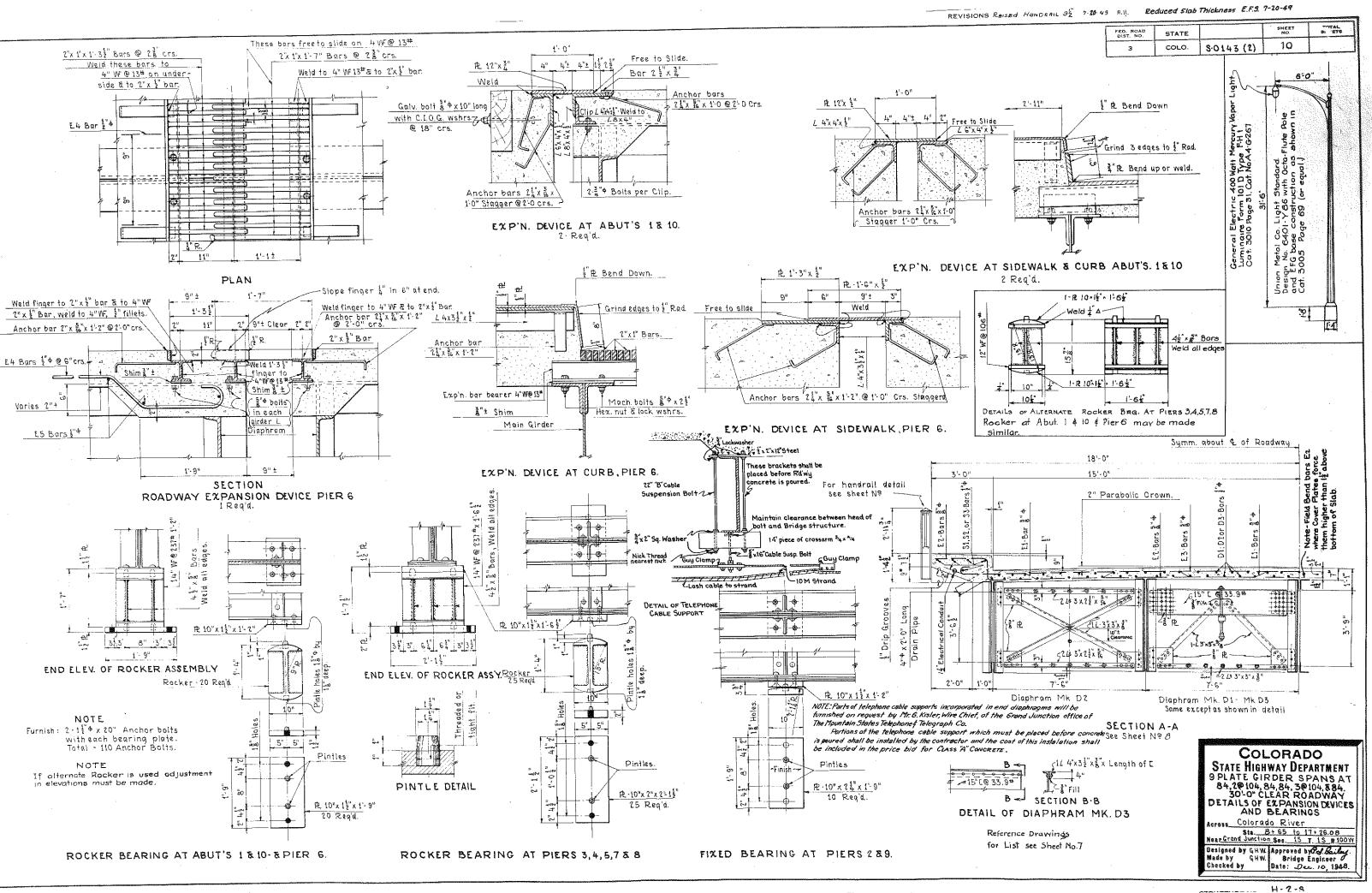

a da encarem

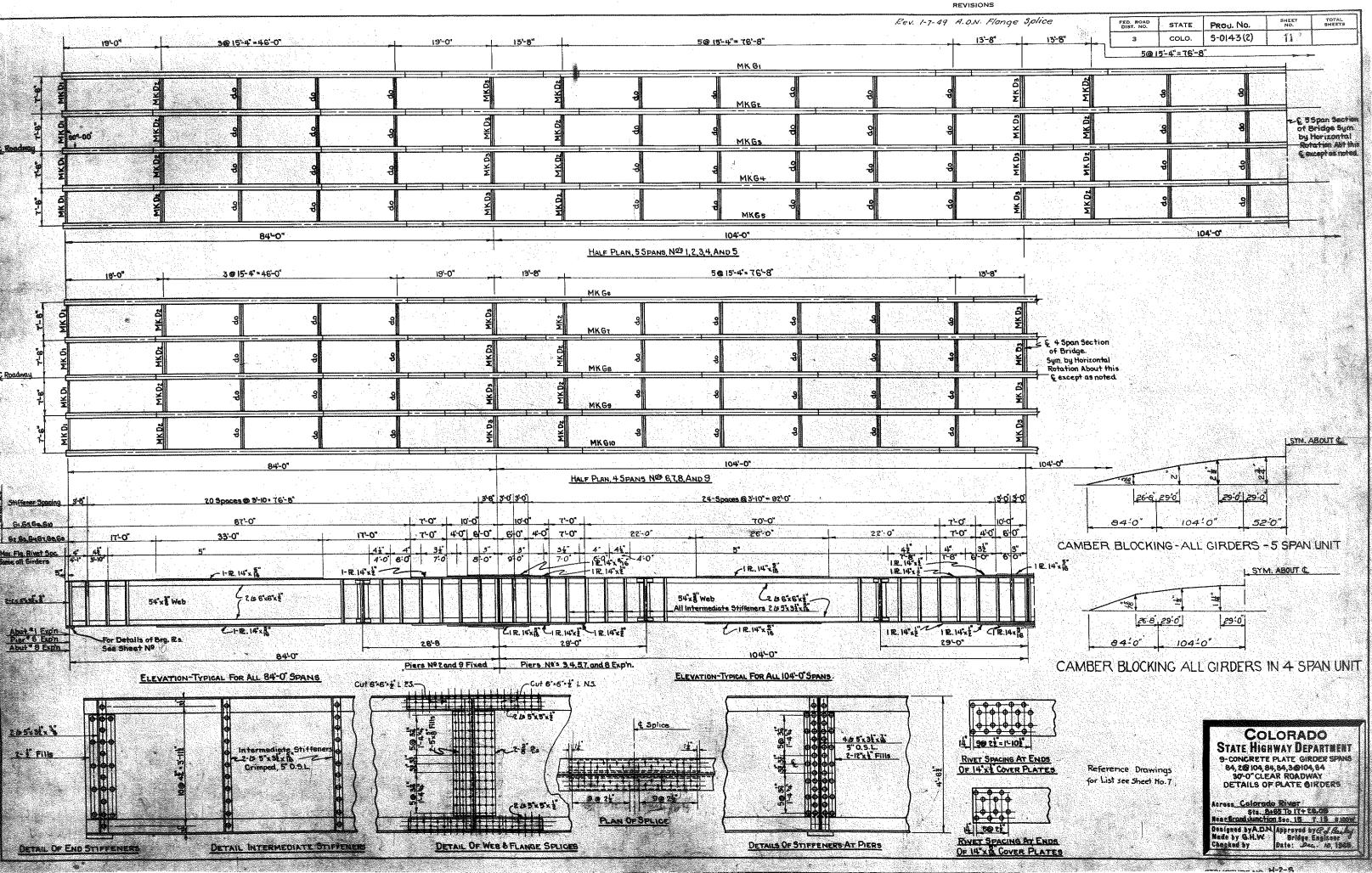


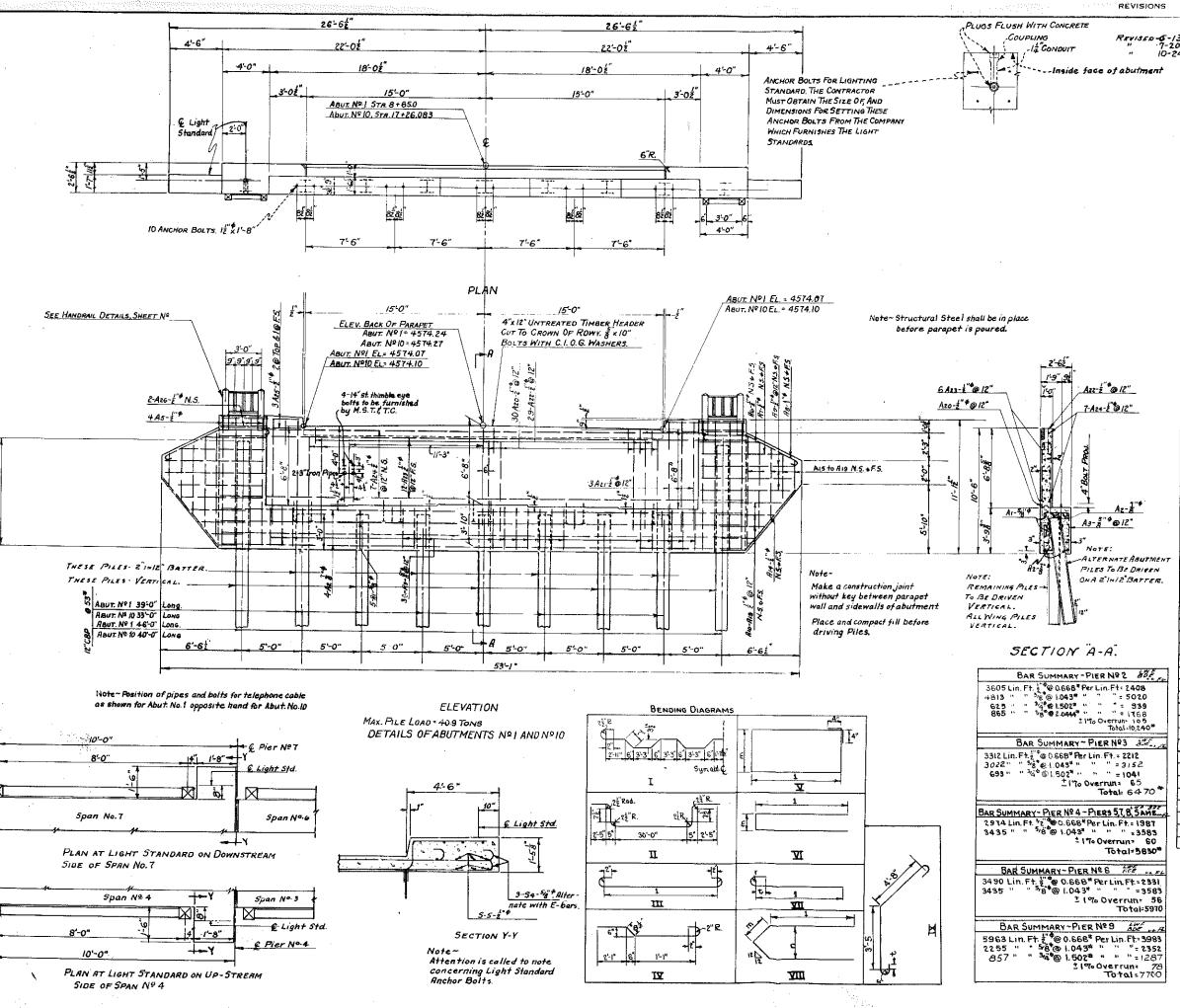
FW. Rais				ROAD	9	TATE	P	ROJ.	NQ		SHEST NO.	T	TUTAL
y. 2+3 - No. 1 + 4€	49	11.7.90 * ao 5-5		3		OLO.			3 (2)		7	<u>-</u>	
		149 B.D.: Norman	·			.010.	13	0124	5 (2)		1		
Pciste Si Paised Ha	ndra	nierar. M										, v	. 4 A I
SUM	MA	RY	OF	QU	ANT	ITI	ΞS			1 de la	NACON S		
	UNIT	SUPERST	ABUT.	PIER	PIER	PIER Nº4	PIER Nº 5	PIER	PIER Nº7	PIER	PIER	ABUT.	TOTA
			····	<u> </u>									1.02F
TION	CU,YE						<u></u>						4
STR.)	CU,YD	t t					5						5
ION (STR.)	CU,YO		9:	· · ·			83	70	53	26	38	88	317
V (STR.)	CU,YI			20	23	9	20	15	23	44	24		178
ON (STR.)	CUYD			395	374	350	320	312	300	333	380	49	2813
CLASS I	CU.YD.		156	300	271	260	350	277	785	173	319	186	2677
	HR,		16	30	27	26	. 35	28	29	27	32	19	169
MBER	M.H. В.M.		0.12				•				15.000	0.12	0.74
E	CU.YD	797	33	172	154	133	133	136	133	133	148	33	2005
	L8.	158,700	1600	10240	6470	5630	5630	5970	5630	5630	7700	2800	216,800
	LB.	1,0.9 3,470	645	845	845	845	845	845	845	845	845	645	1,102,52
)	Lin.Ft		365									311	\$76
	CU.YD									-		443	443
-	LB.	18											18
E FLOOR)	EACH	87											82
JCN. BXS.	Lin.H.	926	4									4	934
PLETE	EACH	2	1	1								. 1	4
	EACH	2	1	[1	4
RTS	EACH	8											8
	SQ.FT.	220											220
	EA.		2	[2	- A -
LT9.	EA.		4							1		4	8


of timber.

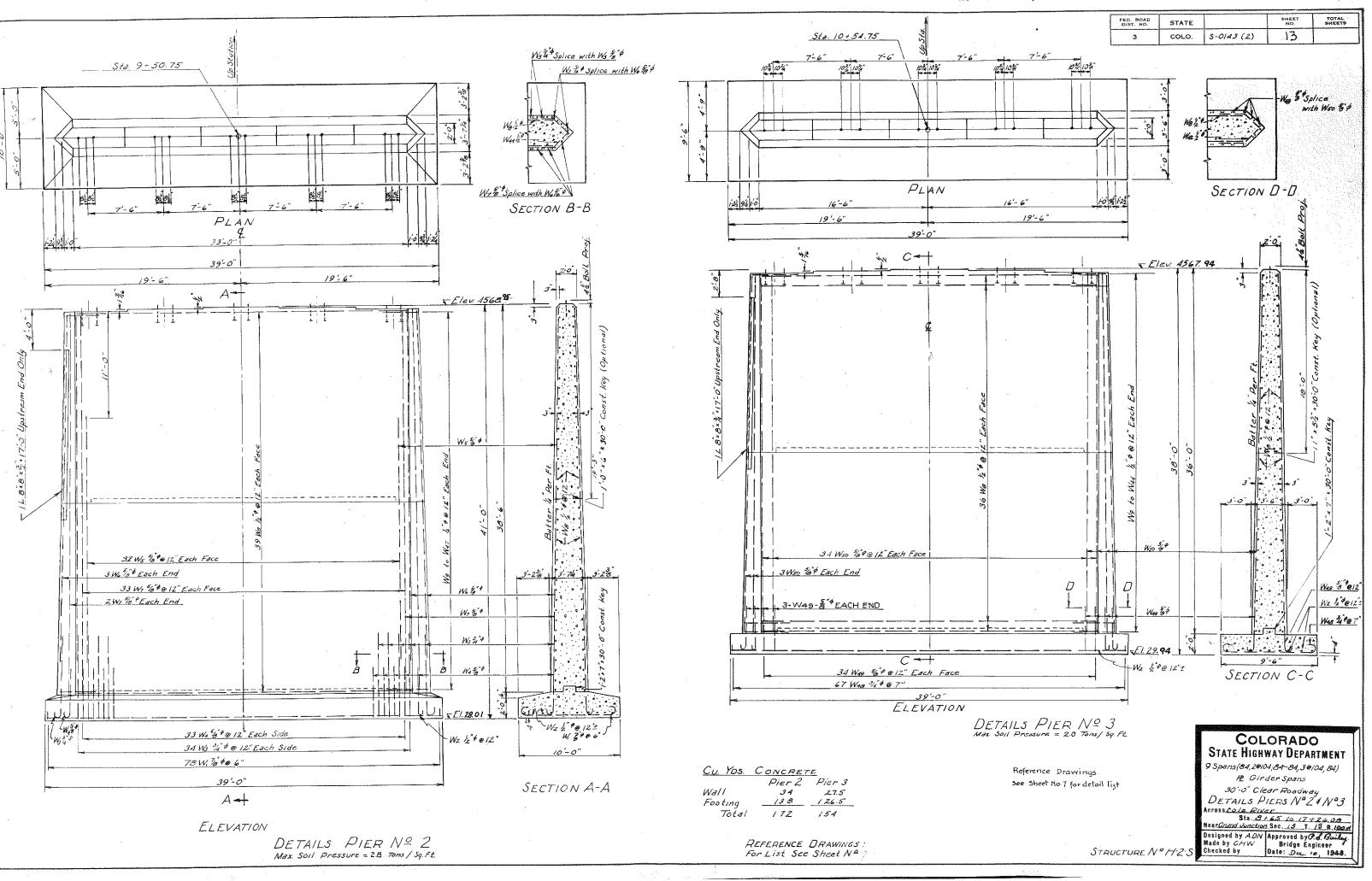
			1
	F	REF	ERENCE DRAWINGS
	SHEET Nº SHEET Nº	8 9	DETAILS OF SUPERSTRUCTURE
4	SHEET Nº	õ	DETAILS OF SUPERSTR EXP'N DEVICES
	SHEET NA	51	DETAILS OF PLATE GIRDERS
	SHEET Nº	12	DETAILS OF ABUTS Nº 1 & Nº 10
UND LINE			& BAR LISTS.
	SHEET Nº	13	
	SHEET Nº	14	DETAILS OF PIERS Nº 4, 5, 6, 7 8, 4.9
			LOADING DATA.
RAM			LIVE LOAD A. A. S. H. O. H. 20-44 DEAD LOAD ASSUMES 15 LBS, PER SO. FT. ADDITION ALWEARING SURFACE WHICH INCLUDES THE 1'S INCH
	 Z 		CONCRETE MONOLITHIC WEARING SURFACE SHOWN.
			DESIGNING DATA.
			fr = 1000 lbs, per sq. in.
			Structural Steelfs • D000 (hs. per sq in.
			Reinforcing Steel fs + 20,000 lbs. per sq.in.
			n = 10
	٠.		
NOTES			COLORADO
THE STANDARD SPECIFI	CATIONS OF THE		STATE HIGHWAY DEPARTMENT
ED IN THE FINISHED WORK	SUNT BS CON		9-SPANS (84,20104,84,84, 30104
COVE LUMBER S35 UNLE	SS FACED WITH		\$84) & GIRDER SPANS
CURR SHALL BE POURED :			30'0" CLEAR ROADWAY
UT TO THE ROCK AND N DIATE GRADE.	OT FORMED,		GENERAL LAYOUT AND
MED AND TAGGED WITH TH SHALL NOT BE SPLICED.	TE STATION NUM		SUMMARY OF QUANTITIES
OWN ARE ACCORDING TO	THE BEST AVAIL		Across COLOBADO RIVER
REDESIGN IS NECESSARY	·.		Sta 8+65.00 to 17+26.08 NearGRAND JUNCTIONS 86, 15 T / S. R 100 W.
RIVETS TO BE POWER			a second s
PT UNDERSIDE OF	FLOOR BLABS	LIN	Designed by ADN Approved by G. S. Bailur, Made by EFW Bridge Engineer
NGERS.			Checked by Date: Dec. /07, 1948
GIVEN ONE SHOP GO	CAT OF ZINC	;	


STRUCTURE NO. H-2-5





CTDESCTUDE NA H-2-5

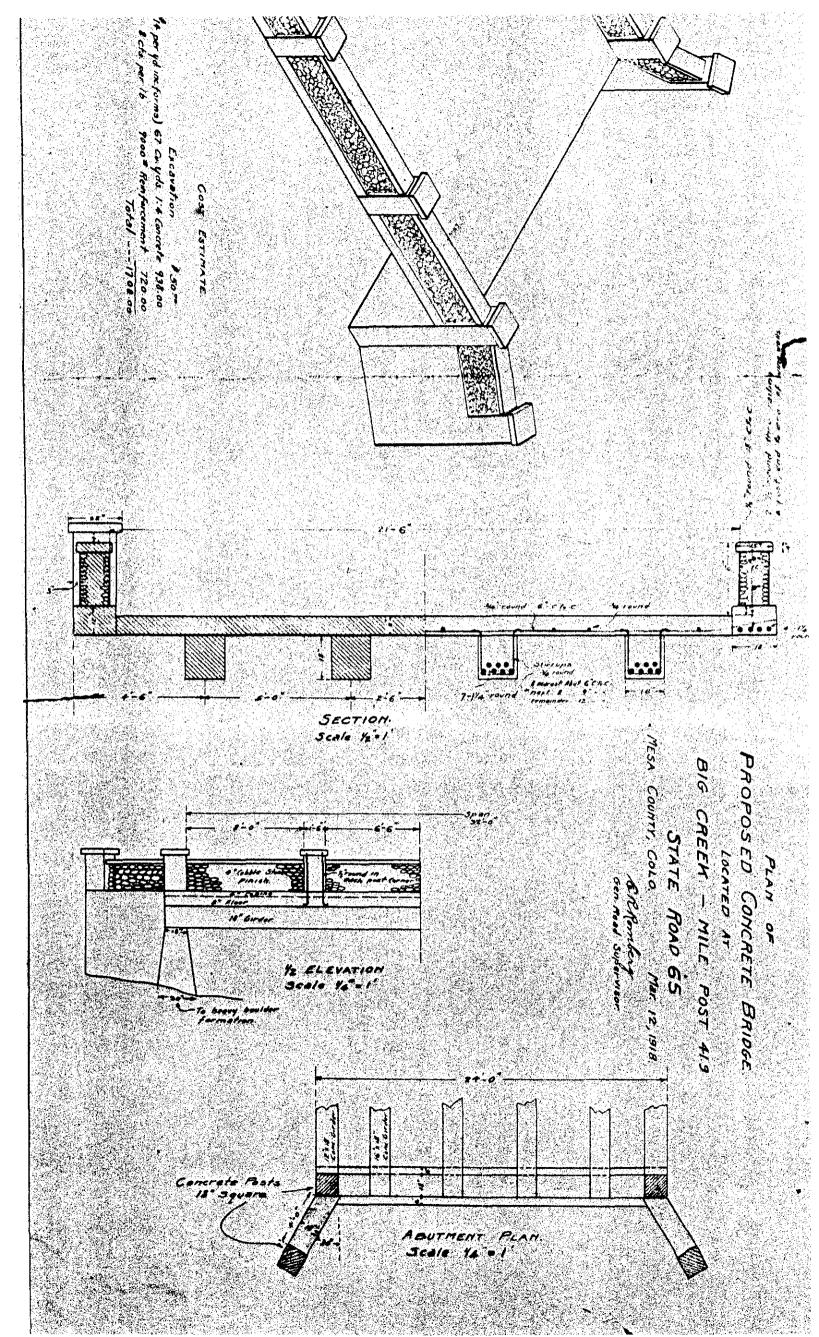

-40	7 10/	B 54	1 Piling		FED. DIST	ROAD NO	s	STATE	F	ROJ. I	٧º	= H N	EET.		TOTAL SHEETS
-49	EES.	Raise	d Seaf			3	-	:01.0.	4	-0143	(2)	12	2		
-49/	L.W.F.	Move	d Light				L			017.		1.		<u> </u>	
1	5td. o	ut 8'	· -											~	BDE B. F
	BA	R LIST	T~ SUPE	RSTR	JCTL	JRE 80	ε	BA	RLIS	TS~-	~ ABUTN	TENT	s Nº	1 AN	D Nº 10
MARX	SIZE	No.	LENGTH	TYPE		TOTAL		MARI	s Sizi	NQ Dec	LENGTH	Type	DIME	HISION	
	ł	REOD			11	LENG			5/8		43'-8"		1.	m	LENGTE 218
Ē١	5/8*	568	34'-11"	I		19833		AI	78		39'-0"	Str.	ł	<u> </u>	312
E٤	5/8°¢		37'-5"	π	1	4284		Az	V8		and the second se		3'-1"	2'-0	390
Es	5/84	1145	34'- 3"	Π	32-7	38217	_	<u>A3</u>	5/8		10'-10"	Ξ.		+	
E4	1/2**	52	4-62	IV.	1	231	_	<u>A</u> 4			<u>"7'-2"</u>	<u> </u>	+-3	<u> </u>	- 36-
E5	1/2*	12	6'-6"	Str.		78		A 5	42		25'-10	X	10'7	2-0	207
Di	42.4	675	29'-5"	Str.	<u> </u>	1985		As	- 1 ₂		5'-0'	Str			20
D٢	1/2*	225	29'-1"	Str.	 	6544	_	AT			6-8 "		Din	Chim.+	27
D3	1/2 ^{**}	1125	36'-0"	Str.		4050	<u> </u>	As	1.4		10'-9"		4"	0 in t 3'5	43
Sı	1/2.4	60	29-5	Str.		176		A9	42	12	7'-6"	Str			90
52		60	29'-6"	Str.		177	0	A10			5'-0" "9"				
Ss	1/2*	150	36-0	Str.		540	ю	to	1/2	4ea	+0	Str			62
S 4	784	12	6'-0"	Δц		7	2	Ais			2-9	L			
S5	1/2"4	12	('-4 ''	Str		I	6	A14	1/2	4	9 `-0`'	Str. F	cid R	end	36
								A15	-		2'-6"				
BAI			FOR SU					to	1/2	4ea		Str.			120
	ĩ6,I	67 Lin	. Ft 5 0	9.668 /	Lin.	Ft=508	BÓ	Aie			9'-6"				
	101,9	65 "	<u>~~</u> 8_€	01.0437		"=106-3 ∖≈ 15'	50	Ato		30	16'-4"	ДŢ	7-10	0-8	490
			÷	1-16 OV6 To	arun	=15880	ŏ	AU	420	6	19'-6"	M	9-5	0-8	117
								A22	1 1 14	29	2'-0"	Str.			58
BAF	R SUM	MARY	ABUT.N	-ABU	τ.Νº	IO SAME	ASI	A23	1.04	6	40'-6"	Str.			243
	43 L 312	in Ft	1 0 2.0	STVLin.	.Ft.=	115		A24	1.04	7	37'-0"	Sie			259
	608	* 6	1"*@2.6 76*@?(%(@1)			634		Aus	6.14	6	6'-8"	Str.			40
	183	41 H	₩2 ₽ @		<u>ب</u> ۲۰۲۵ =	1191		AL	-	-	3'-8"	Str			15
				I	1.10	2600		H	<u> </u>	1					
								Ab	ove L	ists fo	r One At	out me	nt		
			E	BAR LI	STS	For	PIEI	RS 2,	3, 4, 5	,6,7,8	AND 9			G	4W FL
IARK	SIZE	LENGTH	TYPE			TENSIO				1	NUME	ER RE	D'D Den	. D	S Dice
	7,8"*	11'-t"	m		8-9	m n	125	5 F	TB	TERS	ER4 PIEK	TEKO	I ICK	1 1 1 1 1	NO IE IERO
Wi	10	11	 m 		0.3	↓↓	13.2	- ⁻	10	_				+ -	

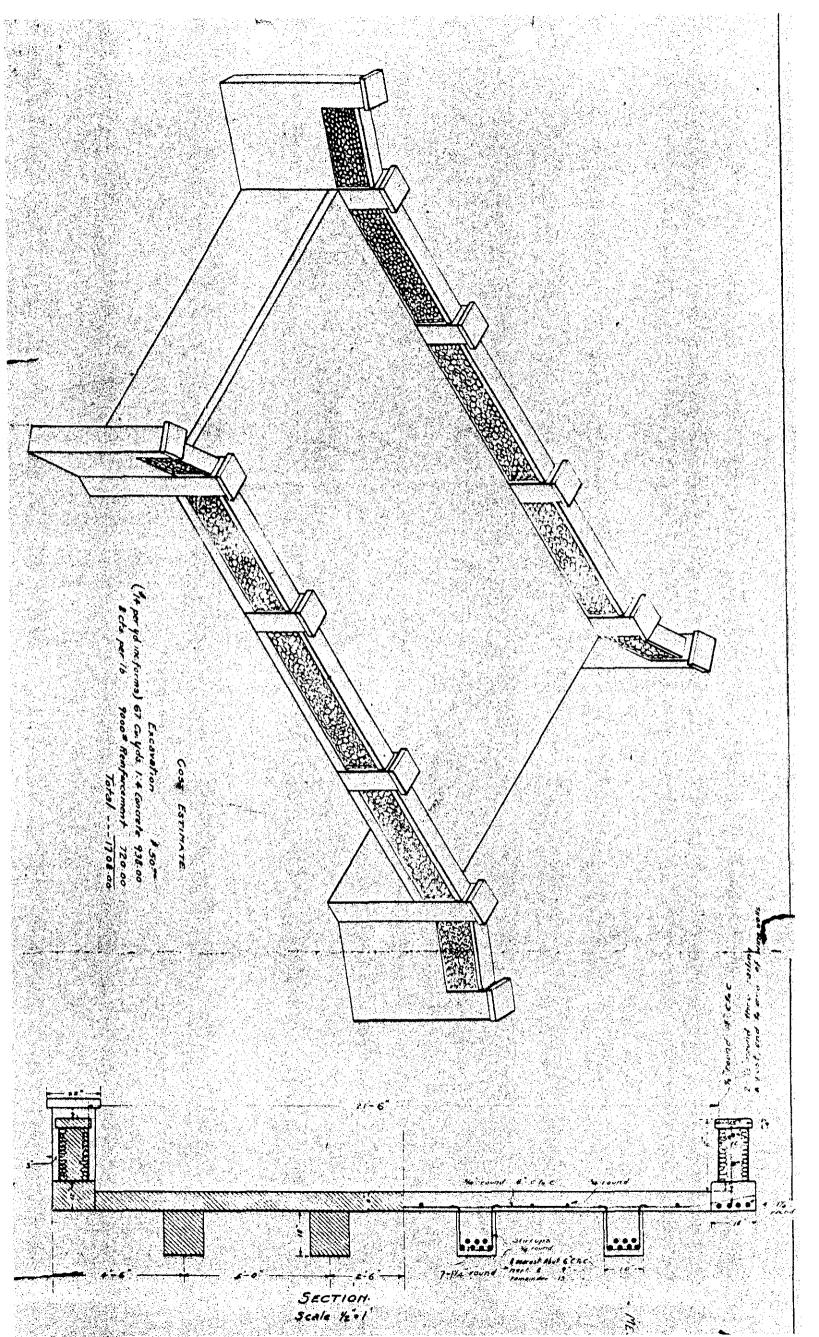
	r	<u> </u>	F	[L Di	MEN	SION	15		T T			NUMB	ER REG	D.		
MARK		LENGTH	iYPE		٢Ť	Im	In	١٢	t	PIER2	PIER3	PIER4	PIERS	PIERO	PIERT	PIER8	PIER9
Wi	7,8"\$	11'-1"	m		8-9	1		32	3	78							
W2	12.0	38-6	Str.		<u> </u>	T	Τ	Γ		10	9	9	9	9	9	9	9
W3	3/4	8-11	VII.		7-11	1		3"	22	70							
W4	5∕8 ♥	5'-6"	νn		4`-8			22		70							~
Ws	5/8 4	24-2	Str.		-		1			64	1						64
W6	5/0 •	34-10	Str.							6							
Wτ	5/8°	38-2	Str							70	I						
WB	¥2"•	33-0	Str			İ		1		78	72	64	64	70	64	64	70
We	¥₂ ♦	7'~!"			2-6	1-0 <u>5</u>	1'-6'	1	<u> </u>	2	2	2	2		2	2	2
Wio	420	7~13	V/I		2'-6	1-0	1-67			2	2	2	2		2	2	2
Wu		7-25				1-1	ί'-τ `										
To	¥2. P	by to	vm		2-6	÷۲	by 2 to			2 FA	2FA	2 FA	2 EA	2 EA.	2 E.A.	2 EA,	2 FA.
W40		9-0 ¹ 2					7-91			•		- ·					
W41	42*	9'-r'	ΥΠ	•	2'-6	2.0	240			2	2						2
W42	٧ ₂ *	9-13	YIII.		2-6	2-0	2-10-			2	2						2
W43	1,2°¢	9'-2¥	ŶШ		26	2 14	2'-11"			2	2						Ζ
W44	42.●	9-31	YIE		2-6	2-1	Z-112			2	2			'			
W45	1/20	9'-4"	Σ				3'-đ			2							
W46	1/2"*	9'-41	VIII		2'-6	7 25	3 ¹ -02			2							
W43	٧2°	9-55	VΠ			72]				2							1
W48	340	10'-4"	Ш		84	<u> </u>		3"	2 2		67						
W49	5,8*	5'-2"	M		4'-4'			22	2"		74	74	74	74	74	74	
W50	5.50	35-8	Str.								74						
WSI	5 _{/8} *		ш	·	τŚ			22	٤*			78	78	78	18	78	
W52	580	31-8	Stc									74	74	74	74	74	
W53	42 4	9-2"	Y		28	٦								34			
W 54	3,4 \$		π		8 ľ			3"	21								85
W55	5∕8₽	7-4			6.6			22	2"								τO
W 58	1/2 *	4 5		······································	35			2"	2"								70
WST	5/8"*	32-6	-														8
W 58	1/2*	34-8	****						\neg								70
W59	1/2 9	8 8			2'-6*	\$H0¥	2'-T'							4			
da							لنبتها				i						

COLORADO STATE HIGHWAY DEPARTMENT 9- SPANS (84, 2@104, 84-84, 3@104, 84)
PLATE GIRDER SPANS
30°-0"CLEAR ROADWAY DETAILS OF ABUTMENTS Nº1 € Nº10
Across COLORADO RIVER Sta. 8+65 TO 17+26.08
Near GRANDJUNCTION Sec. 15 T. 1 3 R. 1001
Designed by A.O.N. Approved by A.Bailey . Made by C.H.W. Bridge Engineer
Checked by Date: Dec. 10, 1948.

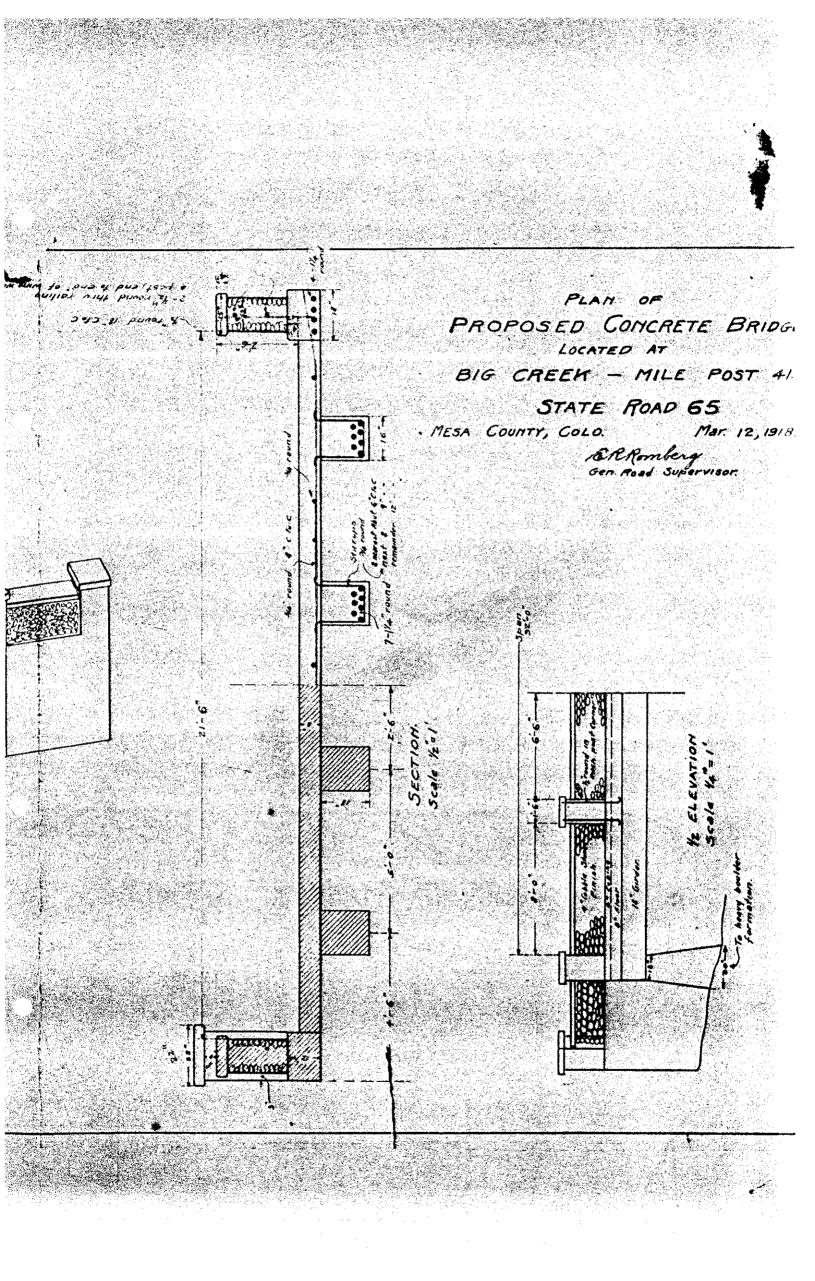
Reference Drawings for List see Sheet No.7

STRUCTURE NO. H-2-5





REVISIONS Raised Elev & E.F.S 1-LO-49


	MENT OF TRANSPORT		Structure#	H-04-G
LOAD FACTOR	R RATING SUM	MARY	State highway #	330
Rated using Asphalt thickness:	216 mm 8.5	iri.)		BID# 1144
🖾 Colorado legal		Structure type	CIC	
Interstate legal	loads.		Parallel structure #	NONE
Structural member	DECK SLAB **	INTERIOR GIRDER GIRDERS C THRU E	INTERIOR GIRDER GIRDER B	EXTERIOR GI GIRDER A
	Metrictons (Tons)			
Inventory	28 (31)	27 (30)	25 (27)	126 (1
Operating	47 (52)	45 (50)	42 (46)	210 (2
Type 3 truck	()	()	()	(
Type 3S2 truck	()	()	()	(
Type 3-2 truck	()	()	()	(
Permit truck		107 (118)	103 (113)	386 (4
Type 3 Truc Interstate 21.8 metric Colorado 24.5 metric Colorado 24.5 metric	c tors (24 tons) c tors (27 tons)	Type 3S2 Truck transate 34.5 metric tons (38 tons Colorado 38.6 metric tons (42.5 ton 000 000	Type 3-2 Interstate 35.4 metric tons 38.6 metric tons O Metric tons	(39 tons)
Comments Modified Tandem:	Interio	55 (61) r Girder B; Rated for	62 (69) * 8.5" HBP	201 (221)
**Assumed Slab re Control Member: Load Capacity: Girder: Interior Gir	46 To der Rated for 8.5" H		n de la companya de Esta de la companya d	
Control Member: Load Capacity:	그는 것 같아요. 이 가 있다. 이 것 같아요. 이 있다. 이 것 같아요. 이 있다.	BP		
Control Member: Load Capacity: Girder: Interior Gir	der Rated for 8.5" H	BP		
Control Member: Load Capacity: Girder: Interior Gir Color Code:	der Rated for 8.5" H	βP		Date

Stores,

South 35'0' OUT TO OUT 31'-10" CLEAR 1º Concrete Handrail 8. No" Concrete Floor 74 15" I Beam New Pier under entire Bridge 4'6" centers chold chon Section ί. 12. I Beams encased the concrete. 18" Footer 30" Kinde & 18" thick \$ 31 Ű. Pier embeded in gravel approximatly 34 No scour in this stream. 7 4 & of New Brad 32'0" + ɗ ORIG. 5 equally Spaced " * 2" Reinforcing Steel Details of Bridge Widening across used to tie old & New Floer 24 Big Creek on 5P-8-330-503, them ME12" X 34' I BEAM 30 Molina - Plateau City 2012" × 34' I Beam Sec Vew Section Booms (130 12" x 34" I Beam REFATEdok 13 TABIZ" X 24! I BEAM CARDEN has H-8 I. Beanis -35' Long W. Ca36 DI2+ XZO I Beam sto H-4-17 No when Near CLEAR 8-5%" Reinforcing Steel running lengthwise. 246 375 6-5% Reinforcing Steel running crosswise Chick General Upon which is a mot of 1/4" x 4" Stee! Mesh. SCOUR = 3 12 10" Concrete Floor to match old section. Chull Jub strene. e. H-4-G

GENERAL NOTES

ALL WORK SHALL BE CONE ACCORDING TO THE STANDARD SPECIFICATIONS OF THE DIVISION OF HIGHWAYS, STATE OF COLORADO, APPLICABLE TO THE PROJECT.

ALL CONCRETE SURFACES MARKED WITH THE SYMBOL ${\cal F}$ as shown on drawing no. B /4 SHALL RECEIVE A CLASS 2 SURFACE FINISH.

ALL CONCRETE CHAMFERS SHALL BE 3/4 INCH UNLESS OTHERWISE NOTED. EXPANSION JOINT MATERIAL SHALL MEET A.A.S.H.O. SPECIFICATION M 213-65 AND SHALL BE INCLUDED IN THE PAYMENT FOR ITEM NO. 601.

SOUNDINGS AND DEPTH OF FOOTINGS ARE IN ACCORDANCE WITH THE BEST AVAILABLE DATA. WHEN DIFFERENT CONDITIONS ARE ENCOUNTERED, THE BRIDGE ENSINEER WILL INSPECT AND DETERMINE IF REDESIGN IS NECESSARY.

WHEN EXCAVATING FOR FOOTINGS, THE FINAL SIX INCHES IN DEPTH SHALL BE DONE BY HAND LABOR METHODS.

FOOTINGS IN ROCK SHALL NOT BE FORMED BUT SHALL BE PLACED AGAINST UNDISTURBED ROCK.

FOR DETAILS OF STRUCTURE EXCAVATION AND STRUCTURE BACKFILL, SEE STANDARD M-206-AA.

ALL STRUCTURAL STEEL NOT OTHERWISE NOTED SHALL BE A.A.S.H.O. SPECIFICATION M-183.

ALL STRUCTURAL STEEL NOT OTHERWISE NOTED SHALL BE PAINTED IN ACCORDANCE WITH SECTION 509 FOR (ALUMINUM) PAINT.

ALL BOLTS SHALL BE 3/4" DIAMETER, HIGH STRENGTH, UNLESS OTHERWISE NOTED. NO WELDING OF ANY KIND SHALL BE PERMITTED ON THE FLANGES OF STEEL GIRDERS UNLESS SPECIFICALLY CALLED FOR IN THE PLANS.

USE GRADE 60 FOR ALL REINFORCING STEEL, EXCEPT TIES AND STIRRUPS. ALL TIES AND STIRRUPS ARE GRADE 40.

THE FOLLOWING TABLE SHOWS THE MINIMUM LAP FOR COMMON BAR SIZES.

	BAR SIZ	E NUMBER	4	5	6	7	8	Э.	10	n.
	SPLICE	GRADE 40	1'.0"	1'-3"	1'-6"	1'-9"	2'2"	2'-8"	3'~5"	4'-3"
	LENGTH	GRADE 60	1'-6"	1'-11"	2'-3"	2'-8"	3'-0"	3'-5"	4'-2"	5'-0"

E. F. N. F. F. F. = EACH FACE = NEAR FACE = FAR FACE

DESIGNED CHECKED

CROSS REFERENCE DRAWING NUMBER

SECTION OR DETAIL IDENTIFICATION

Concrete Deck Shall Recieve a Transverse Fiber Broom Finish Location of all construction joints shall be approved by the engineer.

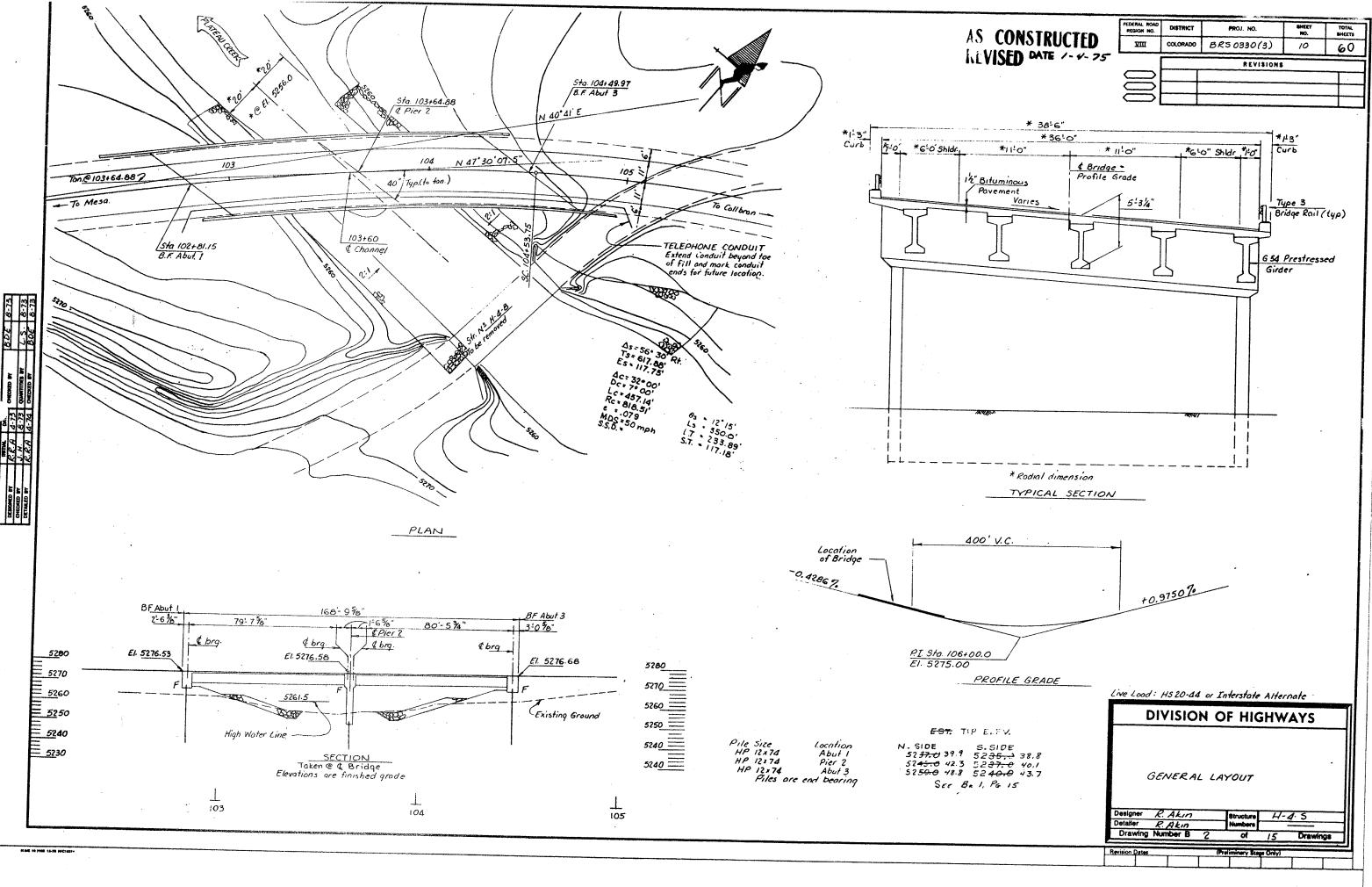
SUN	MARY OF QUANTITIES REFERENCE	Br 1,	PG. 17				
ITEI	DESCHIPTION	UNIT	Super- structure		Pier 2	Abut. 3	Total
202	Removal of Bridge	Ea.			ļ	ļ	
	Haul	Ton MI	57	1	1	1	5
206	Structure Excavation	Cu. d.		254	65	_64	
206	Structure Backfill (Class 2)	Cu. id.		52	38	54	144
403	Hot Bituminous Pavement (Grading E)	Ton	53				53
		1011	<u> </u>				
411	Asphalt Cement (AC-5)	Ton	3.08-3-				3,08-3
		L		161'			
502	Steel Piling (HP12x74)	Lin. Ft			92	+20	
502	STEEL PILING (HPIRX74) CUTOFF	Lin. Fr		12.		12	41
502	Reinforcing Tips	Ea.		-5	8.	5.	18
506	Heavy Riprap	Cu. Yd		284.5 540		578.5 738	126
	Structural Steel	16.			453		45.
1207	Structural Steel	<u>10.</u>			455		45.
509	Structural Steel (Galvanized)	ТЬ.	12,785				12,78
601	Concrete Class A (Bridge)	Cu Yá		22.5	106.5	26.0	155
	57						
601	Concrete Class D (Bridge)	Cu.Yd	168.0	34.0	40.3	41.7	-28
602	Reinforcing steel	<i>1b</i> .	44 386	6,461	6,964	6,262	69,0
	Guard Rail Type 3A	Lin Ft	414				41
> 613	Place Conduit	Lin, Fé	428				428
618	Prestressed Conc. Unit (I Section) 80' to 85'0	Ear	10	<u>```</u>			
n	Steel Masonry Plates	Ea.		5	10	5	20
							,
			{				
			1	,			

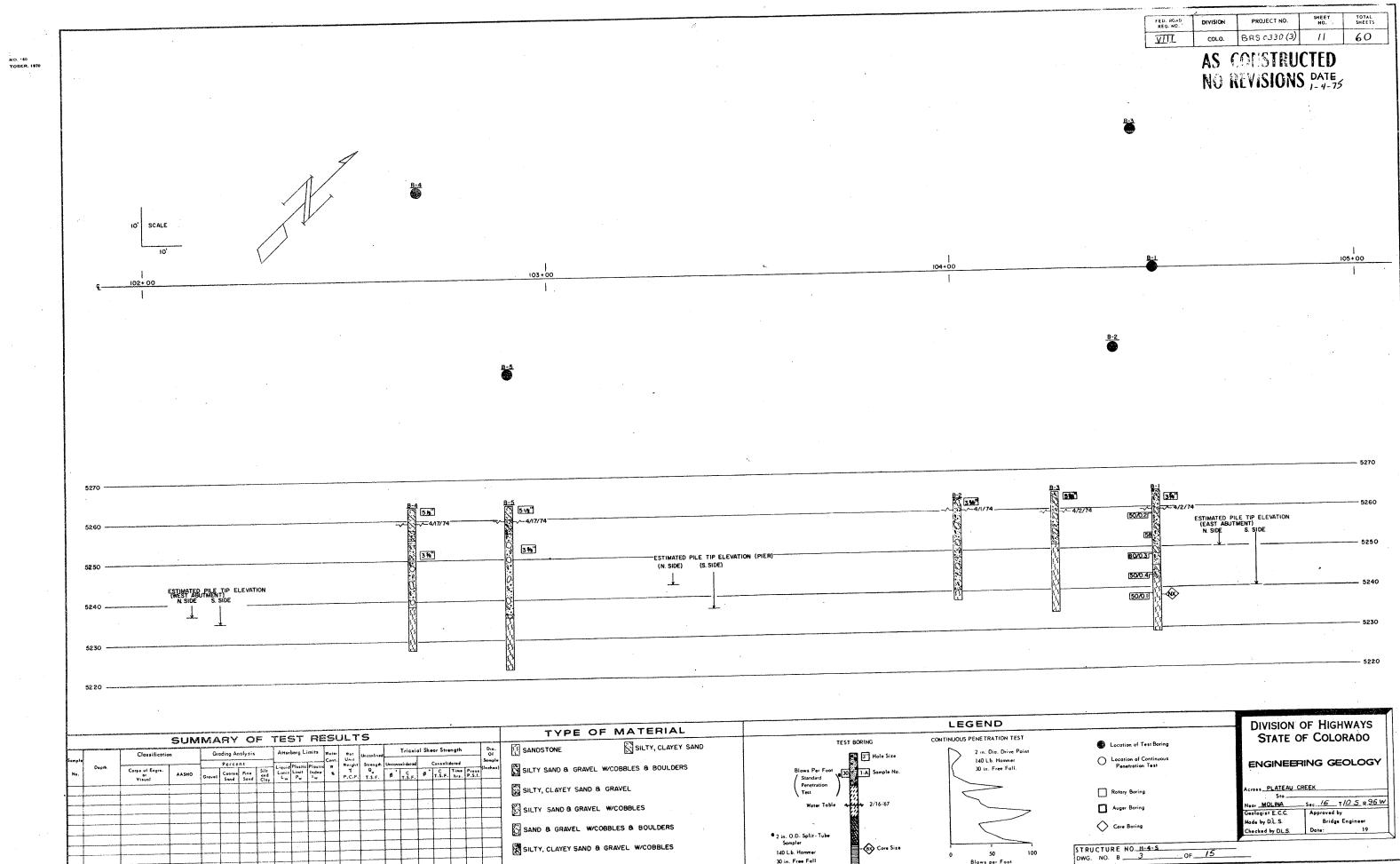
1) To be Included in the Bid Price for Item 618 Prestressed Concrete Units

LOADING DATA LIVELOAD: A.A.S.H.J. HS 20-44 OR INTERSTATE ALTERNATE DEADLOAD: ASSUMES 25 LBS. PER SQ. FT. FOR BITUMINOUS PAVEMENT DESIGN DATA A.A.S.H.O. UNIT STRESSES, EXCEPT AS NOTED. Fs = 24,000 LBS. PER SQ. IN. EXCEPT Fs = 20,000 LBS. PER SQ. IN. IN TRANSVERSE DECK SLAB, STIRRUPS AND TIES. REINFORCING STEEL STRUCTURAL STEEL: A36 Fs = 29,090 LBS. PER SQ. IN. A572, GRADE 59 Fs = 27,000 LBS. PER SQ. IN. CONCRETE: Fc = 1,200 LBS. PER SQ. IN.

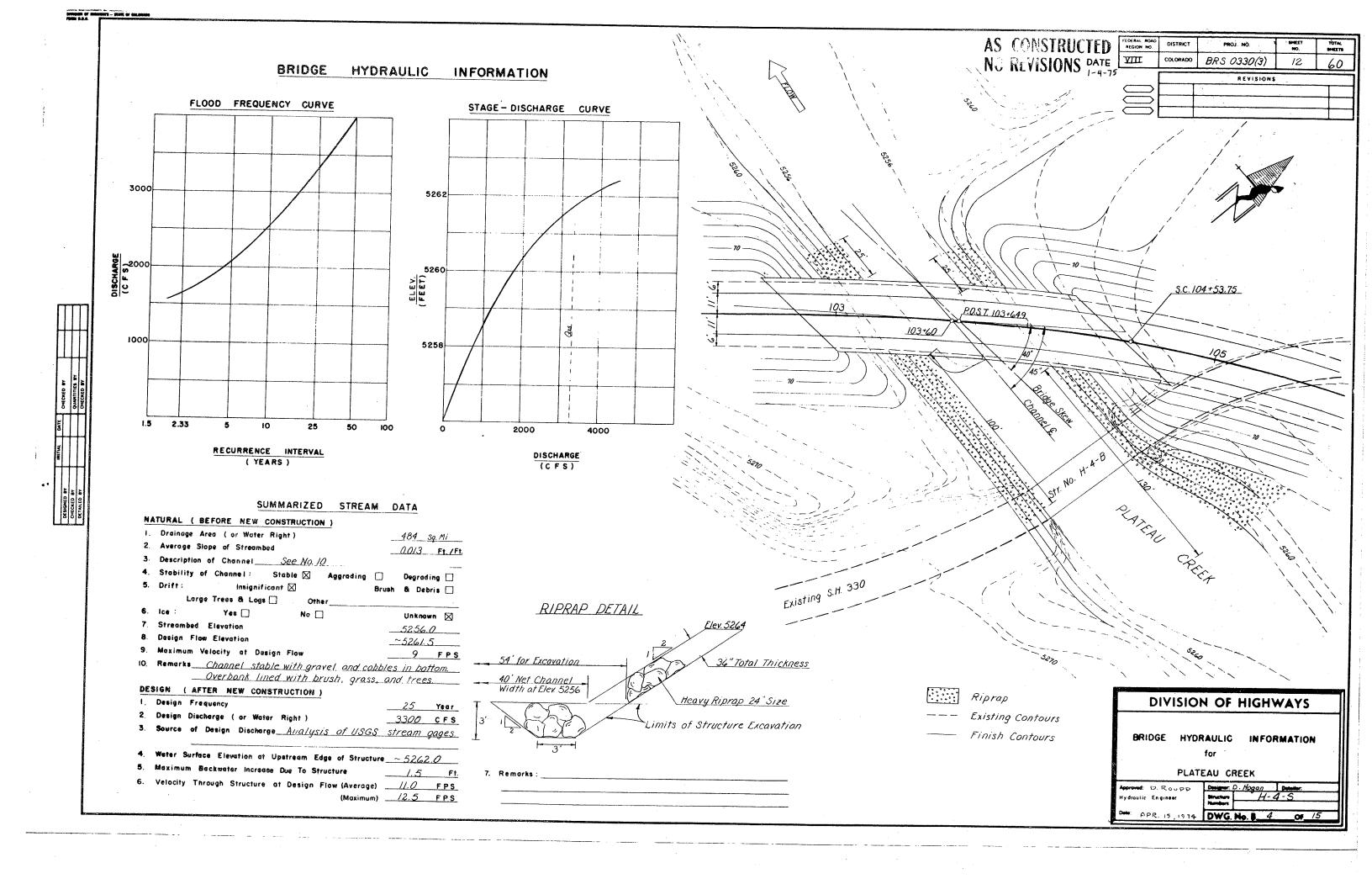
AS	C
RE \	/ I S

CONCERNIOREN	FEDERAL ROAD REGION NO	DISTRICT	PROJ. NO	SHEET NO	TOTAL
CONSTRUCTED	УШ	COLORADO	BR 5 0330(3)	9	60
ISED DATE 1-4-75	ſ		REVISIONS		
	(R-I)	6/13/74	ITEM 613		K.D.H.
	(RZ)	6-27-74	Replaced Elastomeric	Pads with	
	\square		steel Rs I/A/W C.O.		RRA


OWG	NO.	81	GENERAL INFORMATION-SUMMARY OF QUARTITIE
NHC.	NO.	82	GENERAL LAYOUT
DWC.	110.	83	ENGTHEERING GEOLOGY
owG.	NO.	B 4	BRIDGE HYDRAULICS INFORMATION
DWG .	NO.	C 5	ELEVATIONS
DWG,	40.	86	CONSTRUCTION AND PILING LAYOUT
n₩S.	NO.	в7	DETAILS ABUTMENT 1
DWG .	40.	88	DETAILS ABUTHENT 3
DKS.	30.	B 9	WINGWALL DETAILS
n⊌G.	10.	610	PIER 2 DETAILS
DWG .	₩0.	611	SUPERSTRUCTURE DETAILS
DWG.	NO.	812	COLORADO G 54 GIRDER
OWG .	40.	613	BRIDGE RAIL TYPE 3
0₩G .	<i>и</i> 0.	814	MISCELLANEOUS DETAILS
₽₩G.	:10	815	STRUCTURE NUMBER STANDARD


BRIDGE DESCRIPTION 2 - Cont. Spans (80'-0", 80'-0") Concrete Slab and Prestressed Girder Bridge

Over Plateau Creek 36' Roadway Curb to Curb 40° 00' Skew 1'-3" Curbs, Standard Bridge Rail Type 3


	DIVISION OF HIGHWAYS
4687 4687 4687 4687	GENERAL INFORMATION SUMMARY OF QUANTITIES Station 102+81,15 to 104+49.97
	Station Near Moling, Sec. 16 T, 105 R, 96 W
roved	Designer R. AKIN Structure H-4-5 Detailer L. Sims Numbers
dgeEngineer Date	Drawing Number B of 15 Drawings

0(4-1-73)

		SUN		ov	ne	TEC	7 05	ssi	IL T	S						TYPE OF MATCHIAL		CONTINUOUS PENETRATION TEST
		Classification		ding Ana			g Limits			T	T,	riaxial	Shear Stre	ngth	Dre.	SILTY, CLAYEY SAND		2 m. Dia. Drive Poin
mpl e	Depth			-	-	1		1. 1		Gricentine	Uncansair	berab	Consoli	dated	Sample		1 Hole Size	140 Lb. Hammer 30 in. Free Fall.
No.		Corps of Engrs. or Visual	Gravel	Course Sand	Fine Silt Sond Cla	Limit L	mit Indox ^P w ^I w	×	٦ P.C.F.	Q T.S.F.	øŗ	C	# T.S.F.	Time Pre hrs. P.S	.1.	SILTY SAND & GRAVEL W/COBBLES & BOULDERS	Blows Per Foot Standard	So in the ron.
																SILTY, CLAYEY SAND & GRAVEL	Penetration 777 Test 777	
										ļ						SILTY SAND & GRAVEL W/COBBLES	Water Table 2/16/67	
																SAND & GRAVEL W/COBBLES & BOULDERS		
						+-+											● 2 in. O.D. Split-Tube Sampler	
										+	┠──╂			┼╌┼╸		SILTY, CLAYEY SAND & GRAVEL W/COBBLES	140 Lb. Hammer	0 50
						+-+		+									30 in. Free Fall	Blows per Faot
								-										1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1

		ABUY 1 END OF WING WEST OUTSIDE 102 + EAST OUTSIDE 102 +	TION ELEVATION 37.57 5276.77 84.50 5275.82	STATE HIGHWAY NO. 330 OVER PLATEAU CREEK Structure No H-4-5 Designed RPA 6-1-73 Detailed and input RRA 7-5-73 All Elevations are 0.124 Feet below finished grade Elevations	4		ARUT 3 BACKFACE WEST OUT WEST JNSIDE TAN AT POS CL OF RHIDGE EAST INSIDE EAST OUTSIDE		5 5277.78 5276.79 7 5276.55
		ABUT I UNCKFACT WEST OUT 102 - WEST INSIDE 102 - TAN AT POS 102 - CL OF BRIDGE 102 - EAST INSIDE 103 - EAST OUTSIDE 103 - CL BRG ABUT I CL SO GNG ABUT I WEST OUTSIDE	62.60 5276.65 77.95 5276.50 81.15 5276.41 •36 5275.76 1.72 5275.73	I BT = 101 + 3.7500 / ALPHA = PI = 106 + 0.0000 / DC = POS = 103 + 64.8000 THETA = CLOFF = 0.0000 FPU = 5372 +	NPUT DATA FOR BRIDGE H-4-5 -43 10 52.00 NCON = -1000.0000 GBK = - 7 0 0.00 VCON = 1000.0000 GAH = 12 15 0.00 LS = 356 MAX = .07+0 750 VC = 400 MIN = .0200 = 17.0000 STLPL = 0.0000	•4286 •9750	CL NO BRG PIER 2 CL RRG ABUT 3 WEST OUTSIDE STA BACK 1 101H 2 101H 3 101H 4 101H 5 101H 6 101H 6 101H 7 101H 8 101H 9 101H	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	5277.42
<u>स</u> स	۲ ۲	574 64CK 102 - 1 107M 102 - 2 107H 102 - 3 107H 102 - 3 107H 102 - 4 107H 102 - 5 107H 103 - 6 107H 103 - 7 107H 103 - 9 107H 103 - 9 107H 103 - 103 - 6 107H 103 - 103 -	71.37 5276.94 78.96 5276.98 36.59 5277.03 1.94 5277.07 1.94 5277.12 9.68 5277.12 9.68 5277.21 5.28 5277.21 3.16 5277.35 6.37 5276.84			٤	STA AHEAD GIRDEH 1 STA BACK 1 10TH 2 10TH 3 10TH 4 10TH 5 10TH 6 10TH 6 10TH 8 10TH 9 10TH 9 10TH 9 10TH 9 10TH 9 10TH 9 10TH	$104 \cdot 20.63$ $163 \cdot 47.14$ $103 \cdot 55.02$ $103 \cdot 62.90$ $103 \cdot 70.78$ $103 \cdot 76.64$ $103 \cdot 94.62$ $104 \cdot 23.01$ $104 \cdot 18.05$ $104 \cdot 25.91$	5277.84 5277.85 5277.28 5277.30 5277.35 5277.34 5277.41 5277.46 5277.48 5277.55
OHECKED BY <u>名いぞ</u> 名 QUANTITIES BY <u>とう</u> 名 OHECKED BY <u>おい</u> ぎる		2 10TH 102 + 8 3 10TH 102 + 9 4 10TH 102 + 9 4 10TH 102 + 9 5 10TH 103 + 1 7 10TH 103 + 1 7 10TH 103 + 2 9 10TH 103 + 3 STA AMEAD 103 + 4 61R0CM 2 STA BACK 102 + 74	4.29 5276.87 2.20 5276.91 0.12 5276.94 8.03 5276.97 5.45 5277.00 1.86 5277.00 1.77 5277.11 1.67 5277.15 5.48 5277.10 1.90 5276.45			· · ·	GIRDER 2 STA BACK 1 10TH 2 10TH 3 10TH 4 10TH 5 10TH 5 10TH 7 10TH 8 10TH 9 10TH STA AMEAD	103 + 56,93 103 + 64,86 103 + 72,80 103 + 88,69 103 + 88,69 103 + 96,63 104 + 4,57 104 + 12,51 104 + 20,45 104 + 28,39 104 + 36,31	5276.87 5276.87 5276.89 5276.90 5276.91 5276.93 5276.95 5276.95 5277.03
NITTIAL CATE KP2A 4.73 U.4.4.73 U.4.5 9.73		1 107H 102 + 63 2 107H 102 + 96 3 107H 102 + 96 4 107H 103 + 64 5 107H 103 + 14 6 107H 103 + 24 7 107H 103 + 36 9 107H 103 + 36 9 107H 103 + 36 5TA AMEAD 103 + 54 GIRDEH 3 STA 102 + 63 1 107H 102 + 91	.42 5276.69 .78 5276.71 .74 5276.72 .69 5276.74 .65 5276.76 .60 5276.76 .55 5276.81 .50 5276.84				GIRDEN J STA HACK 1 16TH 2 10TH 3 10TH 4 10TH 5 10TH 6 10TH 8 10TH 9 10TH 5TA AHEAD	$103 \cdot 66.86$ $103 \cdot 74.86$ $103 \cdot 82.86$ $103 \cdot 90.87$ $103 \cdot 98.88$ $104 \cdot 6.88$ $104 \cdot 14.89$ $104 \cdot 30.90$ $104 \cdot 30.90$ $104 \cdot 46.90$	5270.44 5270.43 5276.42 5276.41 5276.41 5276.41 5276.42 5276.44 5276.44 5276.46 5276.50 5276.54
DESIGNED BY		2 10TH 102 + 90, 3 10TH 103 + 7, 4 10TH 103 + 7, 5 10TH 103 + 23, 6 10TH 103 + 31, 7 10TH 103 + 31, 7 10TH 103 + 31, 9 10TH 103 + 37, 9 10TH 103 + 55, STA AHEAD 103 + 63, GIRDER + STA BACK 102 + 92, 1 10TH 103 + 31, 1 00TH 103 + 32, 1 00TH 100TH 103 + 32, 1 00TH 105	.62 5276.41 .62 5276.41 .63 5276.41 .63 5276.41 .64 5276.41 .64 5276.42 .64 5276.42 .64 5276.42 .64 5276.43 .64 5276.44 .5276.44				GIRDEP 4 STA BACK 1 10TH 2 10TH 3 10TH 4 10TH 5 10TH 6 10TH 6 10TH 8 10TH 9 10TH STA AHEAD	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5275.97 5275.94 5275.92 5275.88 5275.88 5275.88 5275.88 5275.89 5275.91 5275.93 5275.96
		2 10TH 103 + A 3 10TH 103 + 16 4 10TH 103 + 26 5 10TH 103 + 26 5 10TH 103 + 26 6 10TH 103 + 26 10TH 103 + 48 8 10TH 103 + 68 9 10TH 103 + 68 5TA AHEAD 103 + 72 GIRDER 5 5TA BACK 103 + 1-2 2 10TH 103 + 93 1 0TH 103 + 93	47 5275.09 52 5276.09 57 5276.07 53 5276.05 59 5276.04 74 5276.02 10 5276.02 11 5276.02 4 5275.84				5 101H 5 10TH 7 10TH 8 10TH 9 10TH STA AHEAD	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	\$275.45 5275.38 5275.38 5275.32 5275.32 5275.31 5275.30 5275.33 5275.33 5275.34 5275.34
		101m 103 + 17.4 3 107m 103 + 25.5 4 107m 103 + 25.5 5 107m 103 + 33.6 5 107m 103 + 41.7 6 107m 103 + 49.8 7 107m 103 + 65.0 9 107m 103 + 66.0 9 107m 103 + 66.0 9 107m 103 + 66.2 STA AMEAD 103 + 62.3 EAST OUTSIDE STA BACK 103 + 4.3 1 107m 103 + 4.3	3 5275,76 3 5275,72 4 5275,69 5 5275,66 5 5275,63 6 5275,63 9 5275,58 1 5275,56 3 5275,55 3 5275,72				2 101H 2 10TH 3 10TH 4 10TH 5 10TH 6 10TH 7 10TH 8 10TH	$103 \cdot 90.20$ $103 \cdot 98.26$ $104 \cdot 6.41$ $104 \cdot 14.60$ $104 \cdot 23.01$ $104 \cdot 31.46$ $104 \cdot 40.00$ $104 \cdot 40.77$ $104 \cdot 57.62$ $104 \cdot 75.75$	5275.30 5275.26 5275.22 5275.18 5275.14 5275.11 5275.08 5275.03 5275.03 5275.01 5275.01 5275.01 5276.99
		2 101H 103 + 20.3 3 101H 103 + 20.3 4 101H 103 + 20.3 5 101H 103 + 20.3 5 101H 103 + 3.6 6 101H 103 + 44.74 6 101H 103 + 61.38 6 101H 103 + 61.38 6 101H 103 + 69.61 9 101H 103 + 86.94	5275.64 5275.60 5275.56 5275.52 5275.48 5275.44 5275.44 5275.40 5275.34				ABUT 3 ENO OF WING WEST OUTSIDE 10 EAST OUTSIDE 10	AL . AL .	5277.97 5274.96

• · · • • <u>- -</u>

.

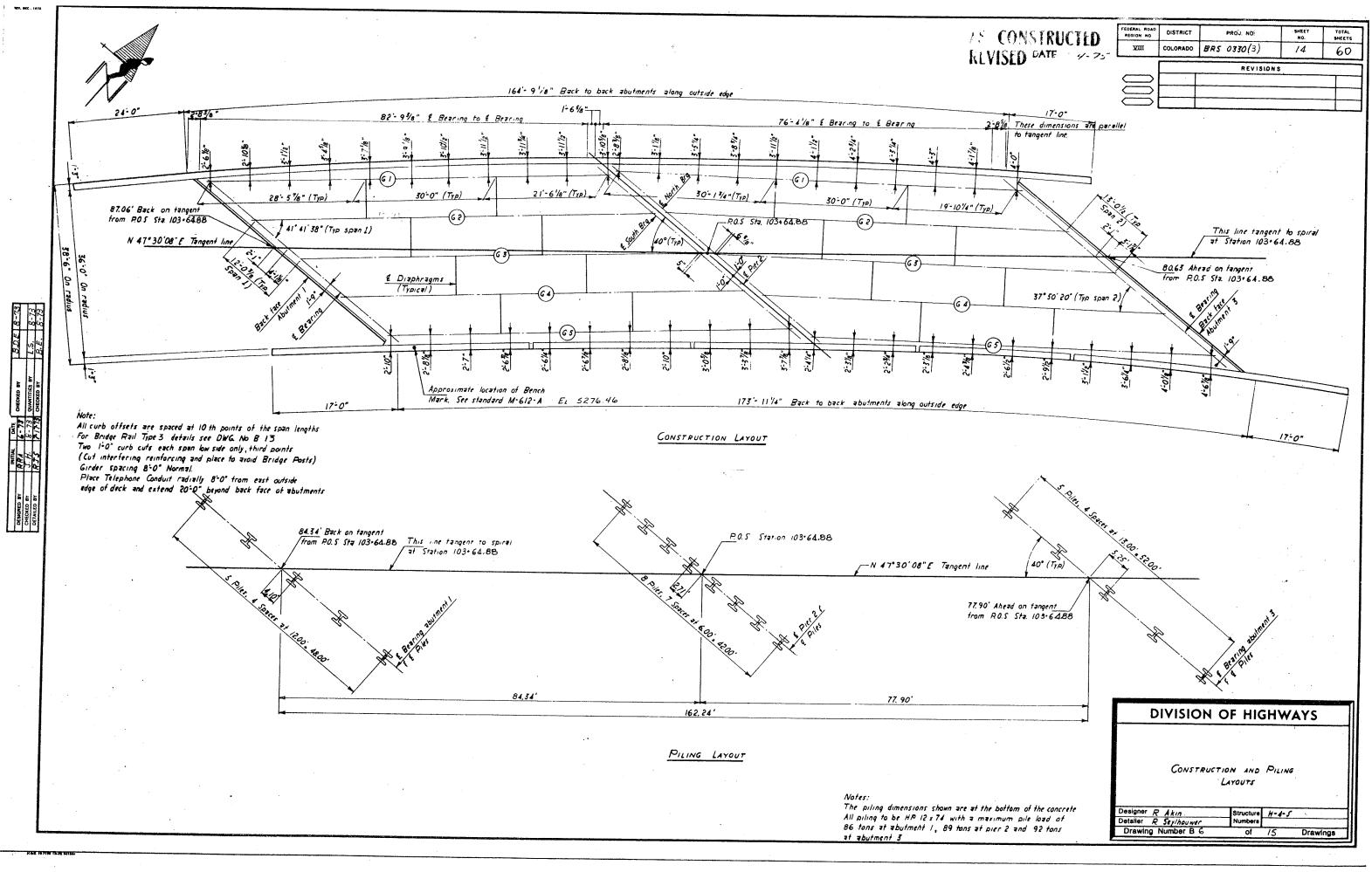
*....

.

۰.

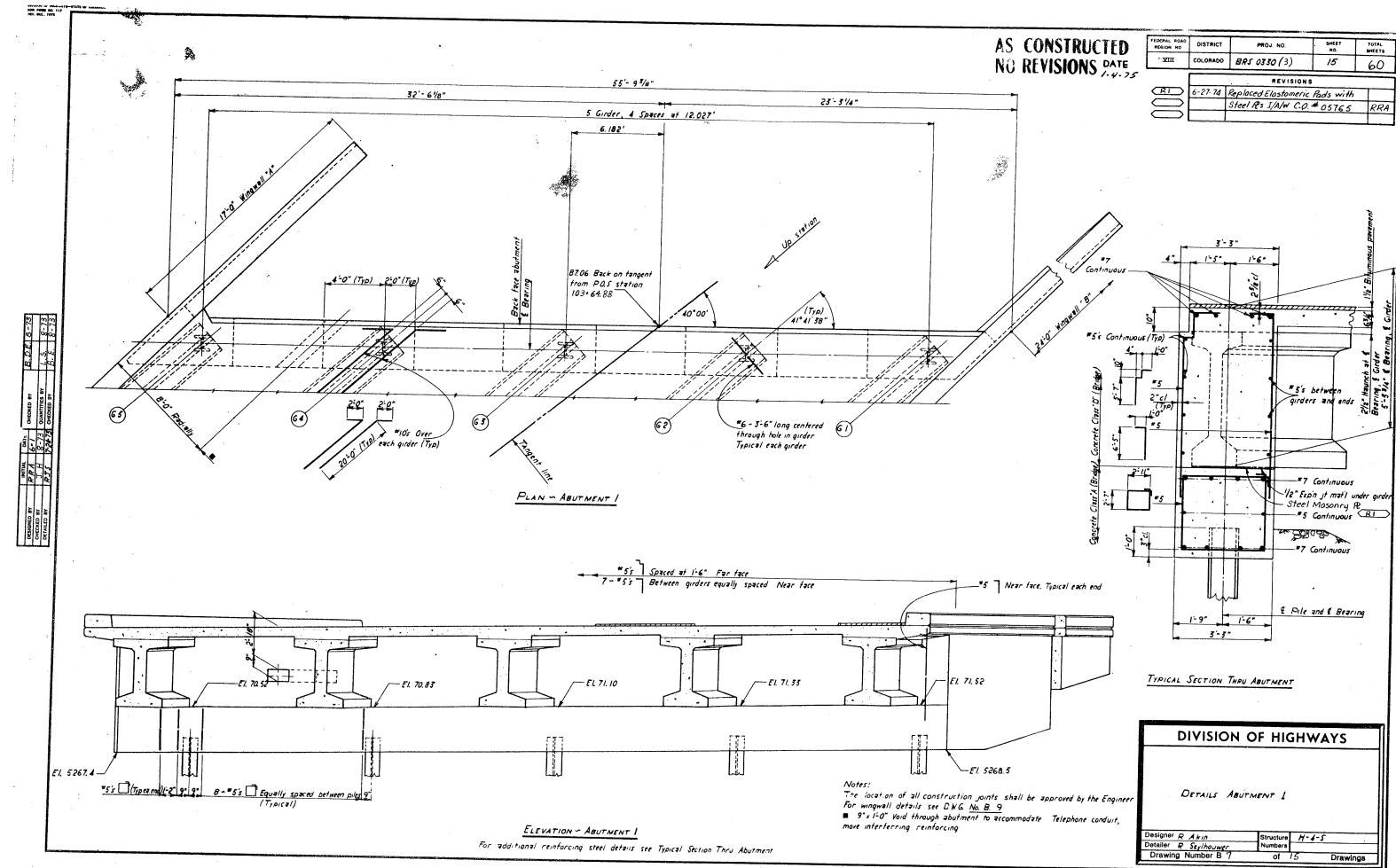
		Pro		The second s			
ATION	ELEVATION	FEDERAL ROAD REGION NO	DISTRICT	PROJ. NO.	SHEET NO.	TOTAL	
23.50	5277.85	VIII.	COLORADO	BRS 0330(3)	13	60	
25.15 5277.78 45.32 5276.79 49.97 5276.55 77.07 5275.09 79.05 5274.99	5277.78 5276.79		REVISIONS				
	5275.09						
		\square			<u> </u>		
				10 0010-			

AŞ	CONSTRUCTED
	REVISIONS DATE

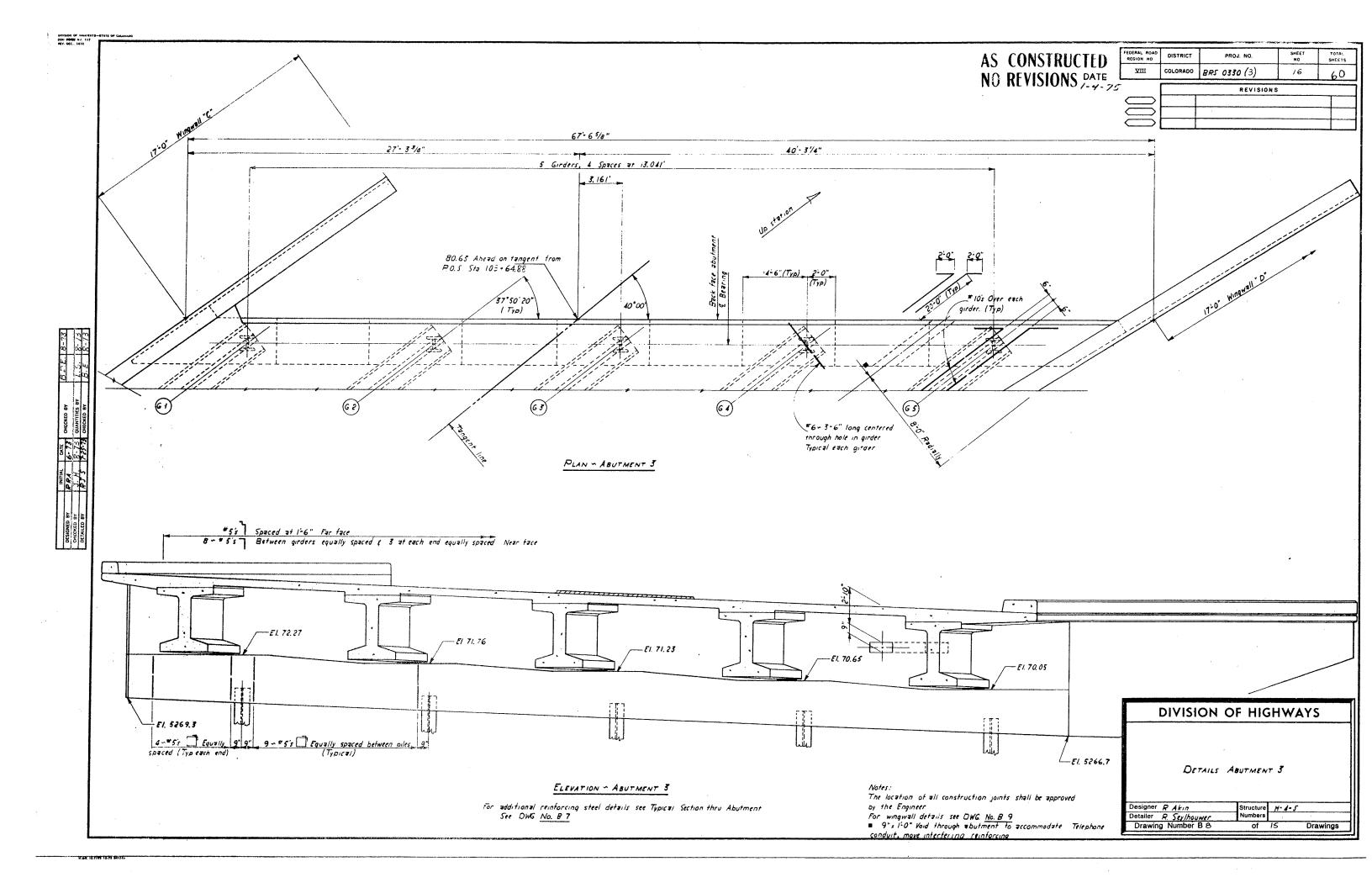

.

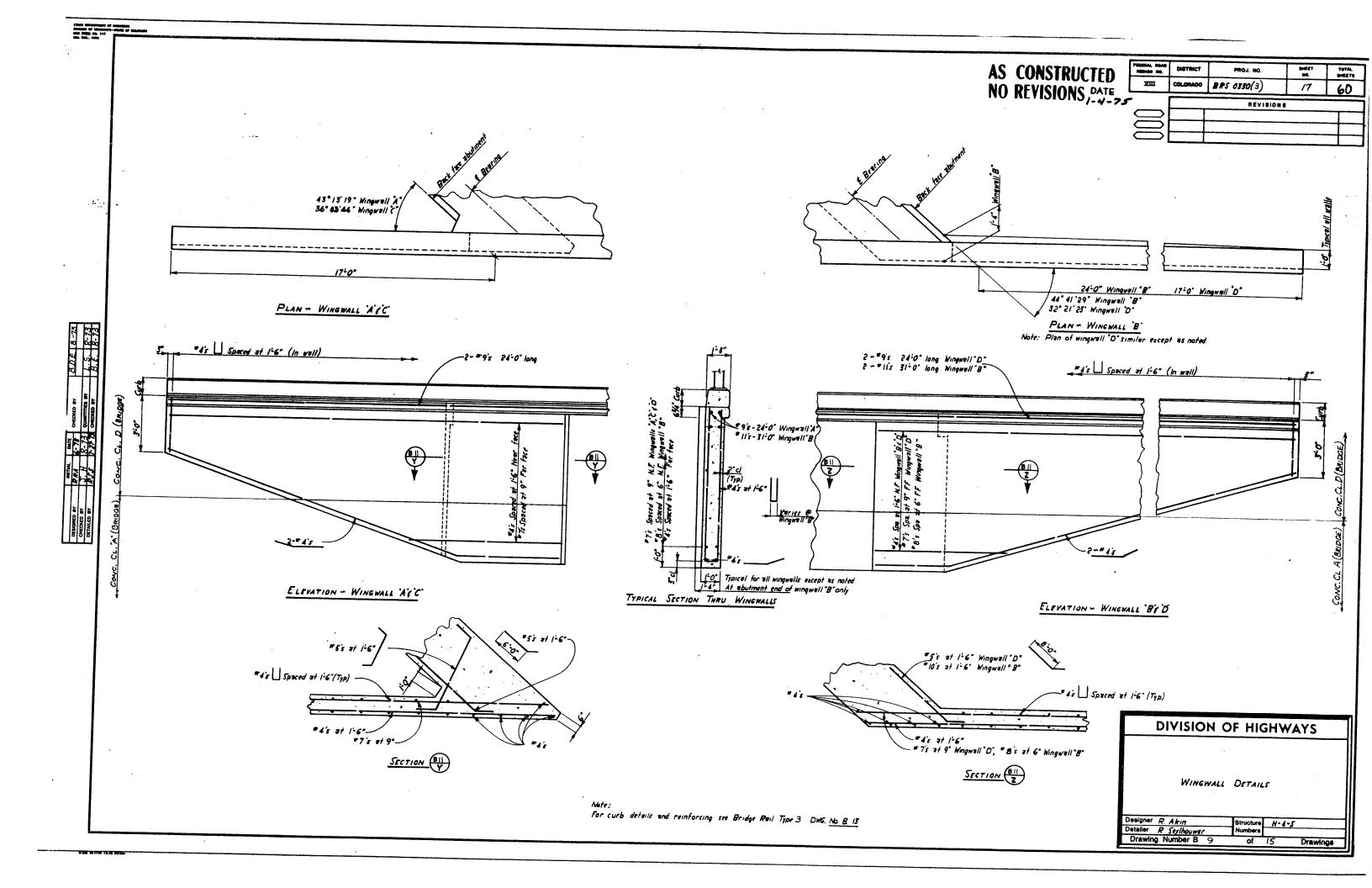
DIVIS	SION OF HIGHWAYS
	ELEVATIONS
Approved:	Designer: R Akin Detailer: L Sims
rippi oreg.	Structure H-J-S
Bridge Engineer Date:	Structure H-J-S Numbers

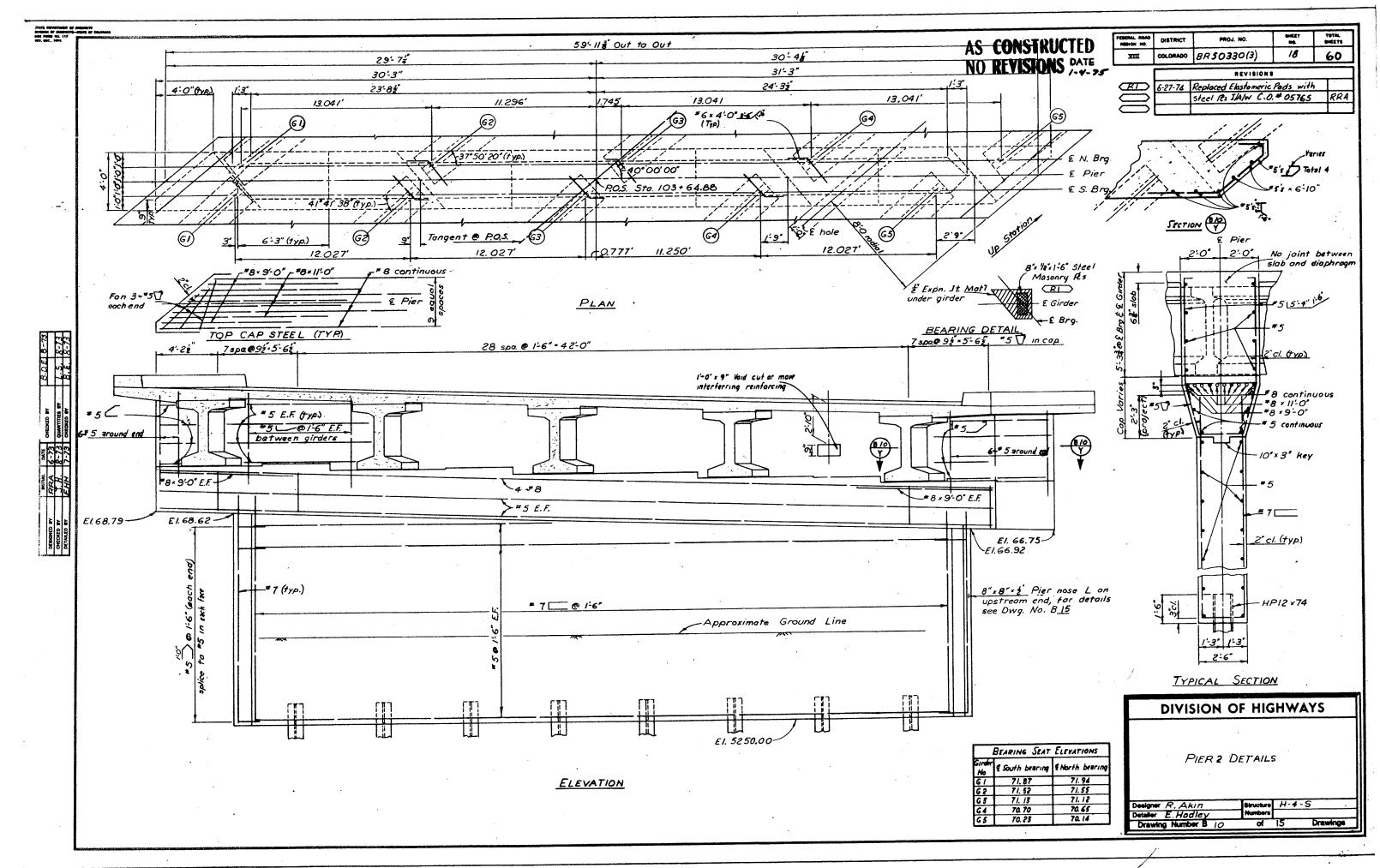
.

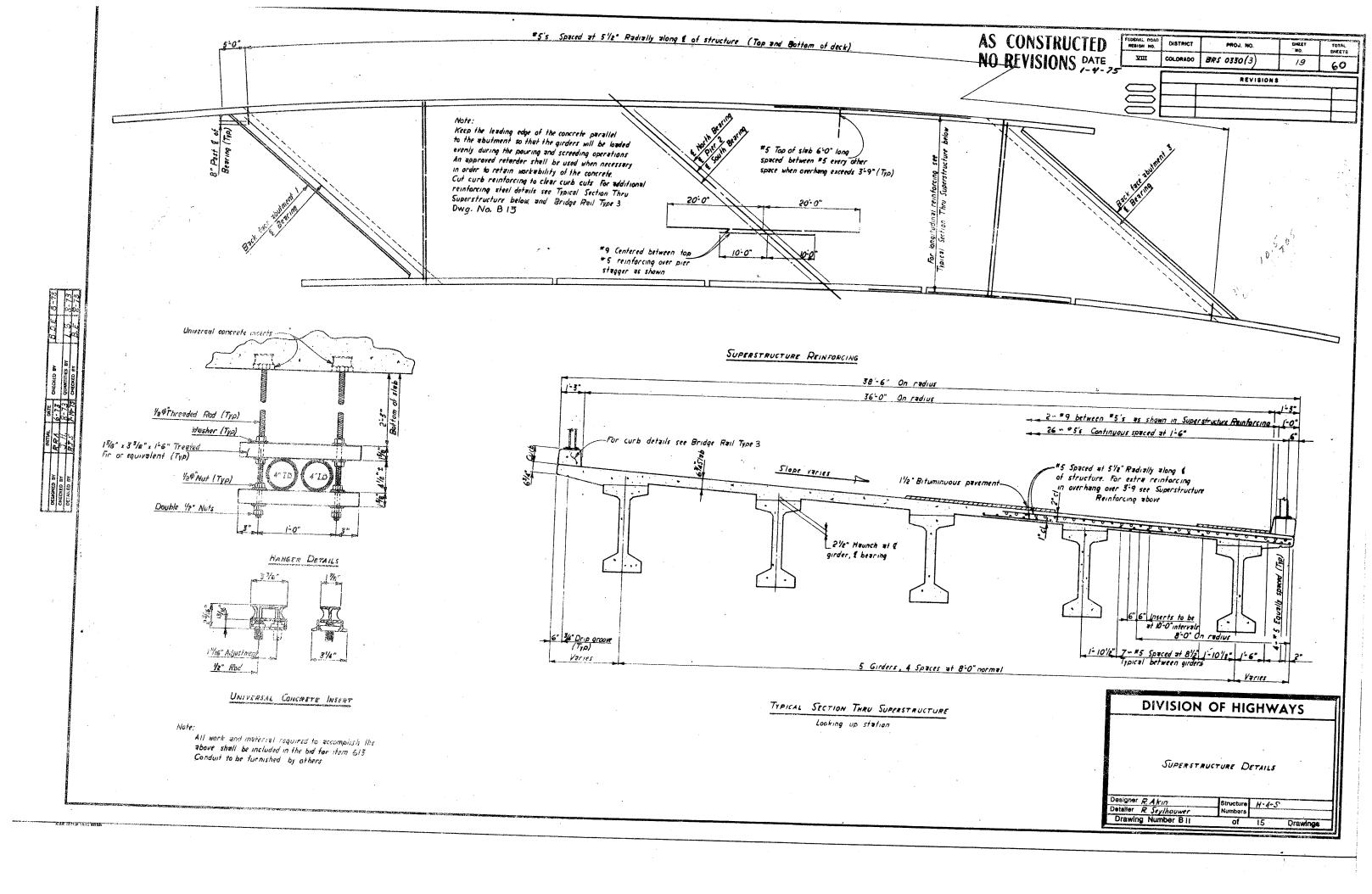

-

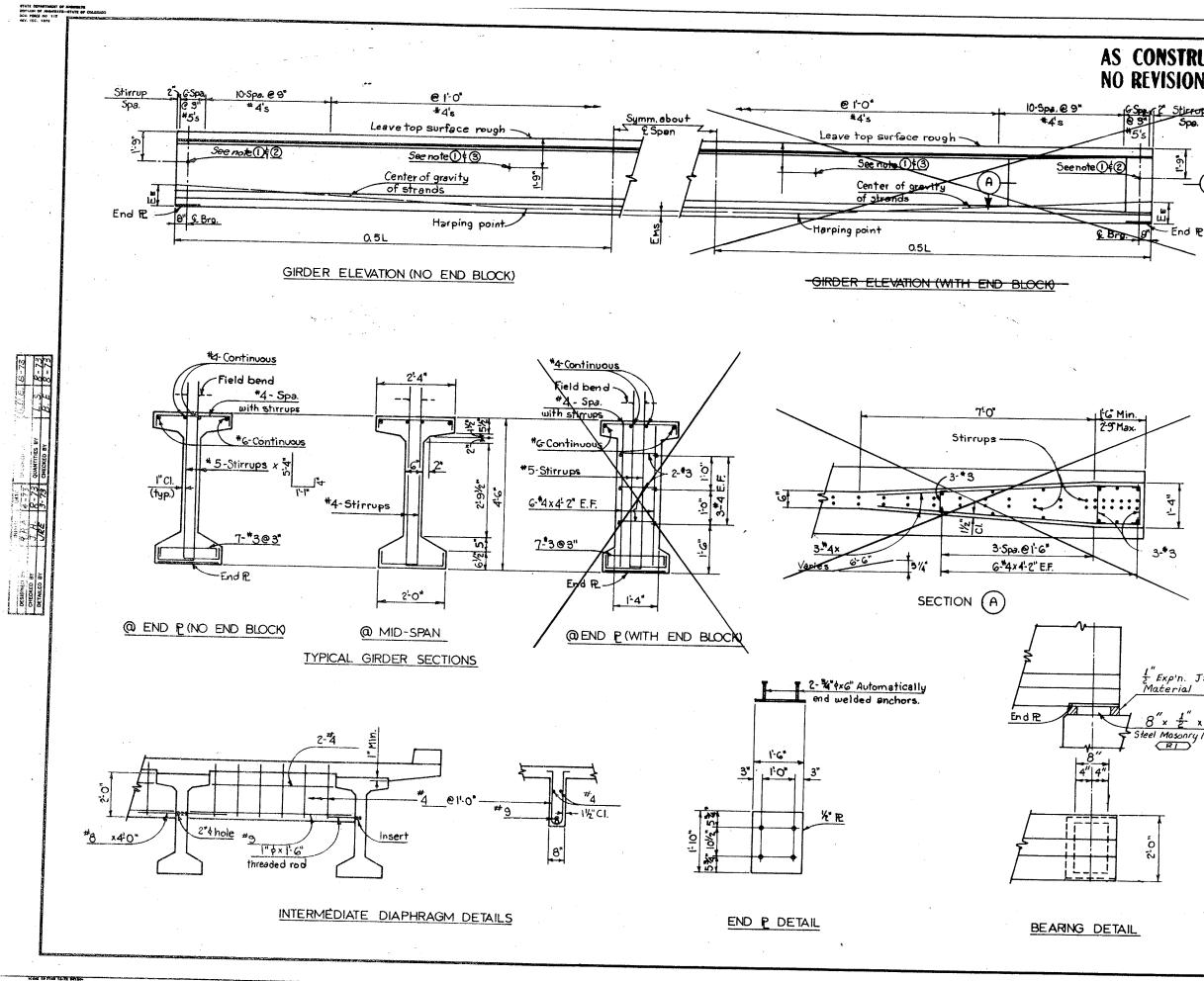
.




1


.




.

CONSTRUCTED	FEDERAL ROAD REGION NO.	DISTRICT	PROJ. NO.	SHEET NO.	TOTAL SHEETS
REVISIONS DATE	<u></u>	COLORADO	BRS 0330(3)	20 "	60
11-1010107.4.73			REVISIONS		
6 Sper 2 Sticrop	æ	6-27-74	Replaced Elastomeric Po	ds with	· · ·
e 3⁴ Spe. ¹⁵ /s		·	Steel Rs I/A/W C.O.+	05765	RRA
					-

A

GENERAL NOTES FABRICATION AND TOLERANCES OF THE PRESTMESSED GIRDERS AND BEARINGS SHALL CONFORM TO THE DIVISION OF HIGHWAYS, STATE OF COLORADD "STANDARD SPECIFICATIONS FOR ROAD AND BRIDGE CONSTRUCTION", "THE LATEST EDITION OF A.A.S.H.O. SPECIFICATIONS", AS MENDED, AND "STANDARD FOR PRESTRESSED CONCRETE POLES, SLABS, I-BEAMS AND BOX BEAMS FOR BRIDGES" AS PREPAMED BY THE JOIRT COMMITTEE OF THE A.A.S.H.O. COMMITTEE ON STRUCTURES AND THE P.C.I. ALL WORK "ECESSARY TO FABRICATE AND INSTALL THE INTEGRAL PARTS OF THE GIRDER (INCLUDING THE 1" \$ X 1'-6" THREADED ROBS AND STECL "MASONRY" PLS.) AS SHOWN ON THE PLANS SHALL BE INCLUDED IN THE BID PRICE FOR ITEM NO. 618, PRESTRESSED CONCRETE UNIT.

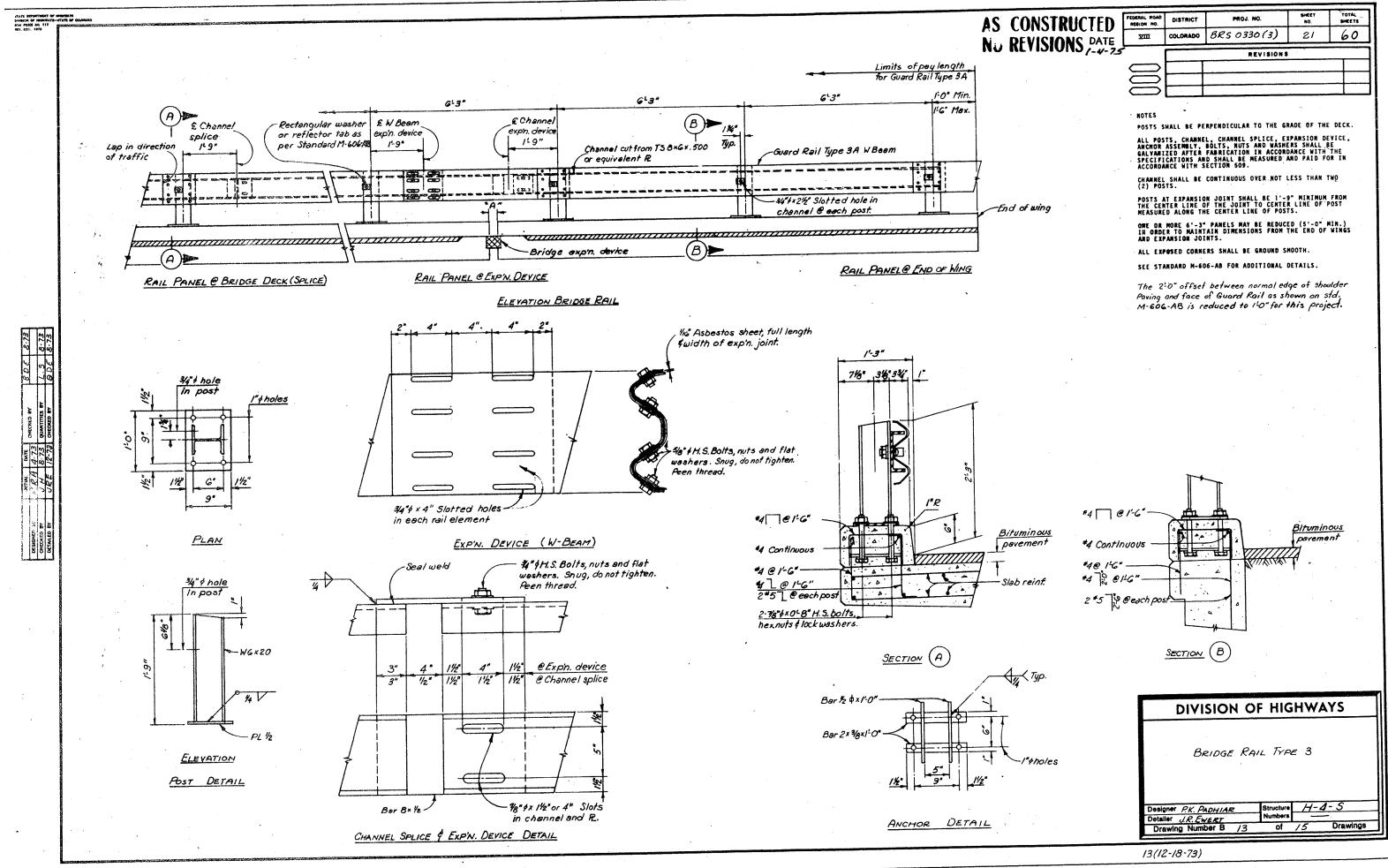
ALL ANCHOR BOLTS SHALL BE SNUGGED AND JANNED EXCEPT AT EXPANSION BEARINGS MHERE THEY SHALL BE SNUGGED AND BACKED OFF ONE FULL TURN BEFORE JAMMING. A MINIUM OF TWO MARPING POINTS SHALL BE USED PER GIRDER. CUT ALL STRANDS FLUSH WITH GIRDER ENDS. THE EXPOSED ENDS OF STRANDS AND A 1" STRIP OF ADJOINING CONCRETE SHALL BE CLEANED AND PAINTED NITH AN APPROVED WATERPROOFING COMPOUND. USE 1/2" B STRANDS F'S = 270 KSI (STRESS-RELIEVED). ALTERNATE STRANDS ARE LOW-RELAXATION STRANDS MEETING THE REQUIREMENTS OF ACTM-AAIS-68 GRADE 270. IF LOW-RELAXATION STRANDS ARE USED THE NET COMPRESSIVE STRESS IN THE CONCRETE AFTER ALL LOSSES SHALL BE AT LEAST AS LARGE AS THAT PROVIDED BY THE STRESS-RELIEVED STRANDS, ALSO, THE USING THE STRENGTH OF THE STRUCTURE WITH THE LOW-RELAXATION STRANDS SHALL MEET THE REQUIREMENTS OF THE APPLICABLE A.A.S.H.O. SPECIFICATIONS.

INTITIAL PRESTRESS FORCE:	THE JACKING FORCE PER GIRDER
	INCLUDING ALL LOSSES. $F1 = f's \times 0.74 \times (A^*)$
FINAL PRESTRESS FORCE: TH	E FORCE REMAINING PER CIRCER

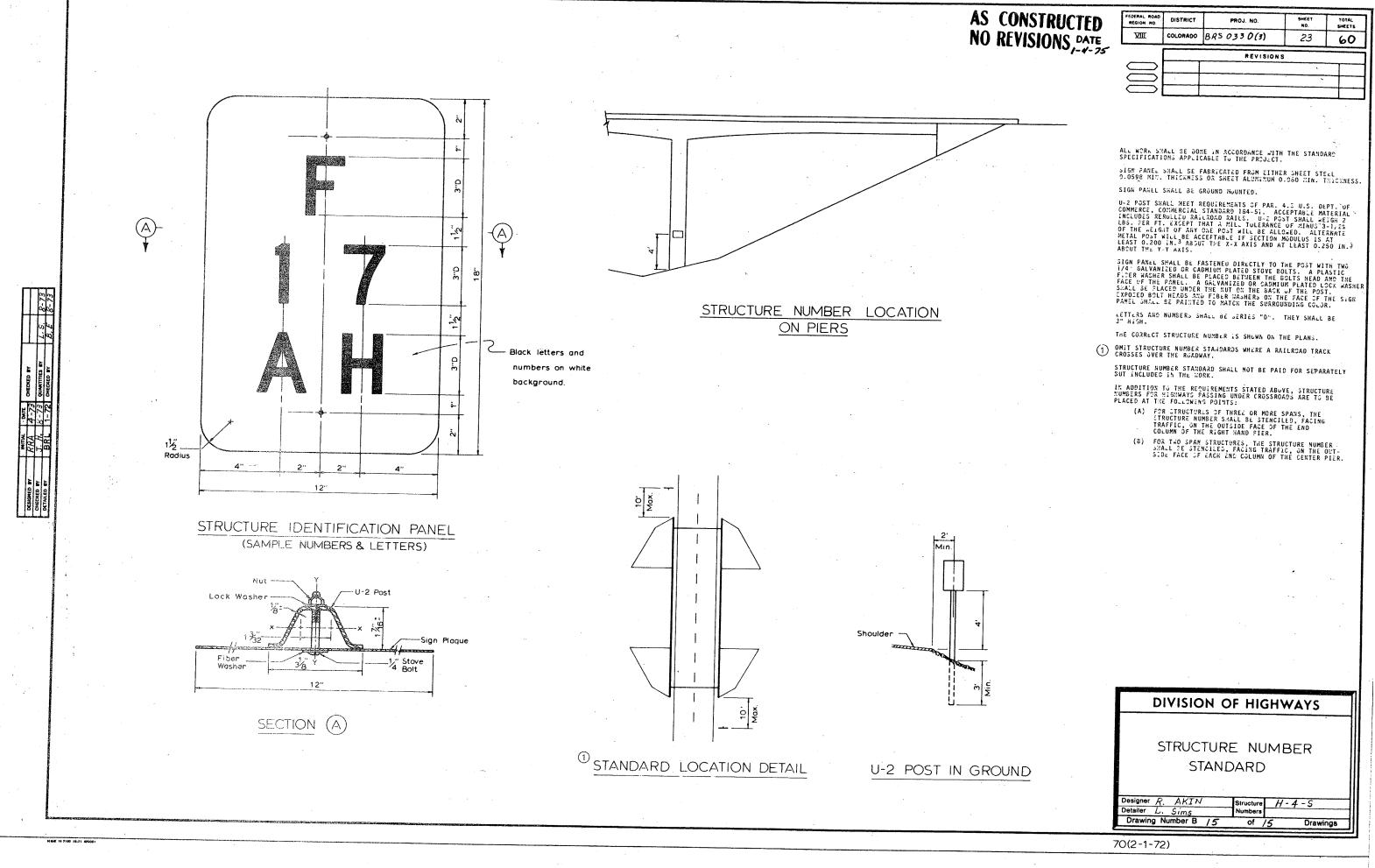
After ALL LOSSES $Ff = f's \times 0.52 \times (A_s^*)$ After ALL LOSSES $Ff = f's \times 0.52 \times (A_s^*)$

f's * ULTIMATE STRENGTH OF PRESTRESSING STEEL

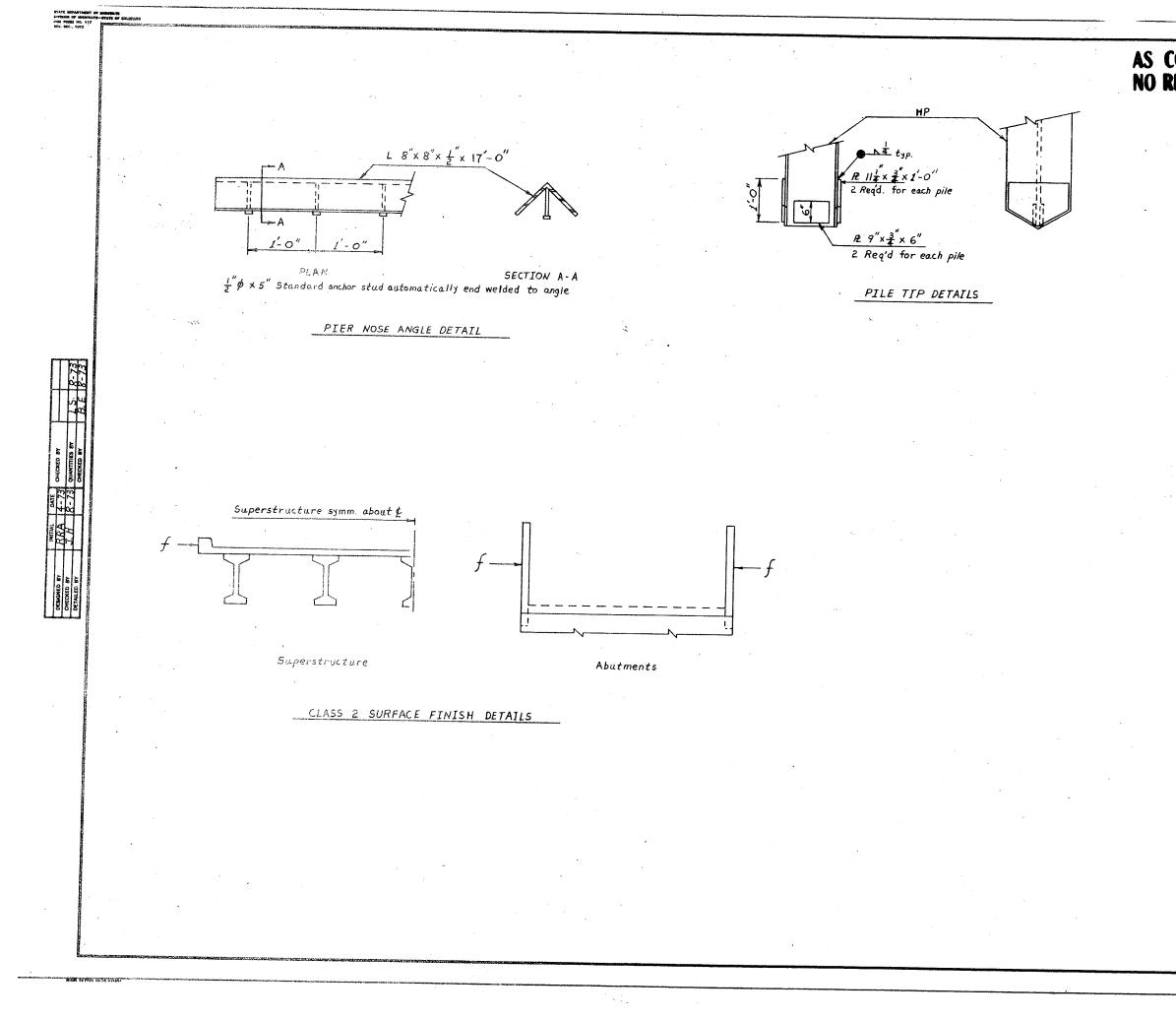
CONCRETE STRENGTH: F'cI IS AT TIME OF RELEASE OF PRESTRESS FORCE. F'c IS AT 28 DAYS.


CLEARANCE: 1. THE MINIMUM DISTANCE BETWEEN GROUPS OR INDIVIDUAL STRANDS IS 1 3/4" (MEASURED BETWEEN CENTERS OF ADJACENT STRANDS). 2. MINIMUM CONCRETE COVER FOR PRESTRESSING STEEL IS 1_1/2"

USE 1/2" MINIMUN CHAMFER ON ALL CORNERS.


FOR DIAPHRAGM LOCATION, SEE SUPERSTRUCTURE PLAN.
 AT END DIAPHRAGMS, 2" DIAMETER HOLES.

AT INTERIOR DIAPHRAGMS, 2" DIAMETER HOLES EXCEPT AT EXTERIOR GIRDERS AND BRIDGES OTHER THAN 90" SKEW, OMIT HOLES AND PLACE INSERTS FOR 1" DIAMETER THREADED RODS.
 DEFLECTION AT CENTER LINE OF SPAN DUE TO CAST IN PLACE SLAB.


,"		G	IRDER		Sc	HED	ULE	•		
<u>1</u> " Exp'n. J t . Material	Span	Gird.	L	Еms	Εe	1	Fq	Conc.s	trength	See
- nacer nar	No.	No	(Feet)	anab	(Track)	NIDE	1/105	Fci	Fć	Note
8" 1" w/ 4		ALL	012 1	TL I	unen)	KIPS,		(151)	crsu	(Inch)
8"x 1" x 1.6" Steel Masonry Rs		ALL	81'- 4"	12	14	<u>796</u>	<u> 261</u>	<u>4000</u>	<u>4000</u>	0.73
Steel Masonry les			1							
. L	l			I	1					
4		D	1V/ICI							81.4.5
=		<u> </u>	IVIS	NUI	0	- н	IGF	IWA	YS	
2 ¹ 0"										
5		CO	LOR	AD	0	G5	4 (GIRE	FR	
					Ť	00				
and the second										
-			AKIN		1	Structu	re	H-4	-5/	
	Detail	н <u>к</u> .	HEATE			Numbe	ra 🗌			
	Dra	wing I	Number	B /2	2	of	15		Drawin	98
	32/2	-1 7	2)							
	53(3	-1-7.	3)							

NSTRUCTED	FEDERAL ROAD REGION NO.	DISTRICT	PROJ. NO.	SHEET NO.	TOTAL SHEETS
ISIONS DATE	VIII	COLORADO	BRS 0330(3)	21	60
13101131-4-75			REVISIONS		
	Ш	┠───┤			

FEDERAL ROAD REGION NO.	DISTRICT	PROJ. NO.	SHEET NO.	TOTAL SHEETS
VIII	COLORADO	BRS 0330(3)	23	60
		REVISION	s	
\square				
\leq	·			
		·		

CONSTRUCTED	FEDERAL ROAD REGION NO.	DISTRICT	PROJ. NO.	SHEET NO.	TOTAL SHEETS
REVISIONS DATE	Million	COLORADO	BRS 0330(3)	22	60
			REVISIONS		
	\mathbb{S}				

DIVISION			HWA	
MISCELL	ÀNE	ous	DETA	ILS

Designer R. AKIN	Structure	H-4-5
Detailer L. Sims	Numbers	
Drawing Number B /4	of	15 Drawings

- FAR OF				
		_	_	-

GENERAL NOTES

ALL MORE SMALL BE DOME ACCORDING TO THE STANDARD SPECIFICATIONS OF THE DIVISION OF HIGHWAYS, SIATE OF COLOMADO. APPLICABLE TO THE PROJECT. USE GRADEG GO FOR ALL REINFORGING STEEL, EXCEPT TIES AND STIRRUPS APE GADDE THERWISE NOTED ALL TIES AND STIRRUPS AFE GADDE SUPPORTING FOR SHOWN ON DRAFING NO. BI SMALL RELYFACULT SUPPORTS.

ALL CONCRETE CHANFERS SHALL BE 3/4 INCH UNLESS DIMERWISE NOTED. EXPANSION JOINT MATERIAL SHALL NELT A.A.S.H.O. SPECIFICATION N 213-65 UNLESS OTHERMISE ROTED.

SOUNDINGS AND DEPTH OF FOUTINGS ARE IN ACCORDANCE WITH THE BEST AVAILABLE Data. When Different conditions are encountered. The Bridge Engineer Will Inspect and Determine if redesign is necessarts.

WHEN THEATED TENBER PILING IS SHOWN ON THE PLANS, THE PRESERVATIVE FOR TREATMENT SHALL BE CREOSOVE OIL.

WHEN EICAVATING FOR FOOTINGS, THE FIMAL SIX INCHES IN DEPTH SHALL BE DOKE BY -AND LABOR METHODS.

FOR DETAILS OF STRUCTURE EXCAVATION AND STRUCTURE BACKFILL, SEE STANDARD H-206-AA.

ALL STRUCTURAL STEEL NOT OTHERVISE NOTED SHALL BE A.A.S.H.O. Specification N-183.

ALL STRUCTURAL STEEL NOT OTHERWISE MOTED SHALL BE PAINTED IN ACCORDANCE WITH SECTION SOS FOR (ALVANNUM) PAINT.

ALL BOLTS SHALL BE 3/4" DIAMETER, HIGH STRENGTH, UNLESS OTHERWISE NOTED.

NO WELDING OF ANY KIND SHALL BE PERMITTED ON THE FLANGES OF STEEL GIRDERS UNLESS SPECIFICALLY CALLED FOR IN THE PLANS.

LEARN BEFORELGE BARS AND THE LEARD. EARN BEFORELGE BARS AND LES TAGGED N'TH BARS DESIGNATION, STRUCTORE NUMBER, AND STRUCTOR D'THE REDALCT. THE FIRST DEGLT OR DECITS: 4-11 OF THE CAR DESIGNATION INFOLMENTS THE BARS STRUCTORE CONTROL 103 - ATI RAS. ETC. ALL DIMENSIONE ON BAR BENDING DIAGAMAN SARE OUT DUT. DIMENSIONS FOR EXITACIDENCE ON BARS BENDING DIAGAMAN SARE OUT OUT. DIMENSIONS FOR EXITACIDENCE ON THE SHORE AS THE AND THE CENTERIES OF THE SHALL LA A MINIMUM OF 40 DIAMETERS.

ALL REINFORCING AND SPLICES SHOWN IN THE SUPERSTRUCTURE SHALL MAYE A MINITUM LAP OF NO DIAMPTERS UNLESS DIVIEWISE NOTED. WHIRE SPLICES CONTAIN BARS OF DIFFERENT DIAMPTERS, THE SPLICE LENGTH SHALL BE GOVERND DI THE SHALLSI BAR.

THE FOLLOWING TABLE SHOWS THE MINIMUM 40 DIAMETER LAP FOR COMMON BAR SIZES:

 BAR 512E
 p4
 p5
 p6
 p7
 p8
 p9
 p10
 p11

 LAP
 1'-8"
 2'-1"
 2'-6"
 2'-11"
 3'-4"
 3'-10"
 4'-3"
 4'-9"

E.F. - EACH FACE N.F. - WEAR FACE F.F. - FAR FACE B.E.I. - BY EQUAL INCREMENTS

LOADING DATA

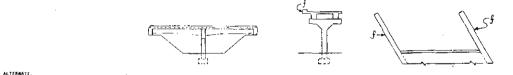
CONCRETE:

Ead on 710 1a.b.

CROSS REFERENCE DRAWING BURGER

SECTION OR DETAIL IDENTIFICATION

item	Description	Unit	Super- structure	Abut.	Pier 2	Abut. 3	Tota≀
203	Unclassified Excavation	Cu Ya					165
204	Haul	Ton Mi	130			「 <u></u>	130
206	Structure Excavation	Cu Yd.		180	135	365	680
206	Structure Backfill (Class 2)	Cu Yd.		35	88	35	158
403	Hot Bituminous Pavement (Grading Dx)	Ton	62				62
411	Asphalt Gement (AC 5)	Ton	5				5
502	Steel Piling (148P89)	Lin Ft.	_	108	128	168	404
502	Reinforcing Tip	Each		6	8	6	20
506	Heavy Riprap	Cu.Yd		551		1194	1745
509	Structural Steel	Lb			455		455
509	Structural Steel (Galvanized)	Lb.	11,740				11,740
515	Waterproofing (Membrane)	Sq.Yd.	790				790
601	Concrete Class A (Bridge)	Cu.Yd.		27.4	98.2	27.4	153.0
601	Concrete Class D (Bridge)	Cu Ya	321	18		18	357
60Ž	Reinforcing Steel	LDS	111,702	4441	9386	4441	129,970
613	3 Inch Electrical Conduit (Plastic)	Lun.Ft.	334				334
626	Mobilization	4.5.					0.15


AS COLOT MOTED R. V. SLD DATE

NEGROF NO.	DISTRICT	PIRCJ. NO.	NHECT NO.	NIAL HEATS
XIII.	COLORNOO	30065(5)	/9	
		REVISIO		_
œÐ	4-10-72 1	levised Summa	ry of Quant	thes JJ
\equiv				

NDEX OF DRAWINGS

Dwg. No. 81 General Information -Summary of Quantities Dwg No.82 General Layout Dwg No.83 Engineering Geology Dwg No.84 Bridge Hydraulic information Dwg No.84 Bridge Hydraulic information Dwg No.85 Elevations Dwg No.85 Elevations Dwg No.87 Construction Layout Dwg No.86 Philog and Footing Layout Dwg No.89 Abutment I Dwg No.81 Wingwall Details Dwg No.81 Pier Details Dwg No.81 Stab Reinforcing Dwg No.85 Bridge Rail Type I Dwg No.82 Structure Number Standord Dwg No.82 General Layout

* All work to be done by contractor. (Non -federataid) Mountain Bell shall reimburse the Department for this work.

SUMMARY OF QUANTITIES

SURFACE FINISH DETAILS

LIVELDAD: DEADLOAD:	ASSURES 20	H3-20-44 DR INTE LBS, PER SQ. FT, On has been hade	ADD	TE ALTERNATE. LTIONAL WEARLKG SURFACE. ABOITIONAL DYERLAYS.
DE SIGN		S. / XEEPT AS BOTE	Ð.	
RE IN FORCING	STEEL :	FOR TRANS-FRSE		= 20,000 LBS. PER SQ. IN. IN ROADWAY SLAB ONLY.
			ء ء	- 24,000 LBS. PER SQ. IN.
STRUCTURAL S	RTP21	A36	FS	+ 20.000 LBS. PER SQ. IN.
		AS72, GRADE 50	Fs	= 27.000 LBS. PER SQ. 15.

NOT	EÐ.									
R S E	Fs Sars	Ľ	1 N 2	0.0 R04	20 DW/	L85 17 51	AB	8 0	SQ. Nly,	١N.
	e 2		- 2	4,0	00	L 8 S	. Р.	EÅ	SQ.	LN.
	85		- 2	0.0	00	L B S	. P.	ER	\$Q.	łĸ.
50	Fs	,	× 2	7.04	90	LBS	Pf	8	sq.	46.

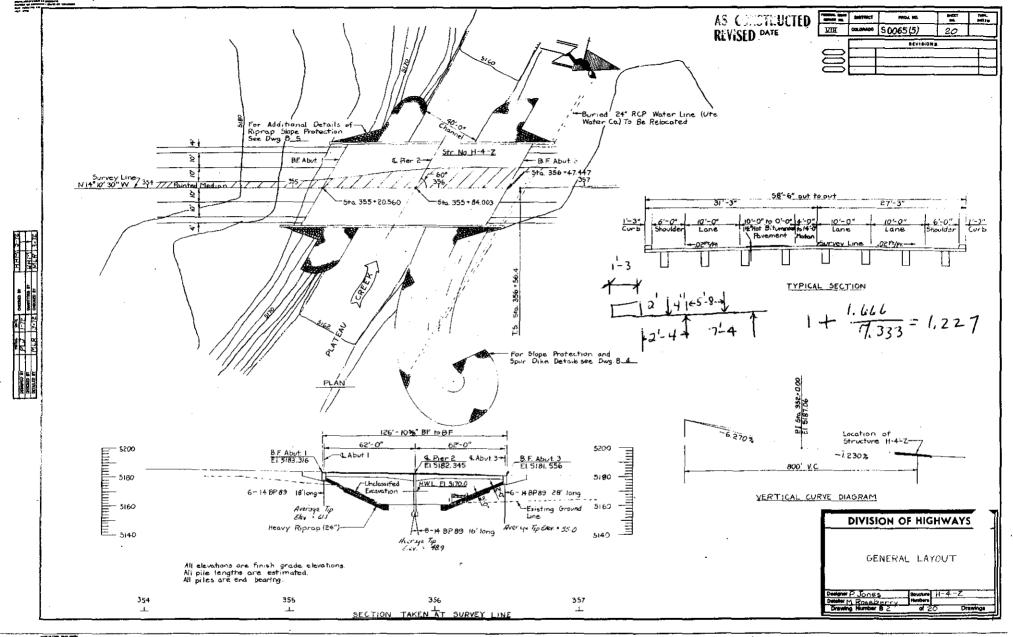
FC + 1.200 185. PER 50. IN.

n • 10

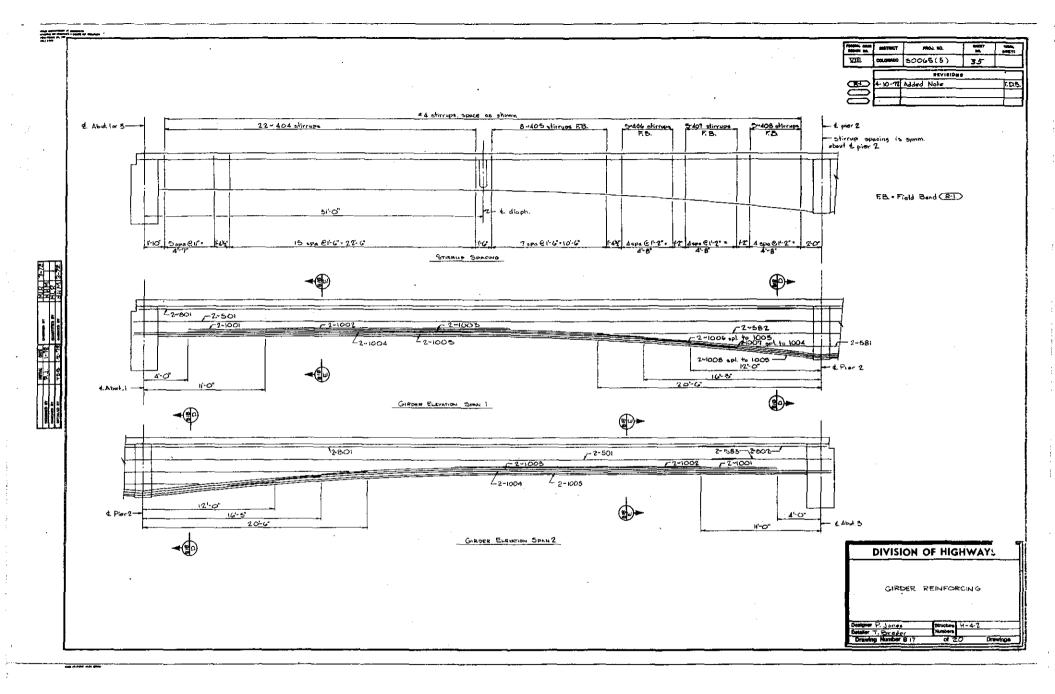
.

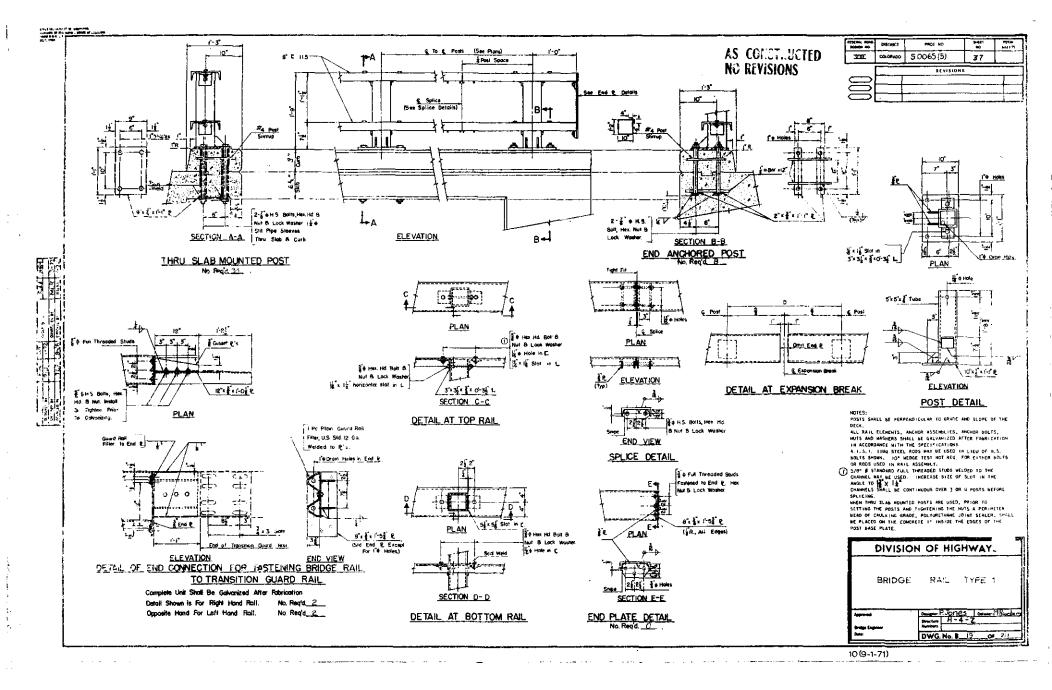
BRIDGE DESCRIPTION 2-Spans (62'-0", 62'-0") Continuous Parabolic Concrete T-Beam Bridge,

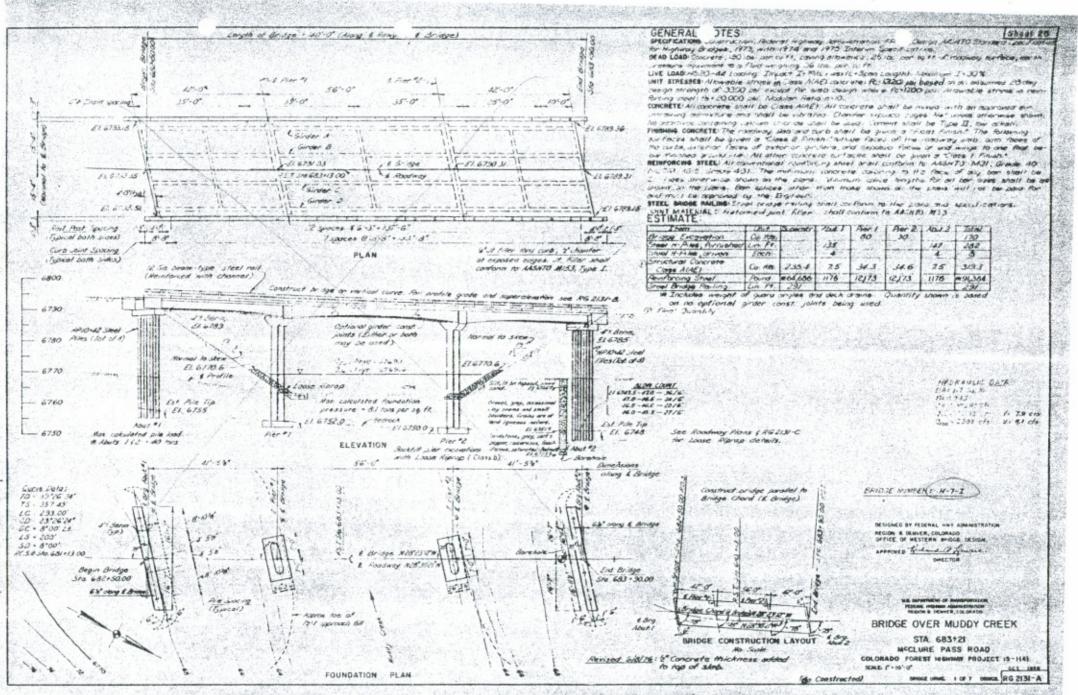
Over Plateou Creek 56'-0' Roadway Curb to Curb 60*-0' skew -3 curbs, Bridge Rail Type I DIVISION OF HIGHWAYS GENERAL INFORMATION SUMMARY OF QUANTITIES

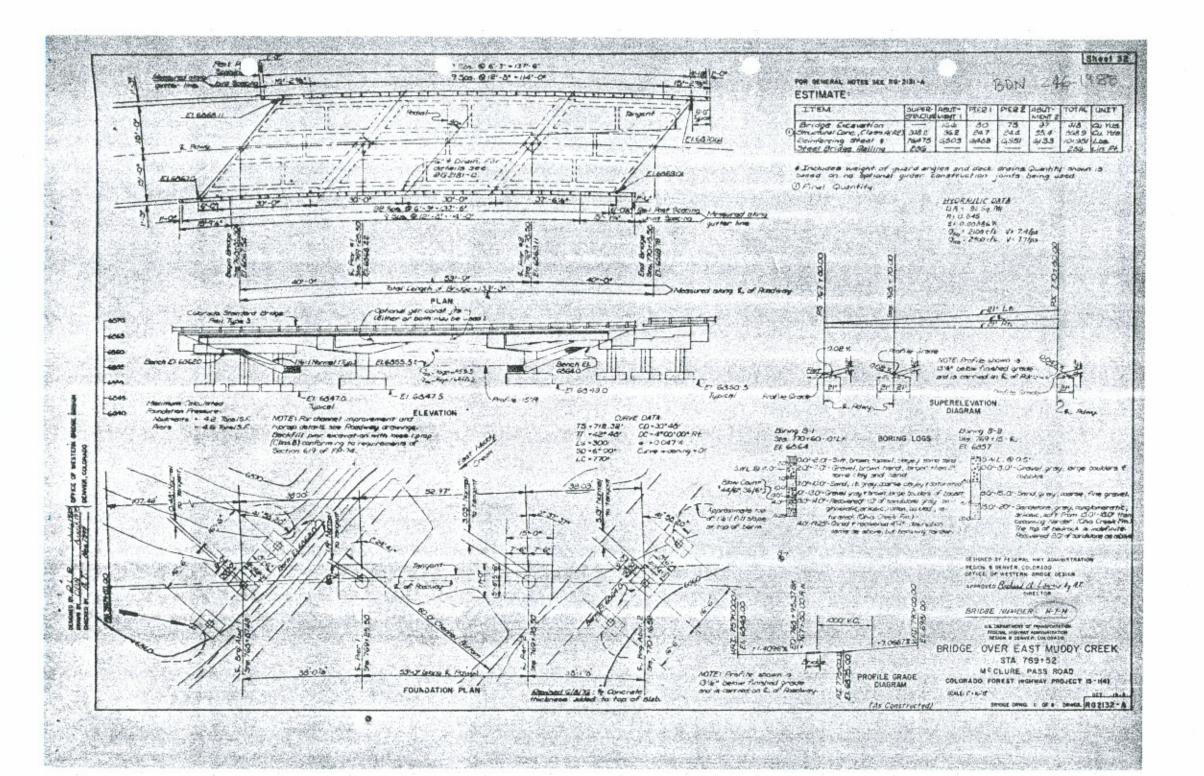

Station 355+2 Station	20.560) to	356	• 47.4	47
Near Masa	Sec	ю		IOS.	R 96 W.
Designer P Jone	s		Structure	H-4	- 2
Detclier Mays			Numbers		
Drawing N	ı mb er	8	1 01	20	Drowing

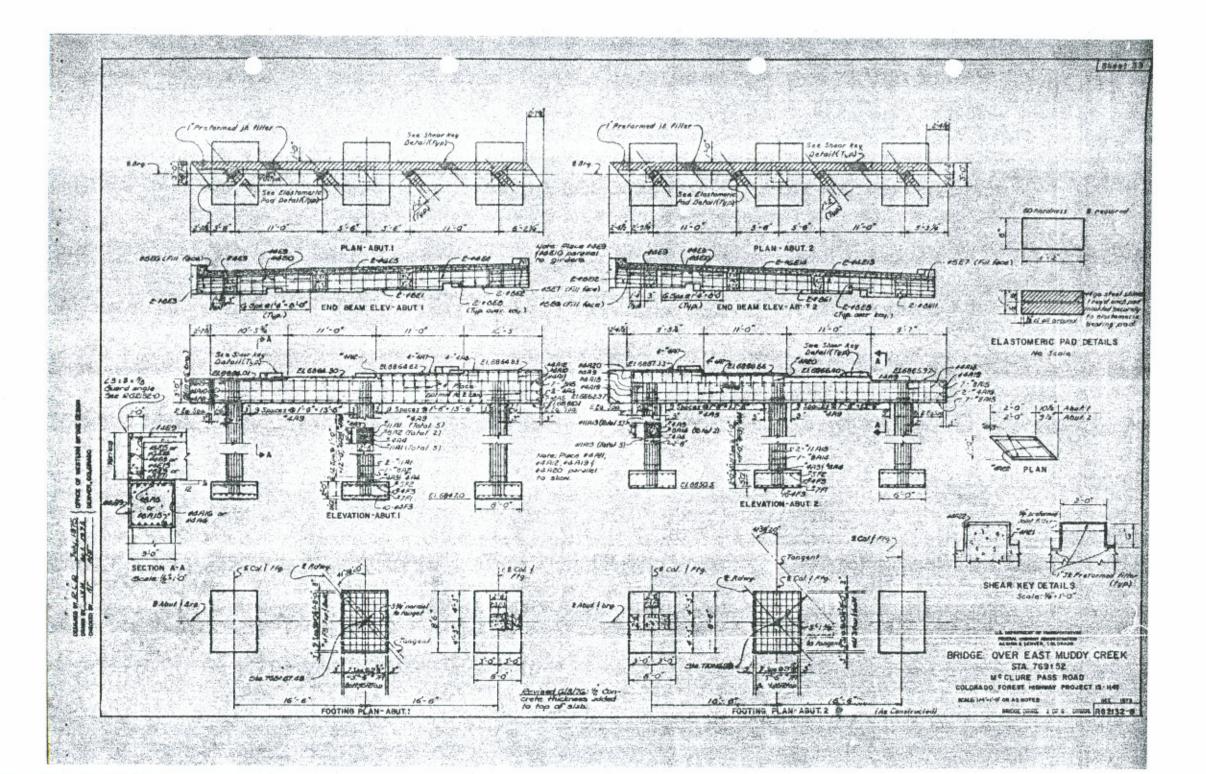
Permi PE. 31:3172 Bridge Engineer Date

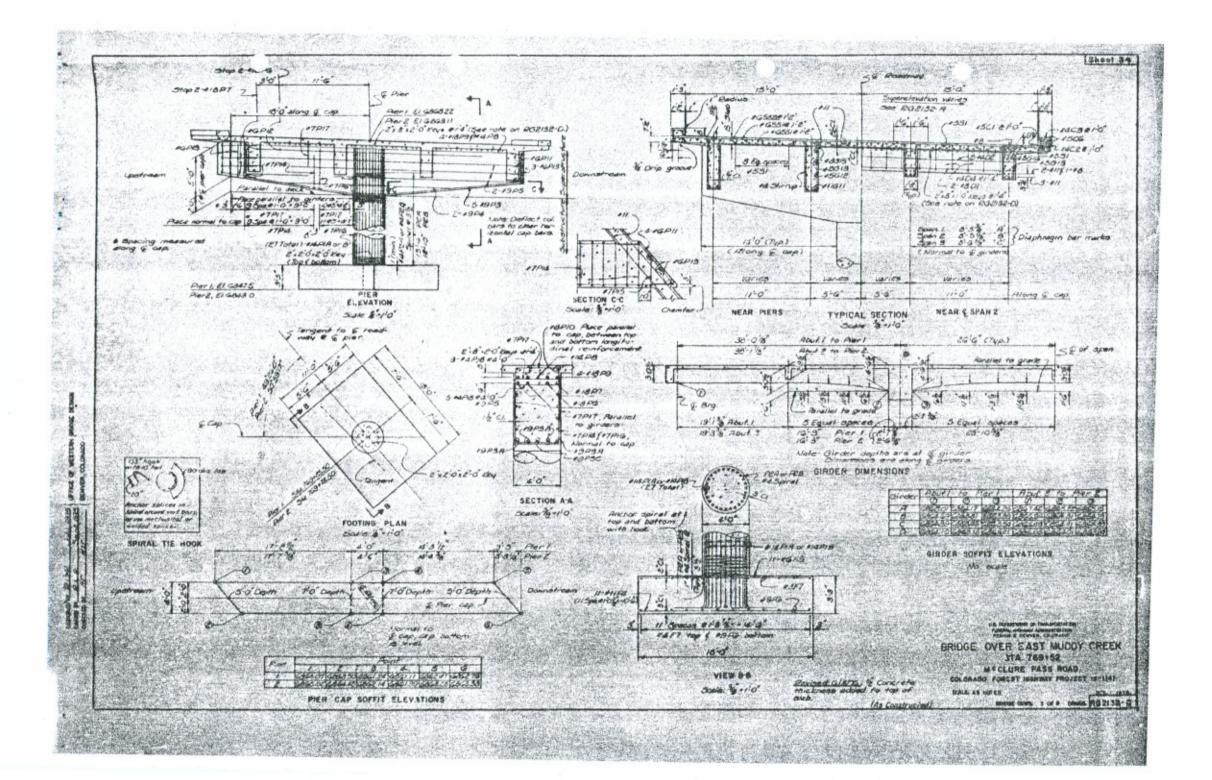

-

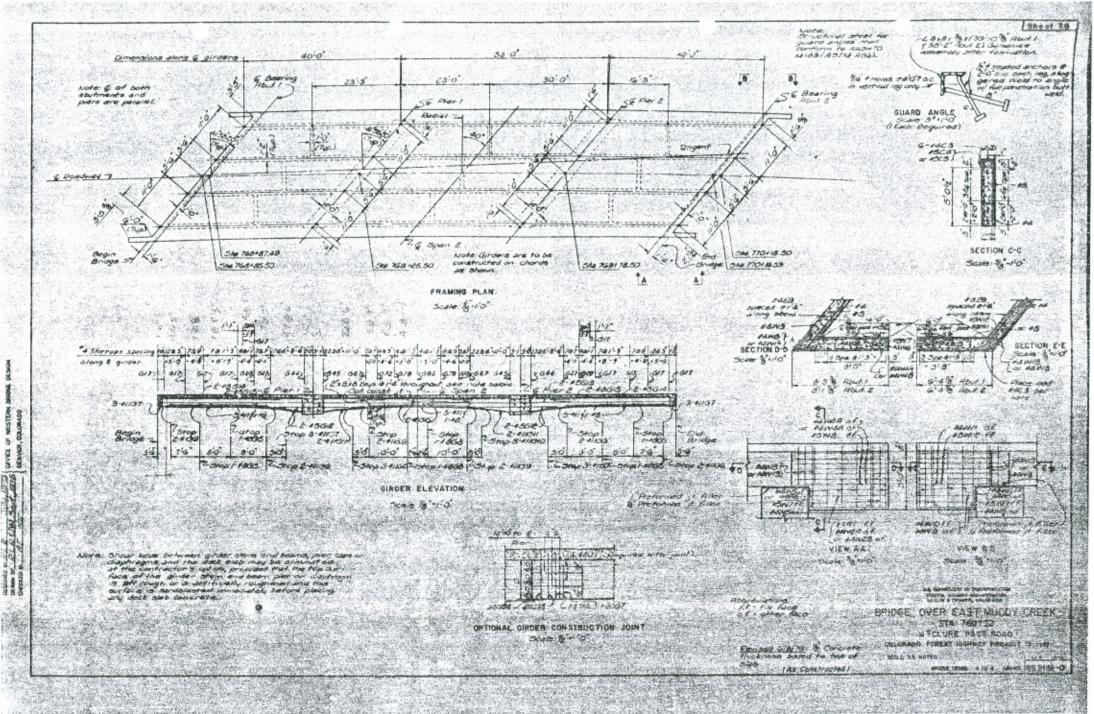

ODCOMAC

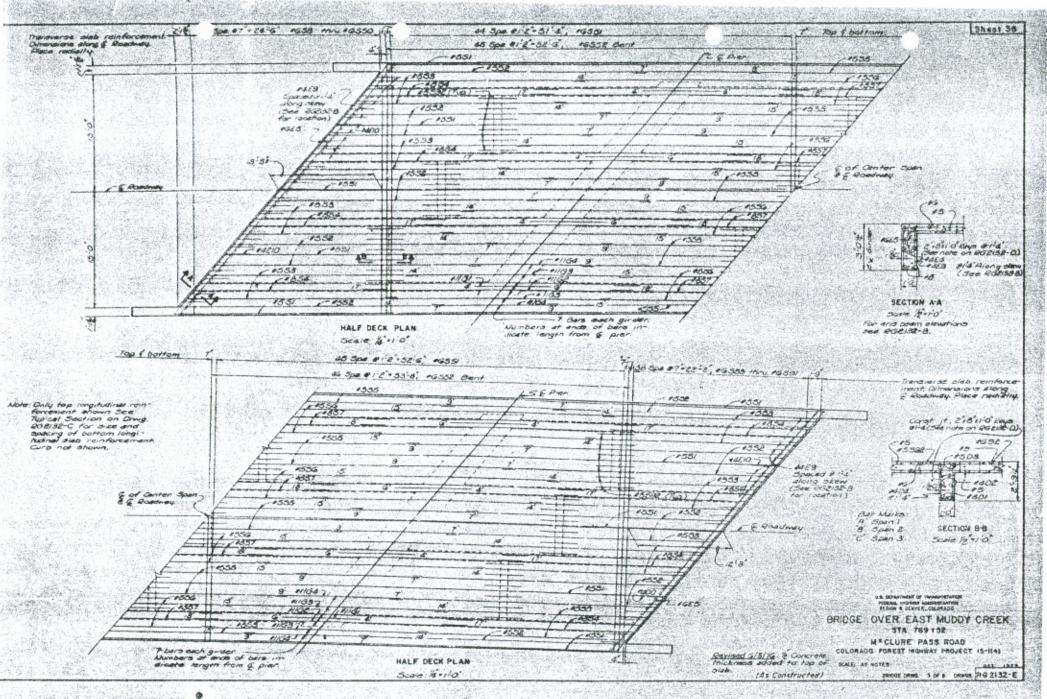

0(7-1-71)

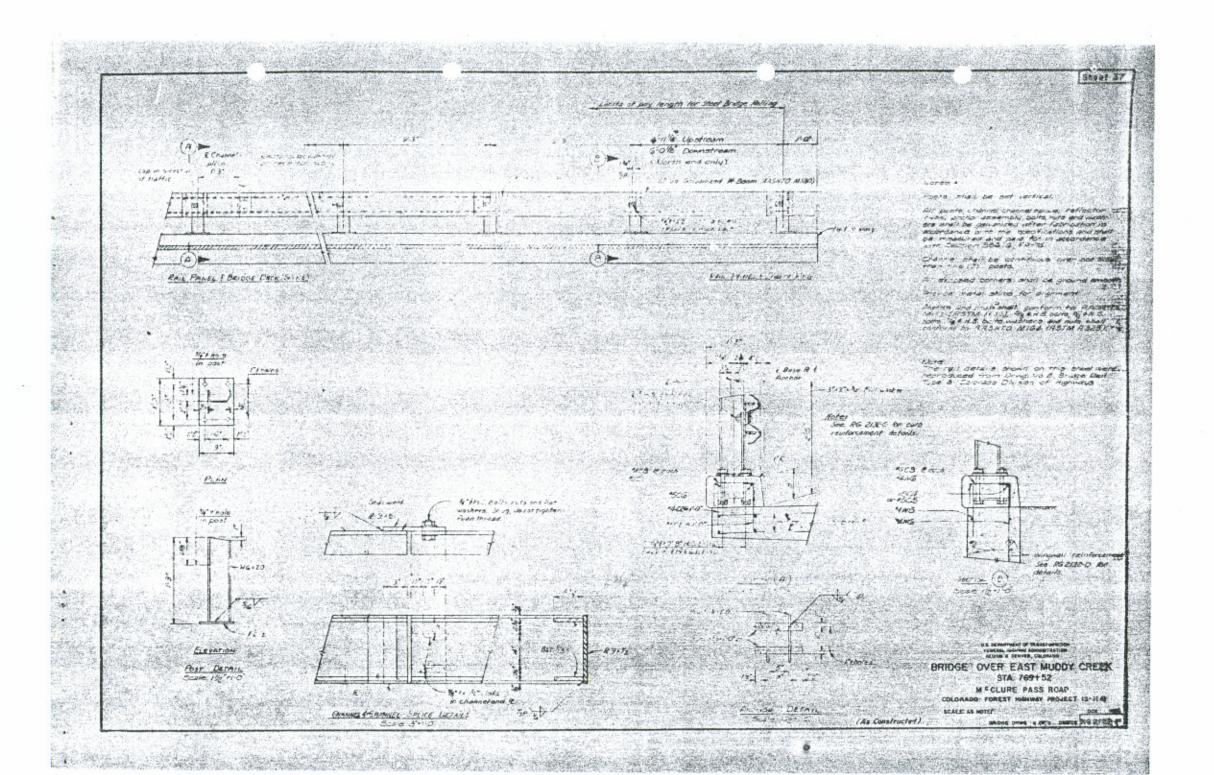

2.8' - 25. LUB 2.334 '

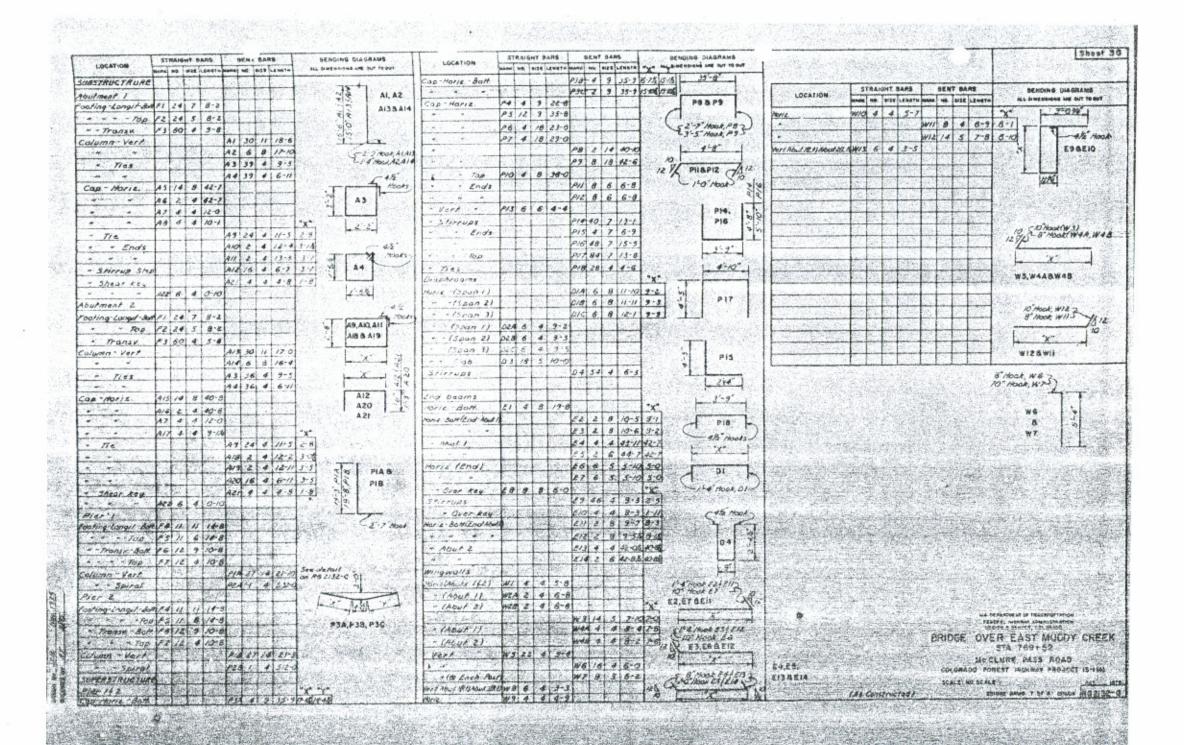


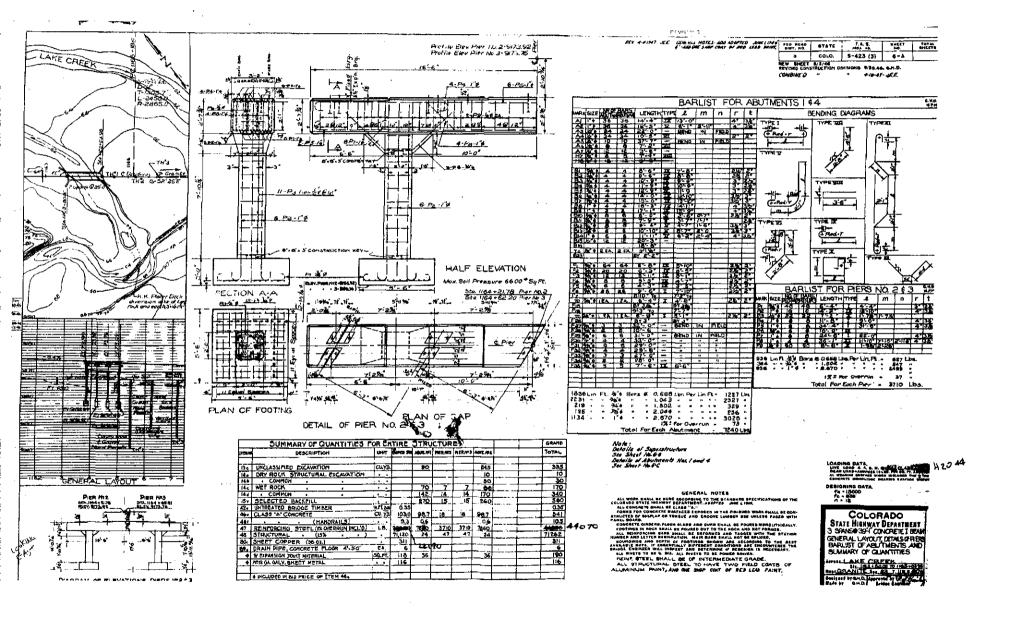


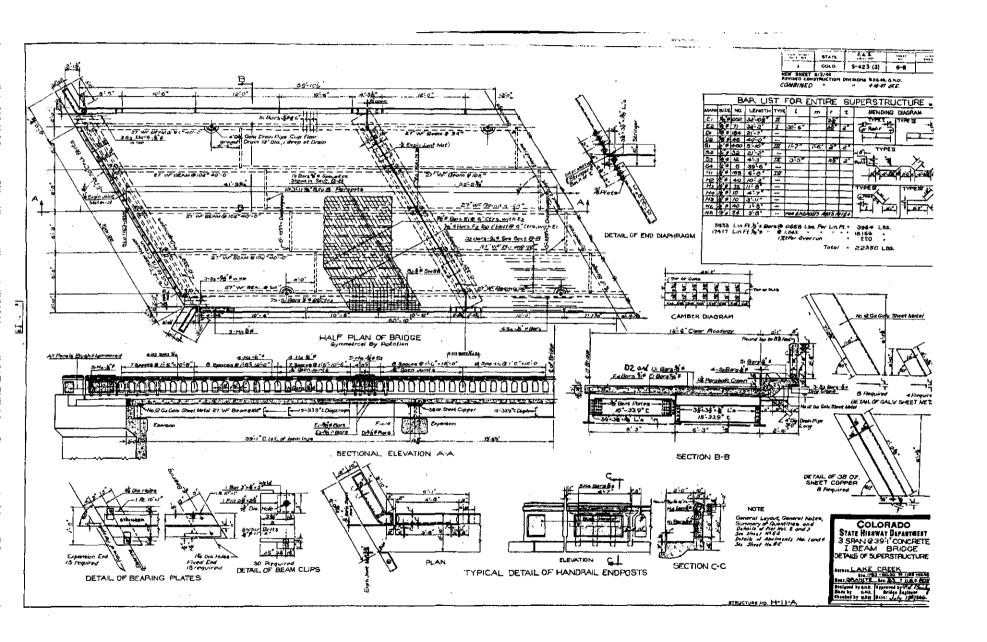


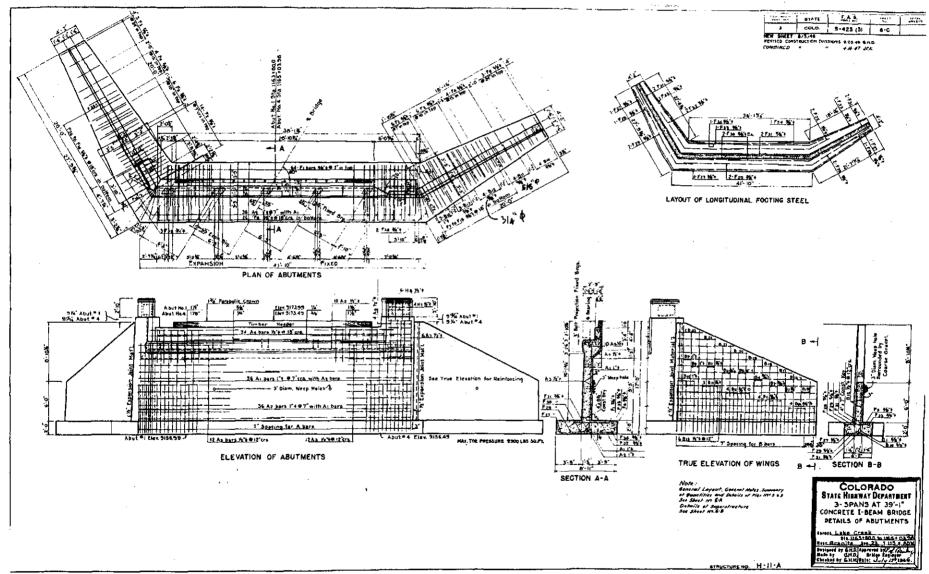

1/2 The second
the second to be allowed and the



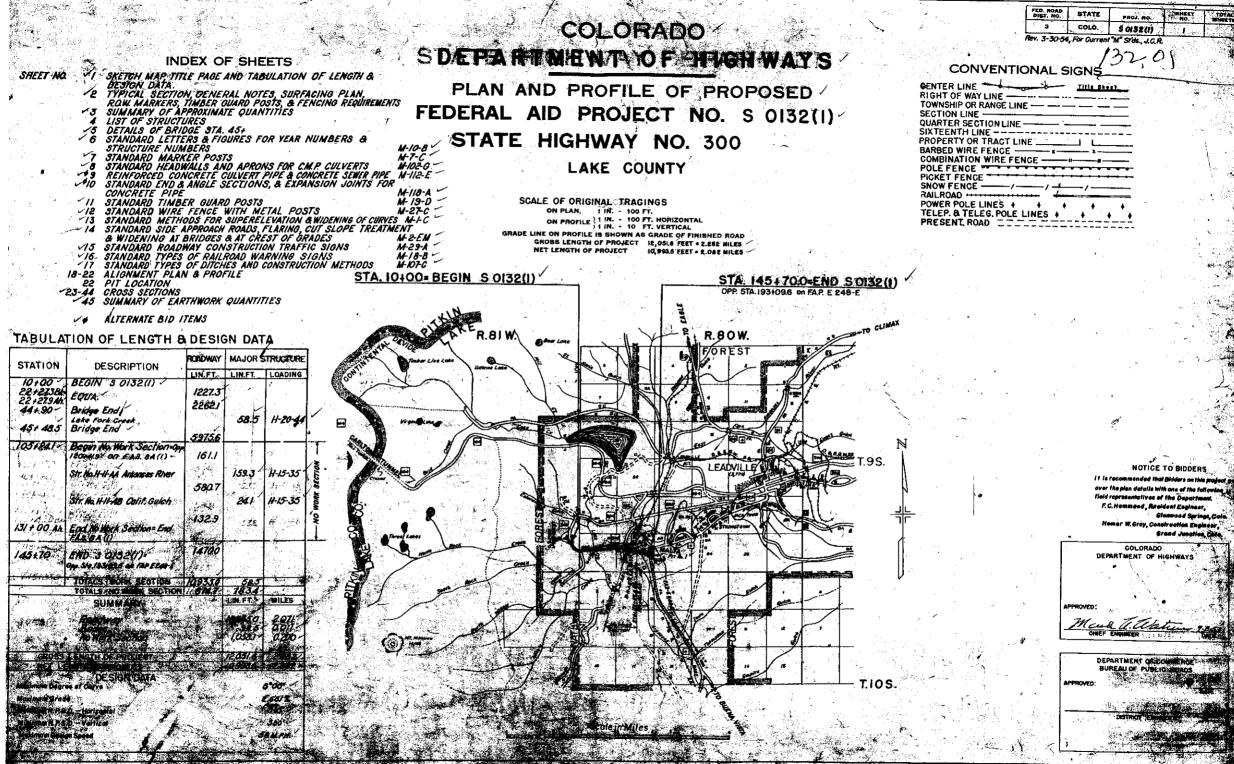


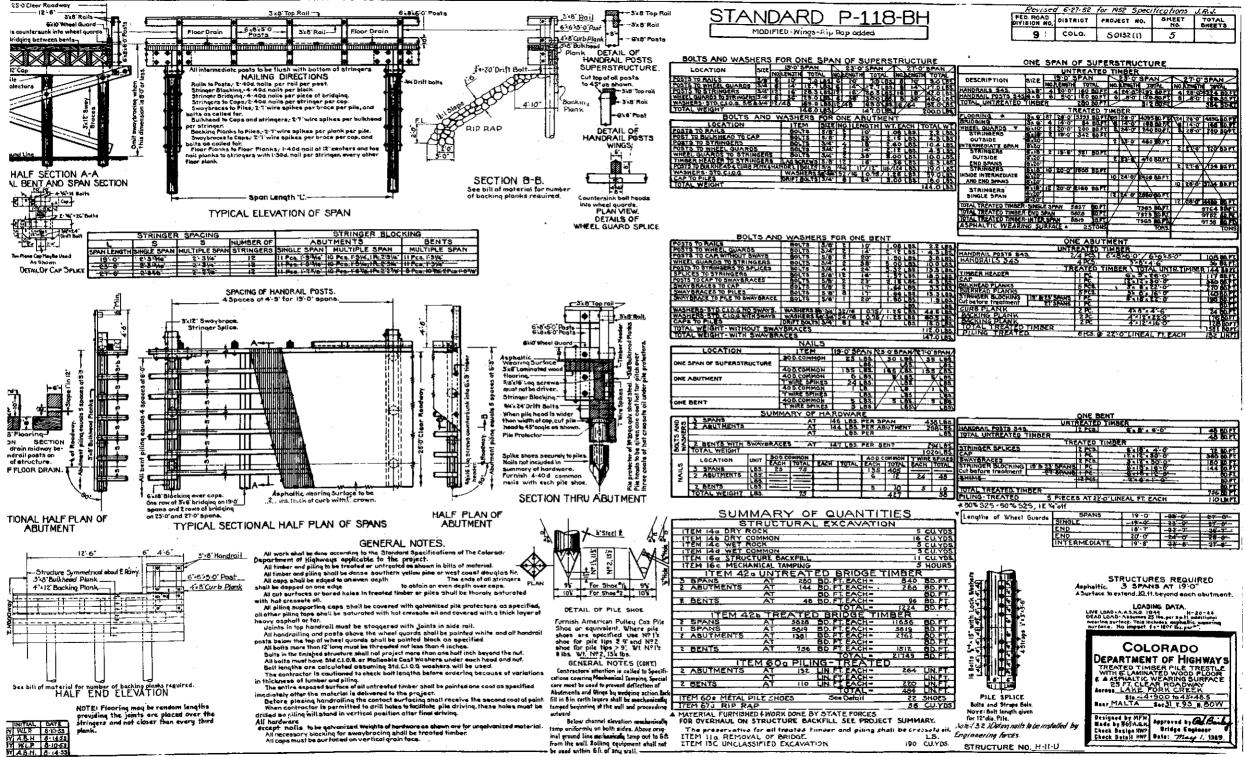


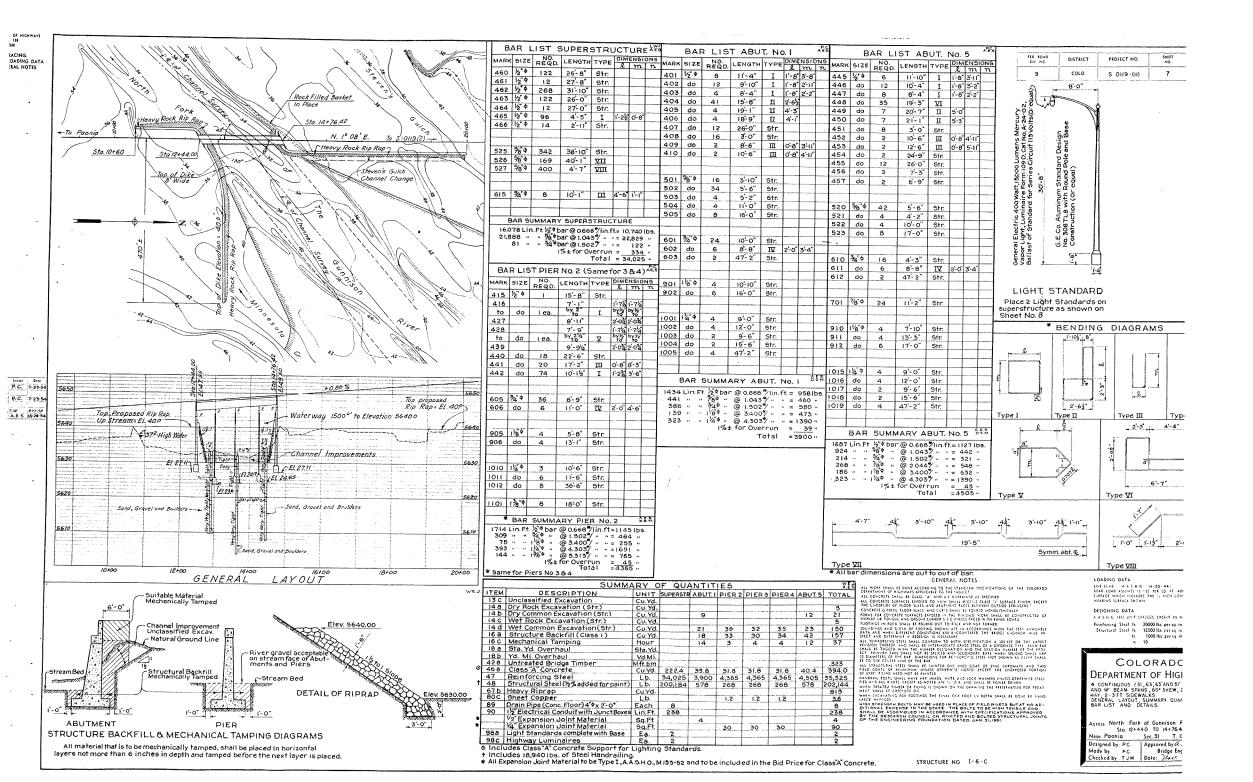


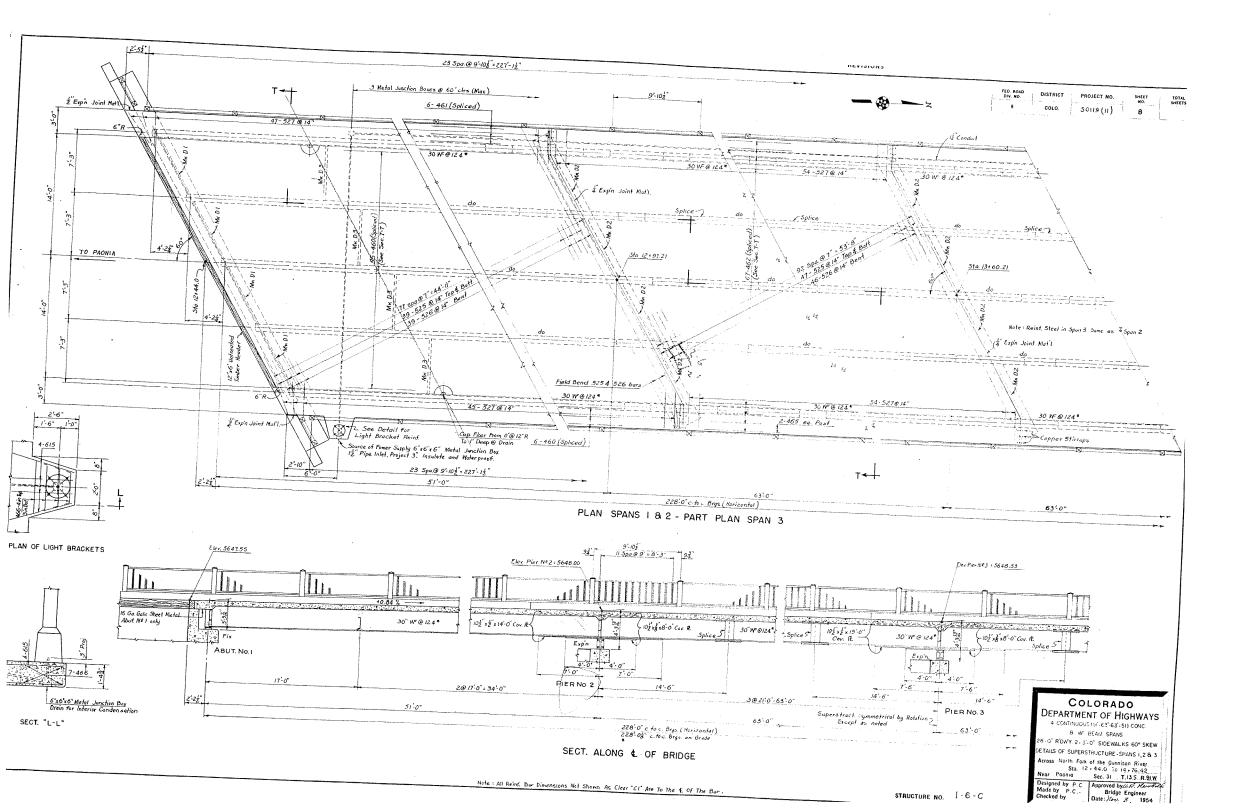


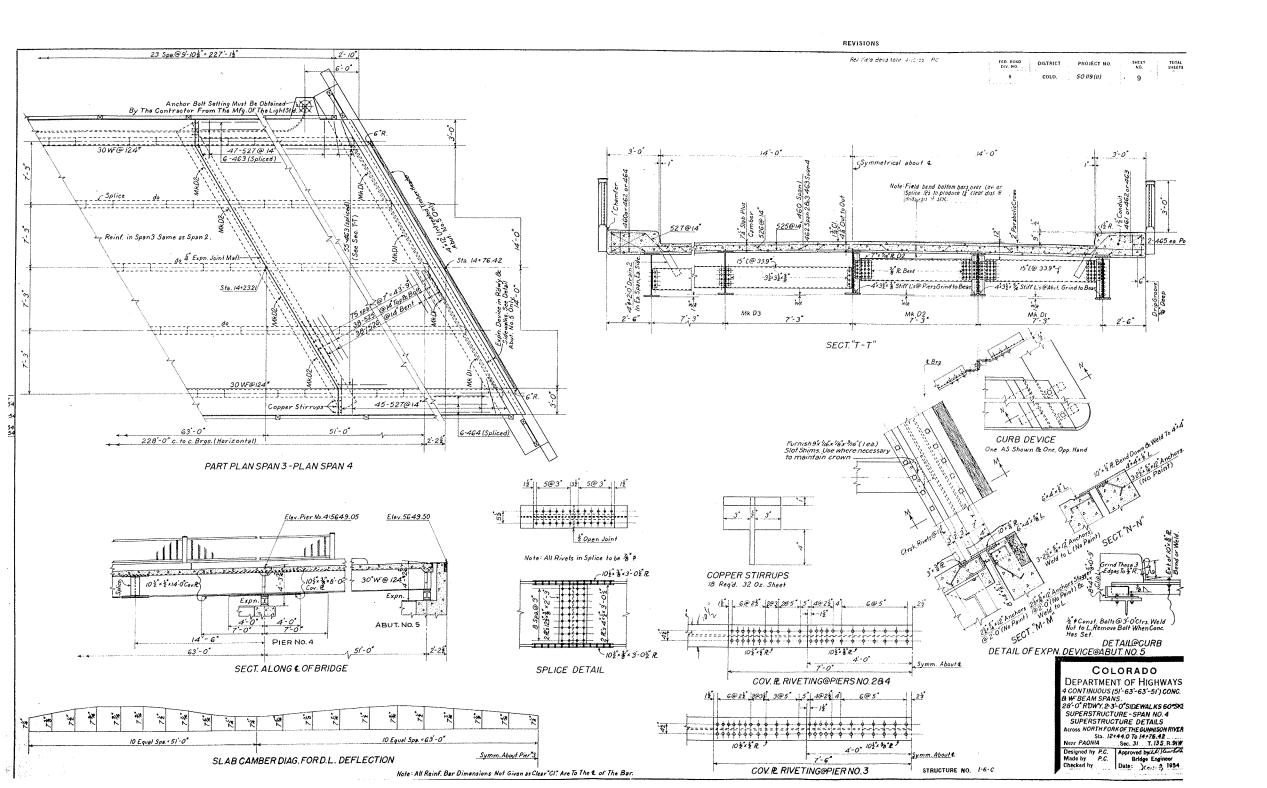
LOCATION	STRAIGHT BARS		BENDING DIAGRAMS	LOCATION	STRAIGHT BARS	the second design of the second division of the second	BENDING DIAURAMS	No California	Section and	ie Star weild?	Shar
CLOSER CEALURE AS		NAME NO. MEE CANATS			MARKE AND BIEC LEND	557.8 m 4 8-8	1.5			14 19 19 19 19 19 19 19 19 19 19 19 19 19	
SUPERSTRUCTURE Girders	(CONTINGED)		210 mont -	Gue Stirrups		to pier to	to Macroments	1	STRAIGHT BARS	BENT BARS	SENDING DIAGRAMS
Longit - Top	31 8 11 10-0		G7		the second second	360 68 4 8-1	and a second sec	LOCATION		and the second se	
	52 16 11 35.0		12-10*		PERCENT SA	665 8 4 8-016	THE COLUMN STREET	OPTIONAL GIRL	CR CONSTRUCTION	JOINTS	-Bars shown are har ane gird
	63 16 11: 29-0		h a 12 19 a			660 8 4 7-115	3-14	Horizontal	11 4 8 8-0	-	construction joint in one gi
e and a second	64 18 11 150		here wit		Contraction of the	651 8 4 70%	3-174	Participation of the second	1997 (1997) - Carlos	1. 1. N. 1. 1. 2. 1.	and the second states of
"-Bote Spon / 1 2		100 P			17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	668 8 4 7-10		A STATE AND A STATE			
	66 16 11 24-6		Gu		EL L	569 8 4 7-9	The second se				
		37 24 11 34.10	5.0			670 B 4 7-B		A CONTRACT OF A			all inter the state of
* * Saan 2					1.1	672 3 4 7-6/2	And the second state of th	Contraction of the second			
and the second	610 12 11 350		and the second second	Tr. Martin		673 8 4 7-6		Cher Chergener Lin		C. C	LAND A CANADA
	We want the state	GH 16 11 25-6	Enderson and the state of the second	and the second second	10 10 10	674 8 4 7-5	and the second s	Carlo to to Takk	CROBER LINE		V-New States
- Sides	312 16 3 20-0	CONTRACTOR INCOME		Tan Bitte and Day		375 8 4 7.45	2-10/4	n an ann an Story an		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
And A SARA	012 16 3 20-0 013 1000 5 135-8	2 solices \$ / 6		1	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	616 8 4 7.3%	2.9%	State States of the	State State State State		States and the states of
A CONTRACT OF CONTRACT	614 15 8 27-0	等高级 化合理合 化乙基基	Several and a second		10 St - C. 233	617 8 4 7-3	2.9/4	Contraction 123	and the first filler of		
	015 18 8 35-0		- die Hoots -	C. F. Standing C. S. Standard	12 B 1 B 1 B 1 B 1 B 1 B 1 B 1 B 1 B 1 B	678 8 1 7.4		and the state of the second	- 16 10 10 SPA		
• M	6.46 8 8 26-0	an comparison in the state in some or in	X. Y			679 8 4 7-2	The second se	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -			
Bort Stirrups		The second	2.84 7 67	A Contraction of the second		G80 8 0 7.1%		and the second second	1 10 1 10 10 10 10 10 10 10 10 10 10 10	++	
A CONTRACT		018 6 4 7.1 619 8 4 7.1%	And a state of the second s	-	Contra Contra	581 4 4 2-1	Contraction of the second s				(1))))(注意))(1)))
		630 8 4 2-2.4	Cheven and the ACT IS ADAMS TO STATE TO A THE ACT IN ERNAL A THE ACT IN A THE ACT I	5100		682 4 4 7-1	<u>con</u> :	Contract Andrea		12 3 32	A State Charles
	1	G21 8 4 7-3	Constraint of the second statement of the second					ALC: NO.		111	Catal States
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1 1 1 1	622 8 4 7.34	and a state of the	Longit Top! Batt	SI Vinis 5 136 0	2 Shoep B Vos	Participation of the second	12 12 12 12 Marting	The Lot of the Article		1997年1月1日日的1月1日日的1月1日日的1月1日日的1月1日日日的1月1日日日日日日日日
		623 8 4 7.4.5			50 16 5 343		The A Carl and a set	a data tangan seta			The search and the second
· · · · · · · · · · · · · · · · · · ·		624 6 4 7.5%	2-10. MI GIT THRU GAZ	· Alexandream	33 16 5 21.	Construction of the distribution of the second s		State States	and the state	yr- g"	and the production
A CONTRACTOR	1995 Mar. 1	629 8 4 7.6%	2-11.74	and the states	54 16 8 251				Constant of the second	and the second se	NAME OF TAXABLE AND ADDRESS OF TAXABLE ADDRESS OF T
NAME OF A		626 B 4 7.72	2-11/34	frame on a line special sector that if an all the	55 8 5 324				1-9- 5-5- 3-	5-5-5-1	8 5.5 1.9
	1000	627 8 4 78%			57 8 8 23-	Consider the second state of the second state		Contraction D			
THE PARTY OF A	Carlos Carlos	64 8 4 703		Transversa Carmer	and the galaxy of the party section of the	and the state of t		1977 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 -	1		
	A. 83 8. 197	C30 8 4 311/2	Contraction of the State of the	and all and the second	10 0145 10	Carlo St. Constanting St. State State State	and the second states of	A CAMPER	1.	\$52	
1	经运行 网络	631 800 4 9-12		C. Marganet Strange	550-85 6 31-1		Standard Street Street and		1995年1996年1月	Store and	Constanting the second
	21 63 20 644	10 017 41	12 1 34 Incraments	States and the second	551182 5 31-1	1			29 00	and the second second	- 4X
	12. 198- Ar 1 1	637 58 4 8-10	3-7 1 4 2 3 3 3 3 3 3 3 4	· (Bent)		550 92 5 N.8		5 5 5 9 1 B Sons	10 to 12 500 81	a	15 9% H # 2 1
*342. 44 *******	an hai a ta t	538 8 4 8-11	THE REPORT OF A CONTRACT OF A DESCRIPTION	· corner	553 200 6 31-9			* + C.3 1.9.23	3911 15	0" - M 0"	BO TO READ THES
P. The second	1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	637 8 A 4-12 640 9 4 9-3	3-874		10 0133 10			Tre "dC 3 Ap - gws + cc		The second	17. A 2457
Carl and the second second	and we have been a second as the second day	64 8 4 9-5	And a state of the second	Long & Drand	391 78 6 8-1	La la La La	TO Mort	Consult antipe	2	6-	17505 Autor
an and the second		84. 8 4 9-7		Curts		6 1940 1997	The stand of the second	Upstream	Contraction of the second s		Connetration
-	State of the state	603 8 4 9-9	10%	Slob Dower		51270 5 2-8	N CL	End Pone		Ponst	End Panul
at a first and	出版 和 一 和 一 和 一 和	044 8 4 9-11A	1-170 States States	C Land Martin		63 20 4 1-8	L.	2 SEQUIRE	D	QUIRED	2 REQUIRED
20 F	CALCULATION OF THE	112 8 4 2-113		Ties - Tap		63 294 9 1-8	新たちまたの時代記	and the second	CURB REINFO	RECEIPTINT I A	OUT
्रक्रा वस्तु स्तु स्वत्राय	C.C. P. C. C. S. C.C.	514 8 4 410		Langie	54 4 5 14-19	and the second se	教育の主任 「日本の言い	T. Mariana	a series and the series of the		所的。我是我会看起。
· 20-52-52-55		648 8 4 9 8 C	1.34	and a second second second	CE 16 2 15 3	Contraction of the second s	CS				二、「「「「「「「」」」」
	State State State	140 G A 9-72	3-14 Station States		Cel 16: 3 12, 4		1 2 militingen (Ma)	and the state of a second	A HANDER ON BEEN	H. Salta	erentalan "IR teasucaberhasigan" - Il
No. of the local sector	Property and	100 8 4 0 40	inte	Free States	211 12 24 200	PRI DI	The the Hock		Manager and Street	5-13 JULY 1998 - 7534	CAAL VALVESE ADMINISTRATION
States and a second	12 12 12 12 12 12 12 12 12 12 12 12 12 1	65/8 4 9-32	3-94			Here Barris	DATE STATISTICS	a series and the series of the	· 新空理 注	SAIDGE OVE	ER EAST MUODY CRE
New March 1987		155 3 4 9-2	1-9					Contraction of the		State States	\$TA 765+52
C. P. S. Ster Start		613 6 4 9-1	3+4A	A state of the state		E-P-RE-		A Break har Anton	a sea and a second		LUNE PASS NO40
	No other	654 8 4 3 118	ALL ALL ALL ALL ALL ALL	A State of the sta	and the plan		sta mour	Not ANDRESS	States	SLARE HONE	NEST TODINAY PROJECT IS-14
		555 8 4 2-20	174	L IN STATISTICS		The second second	CI CI		An Constructed		

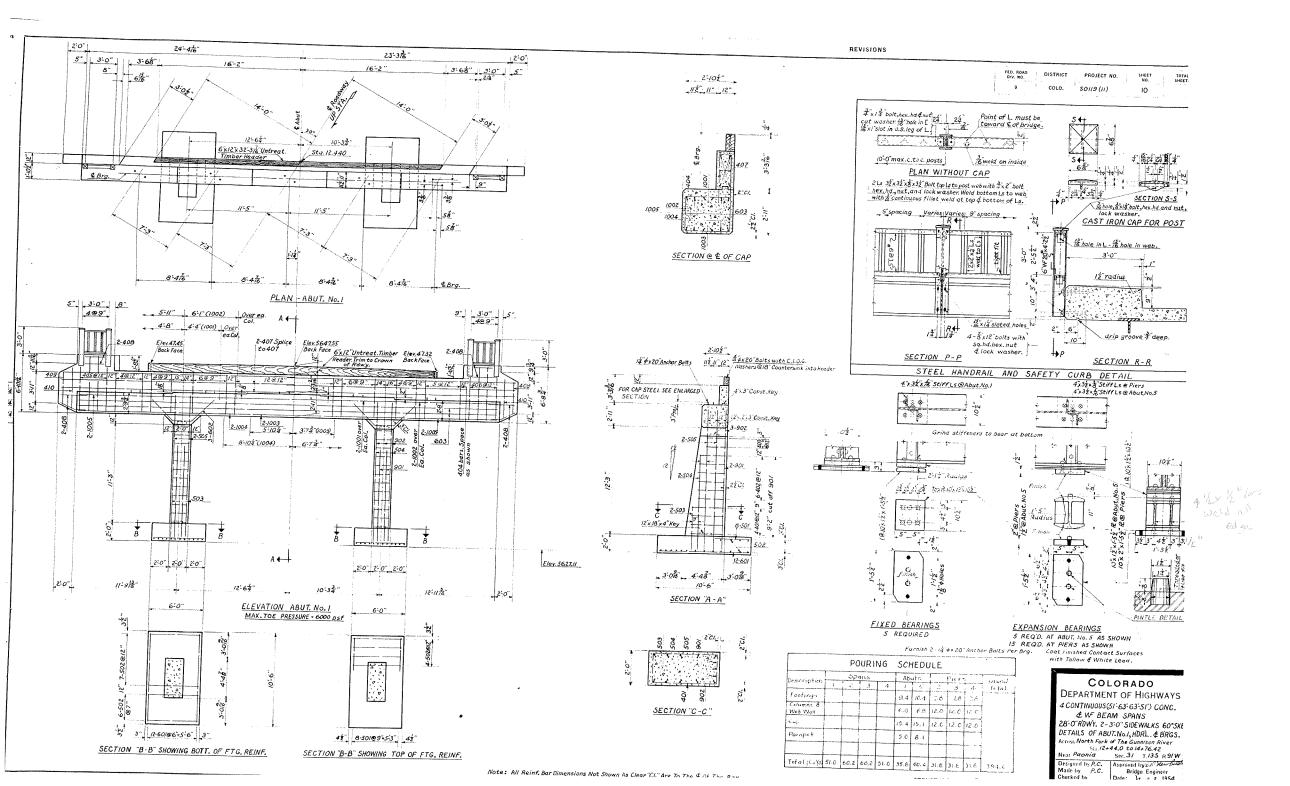


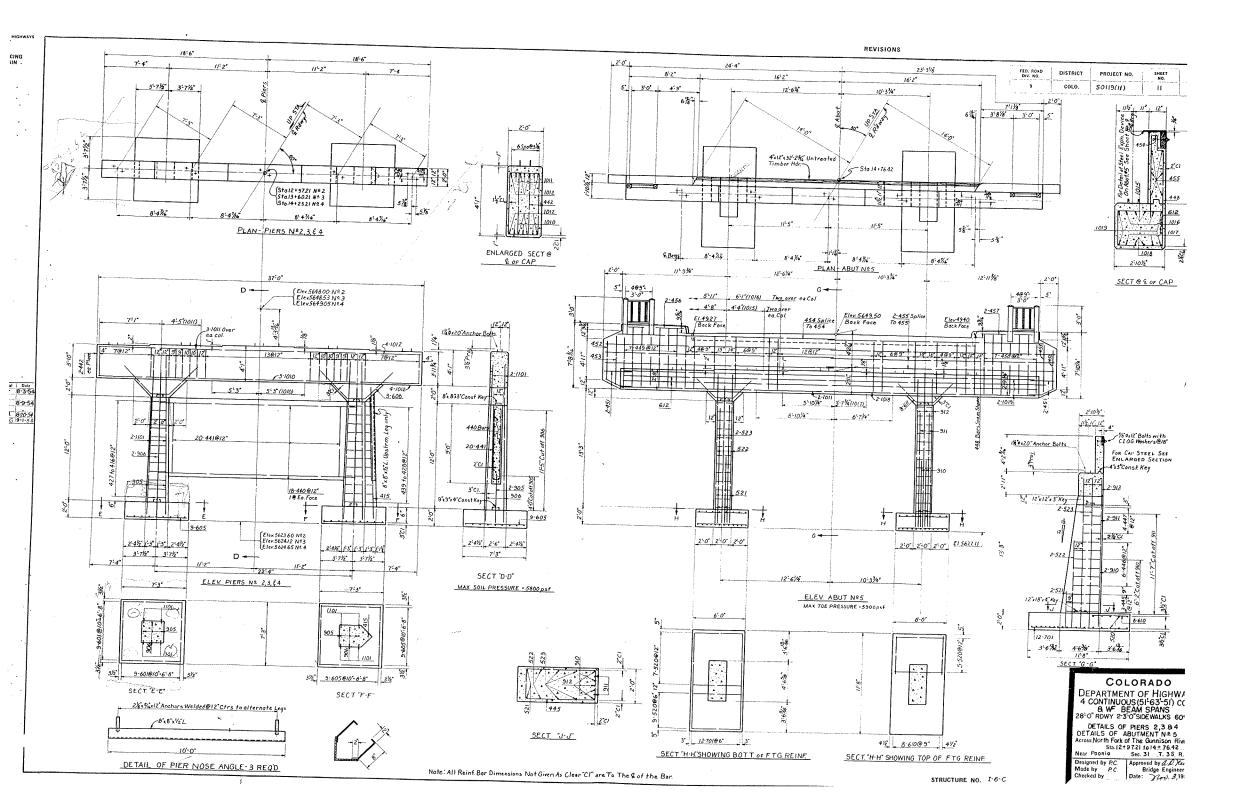


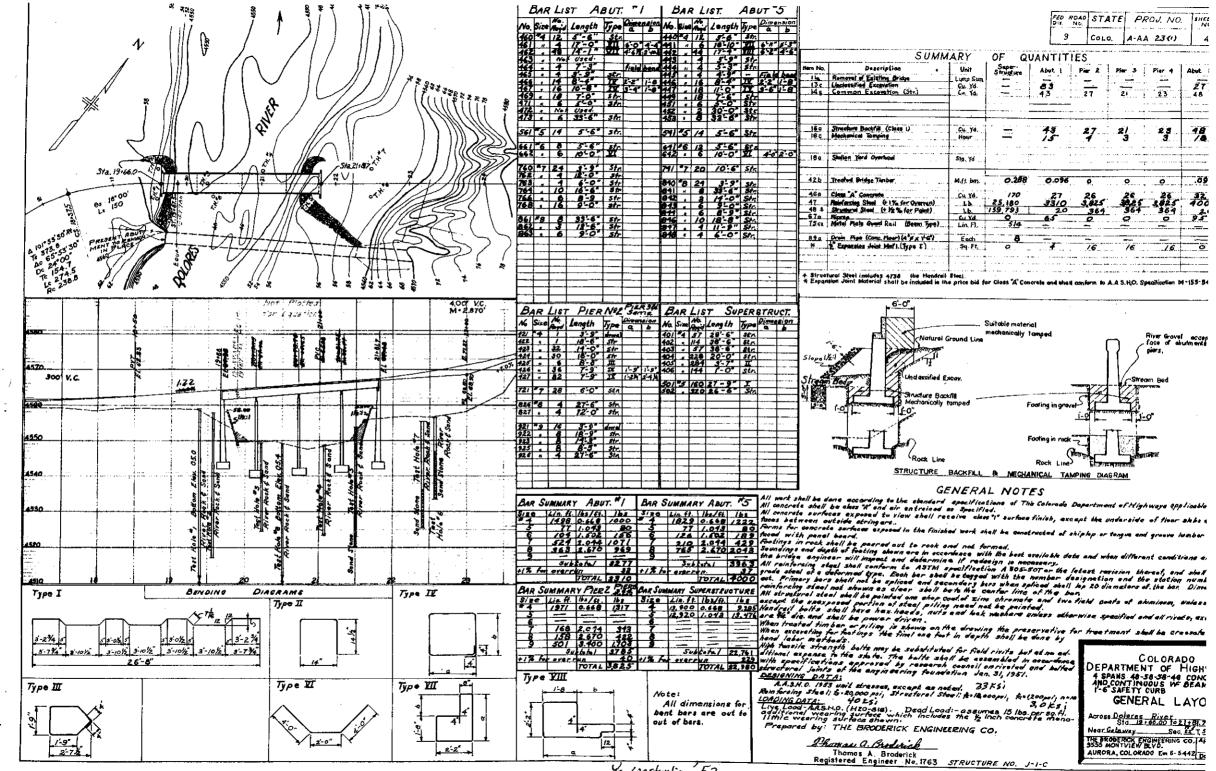

· ·

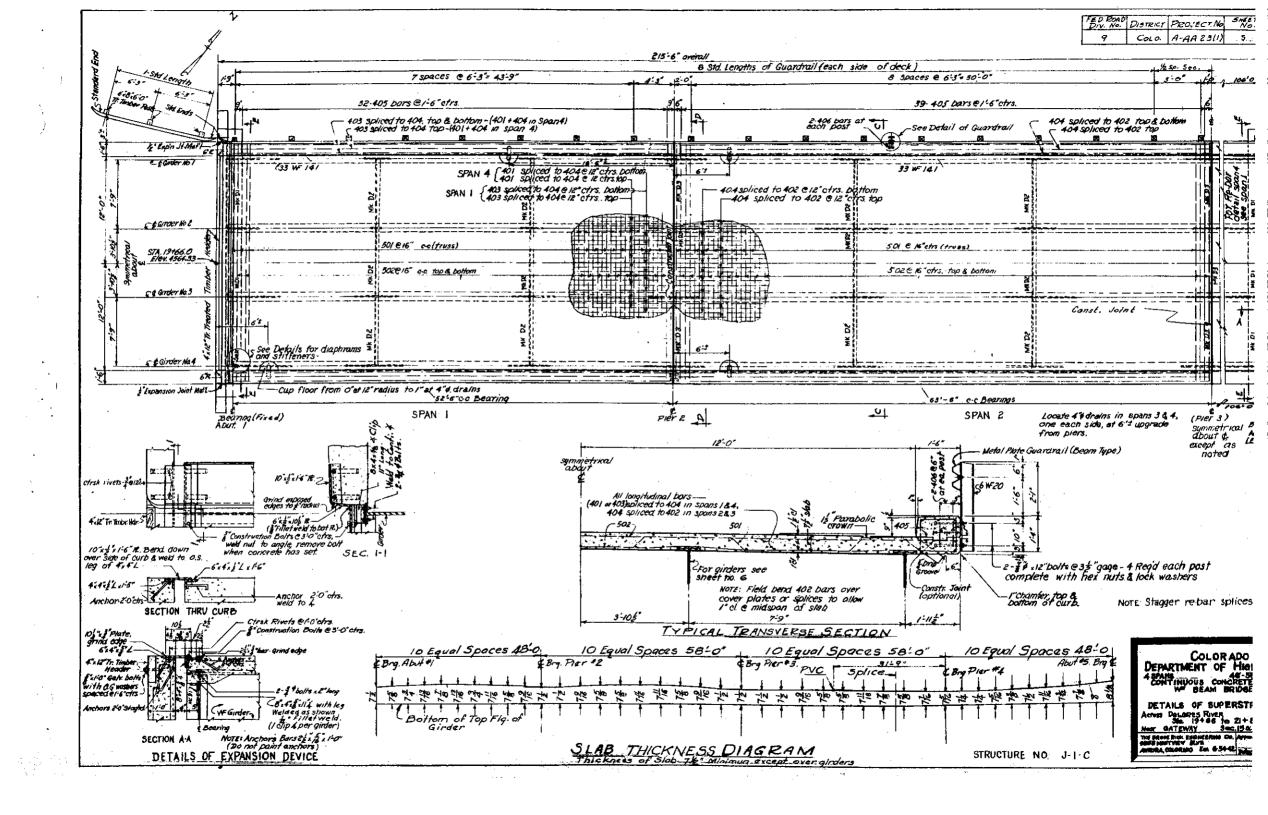


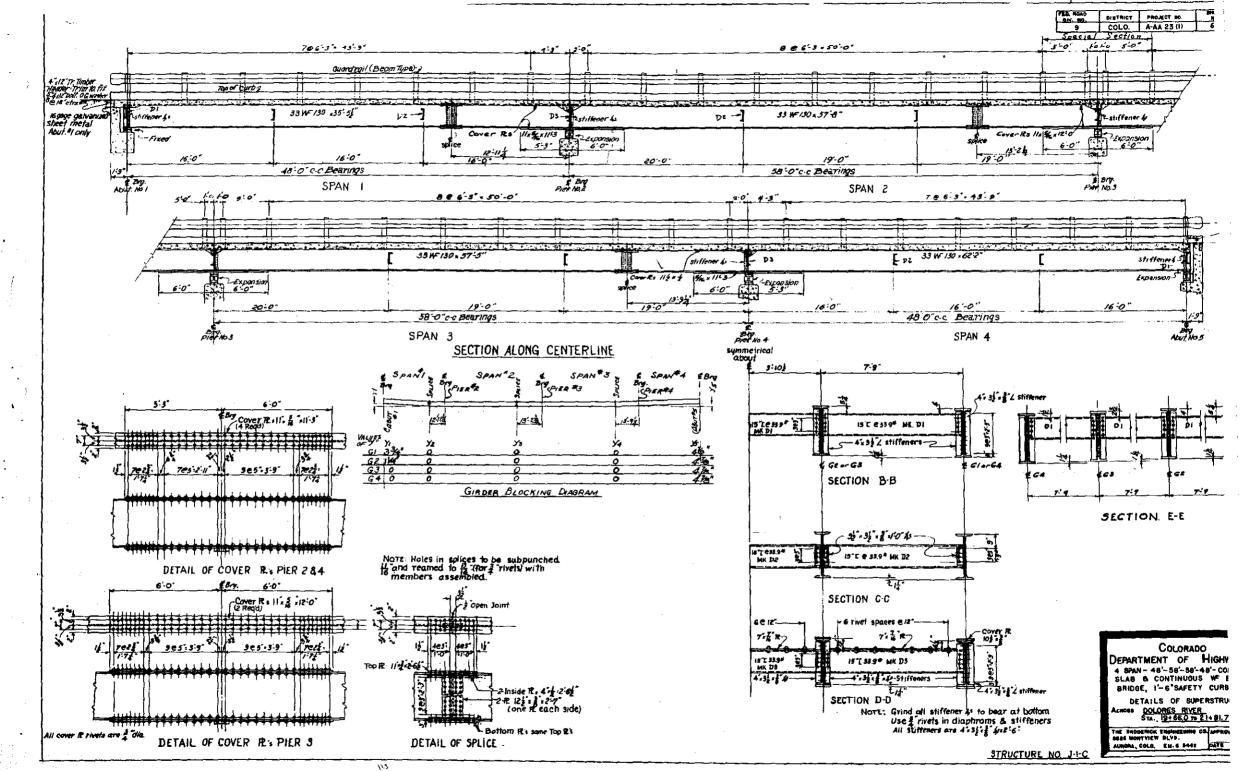

and the second second

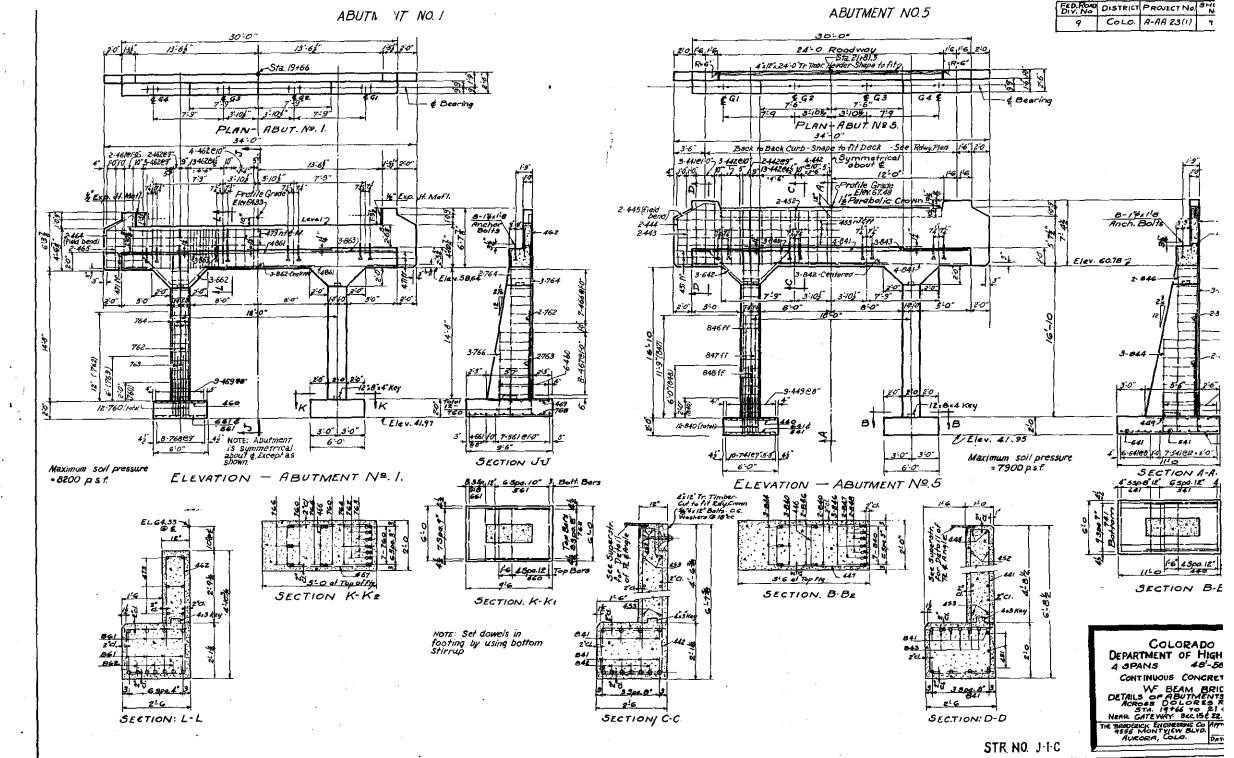


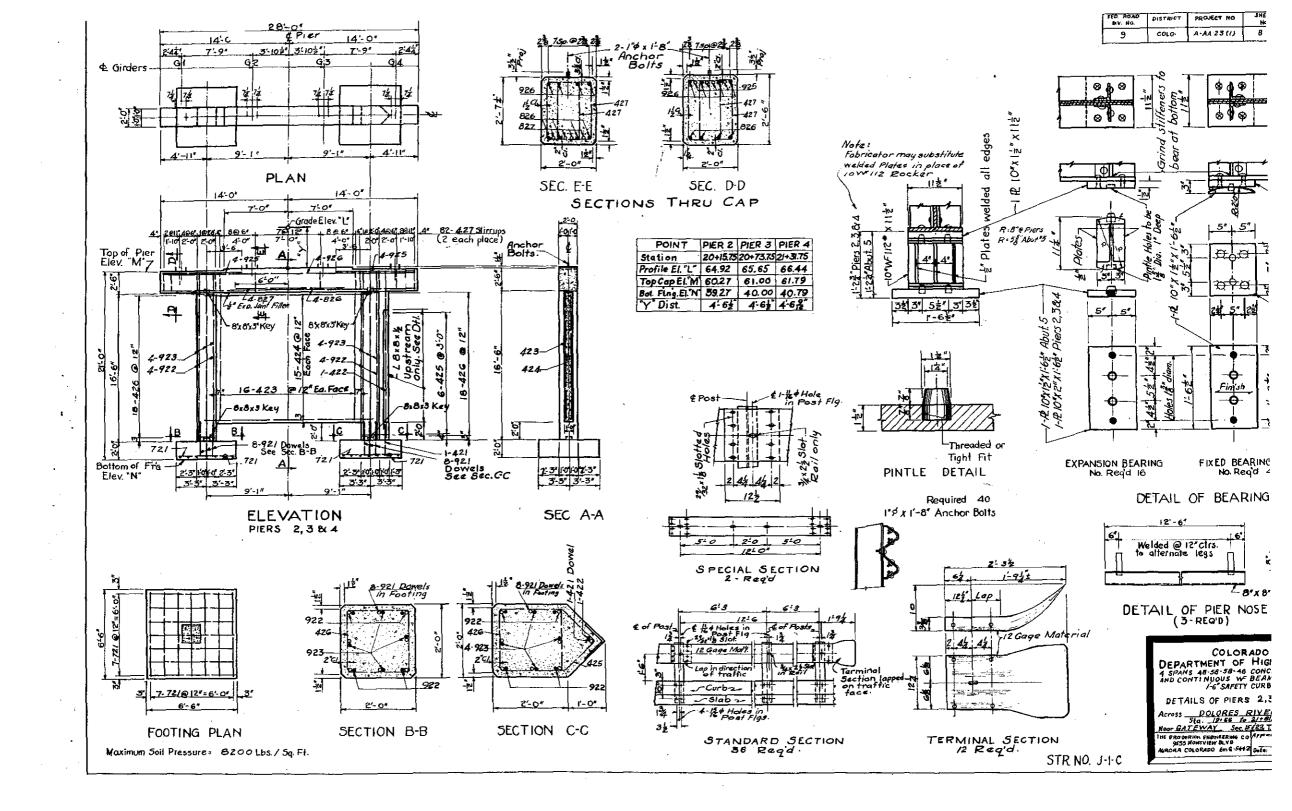

IDARD PILS DH.

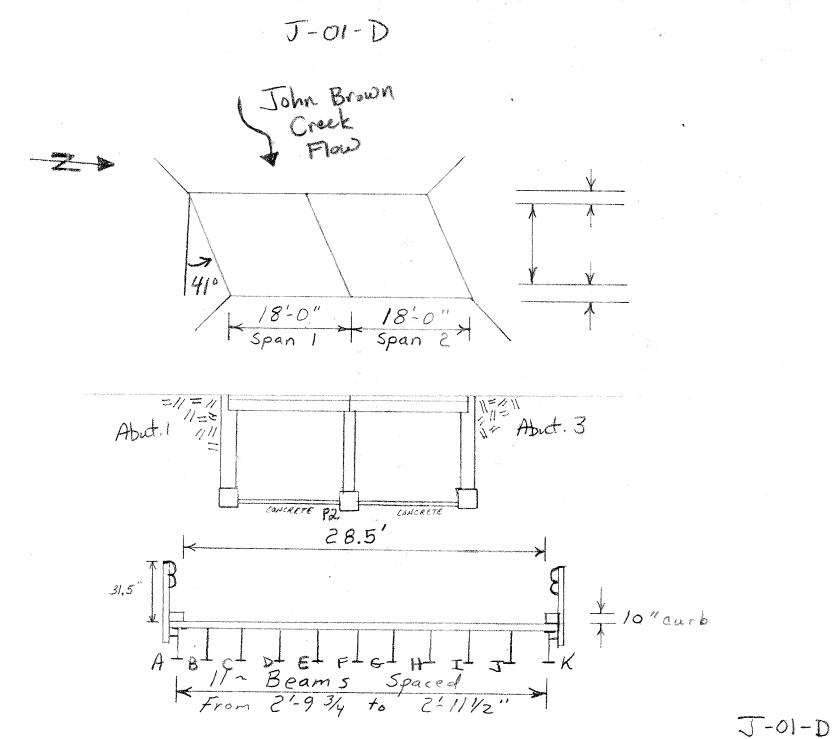


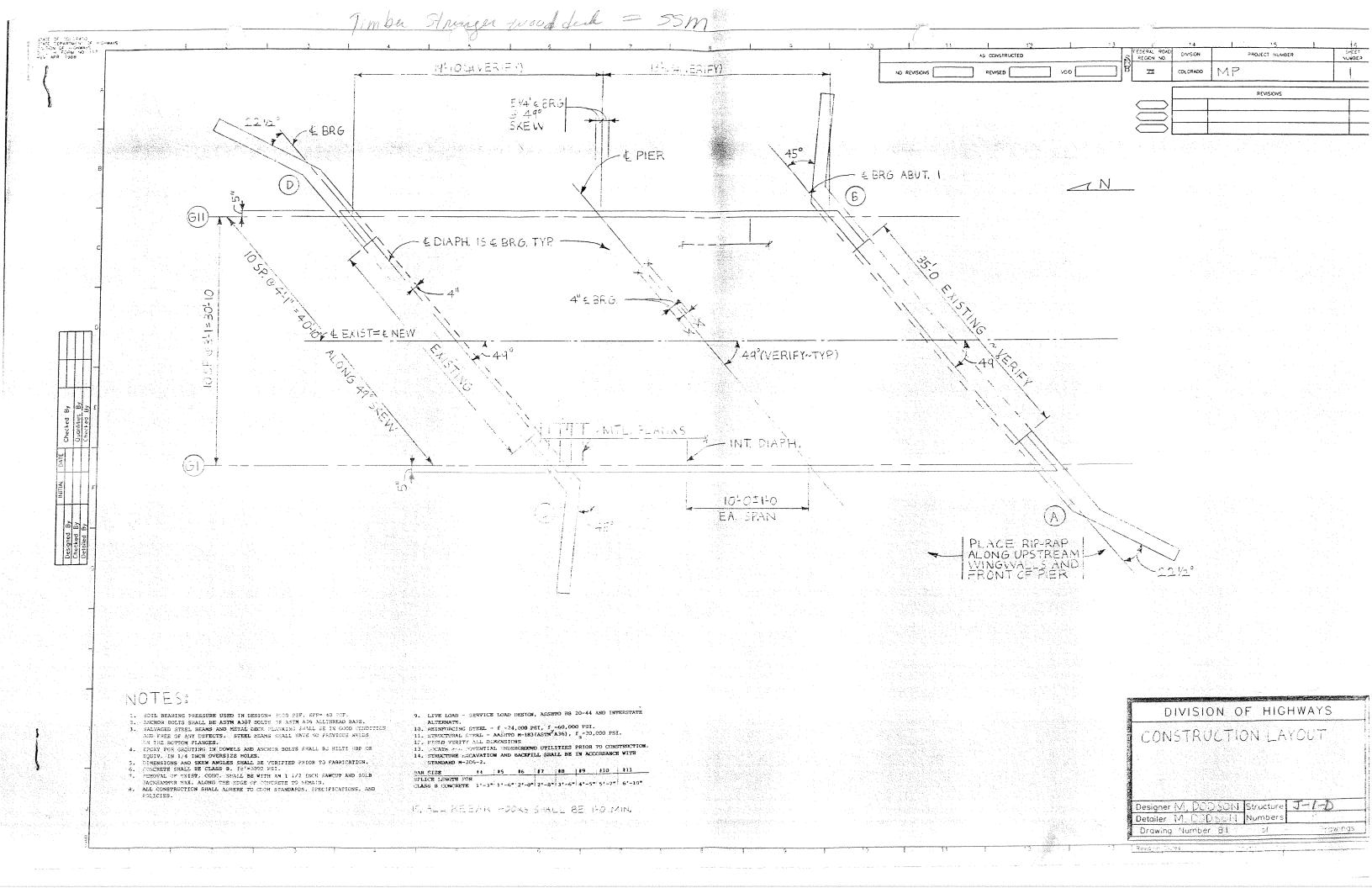


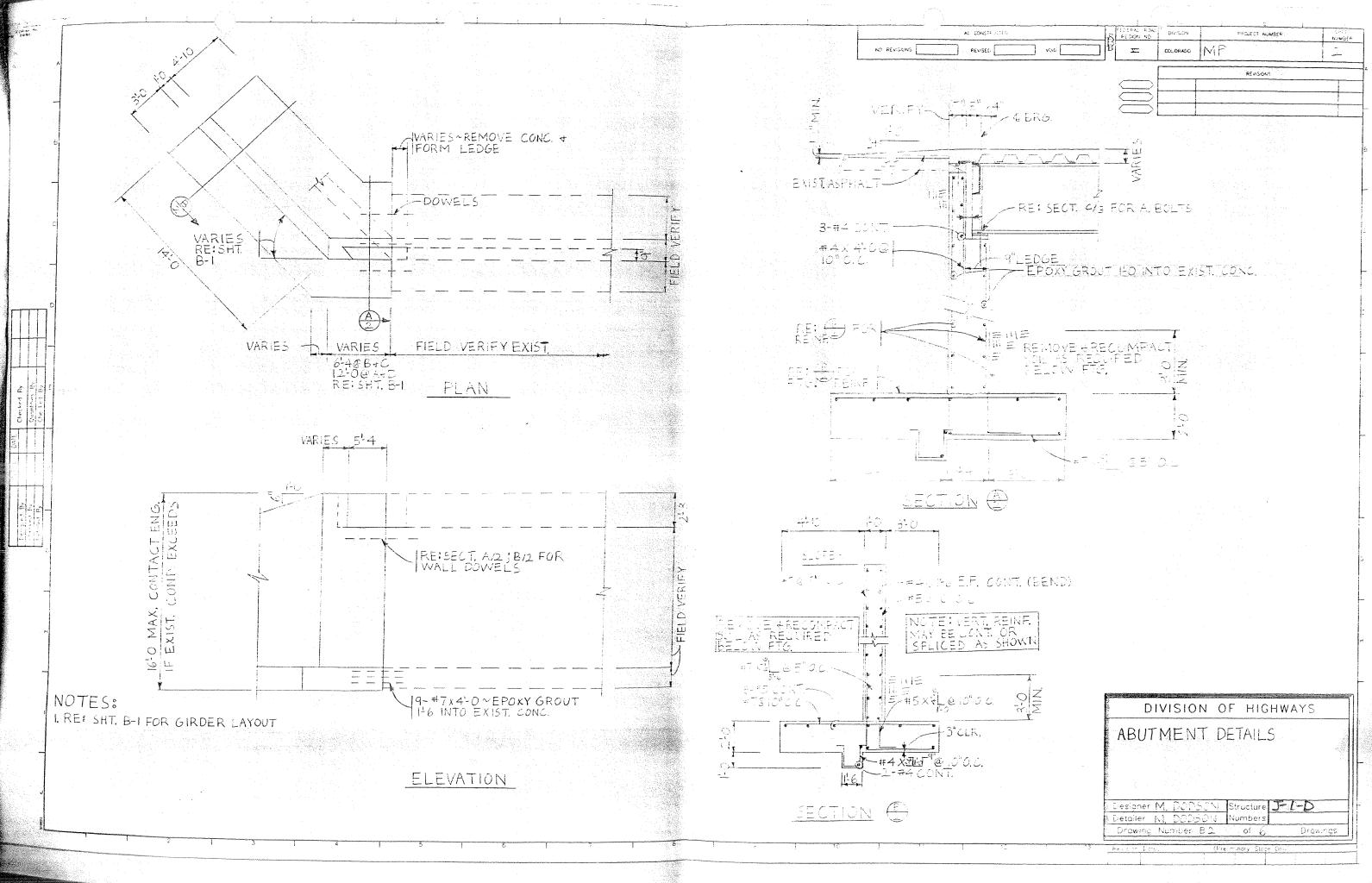


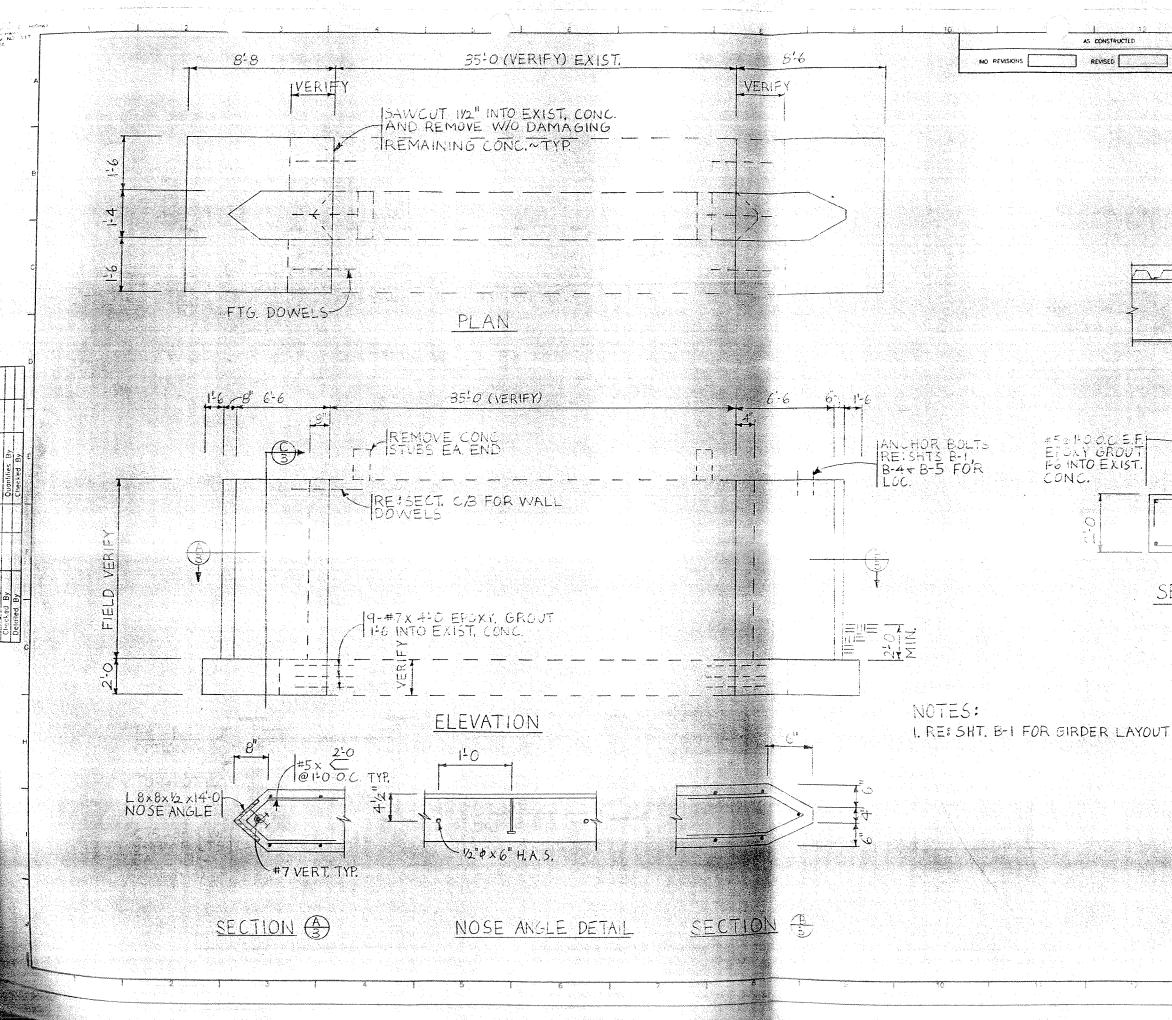


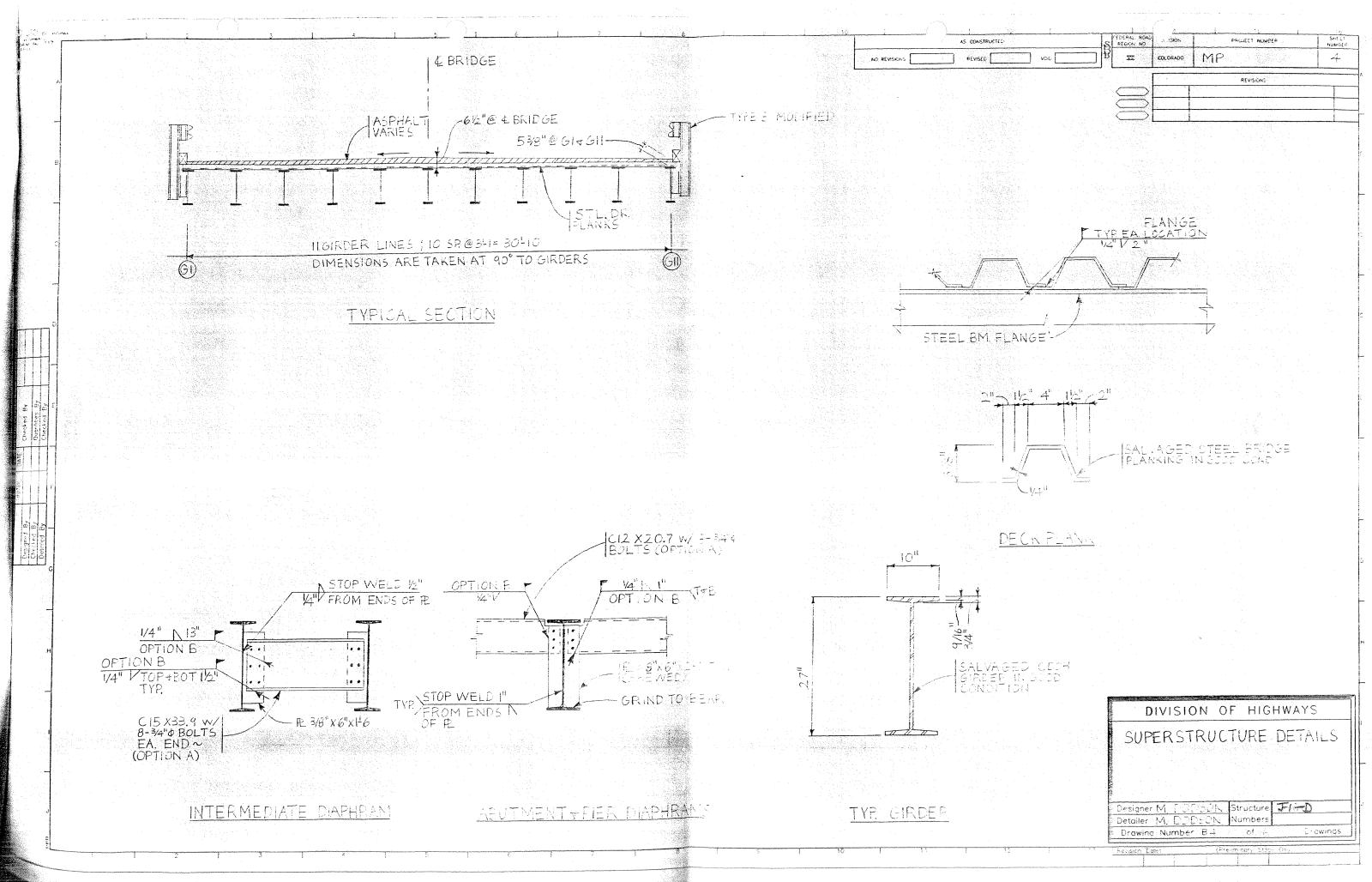


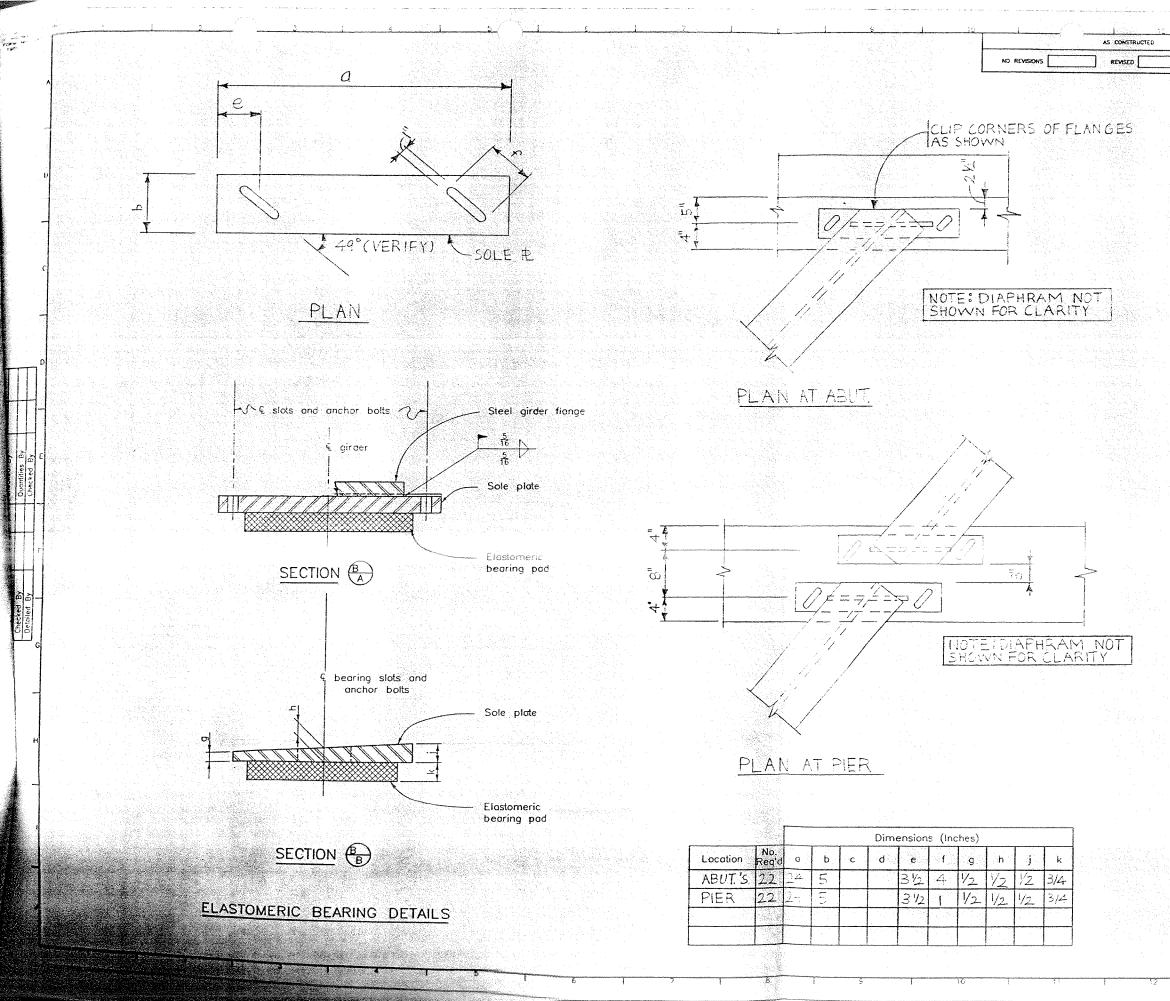

Yr. Construction = 57







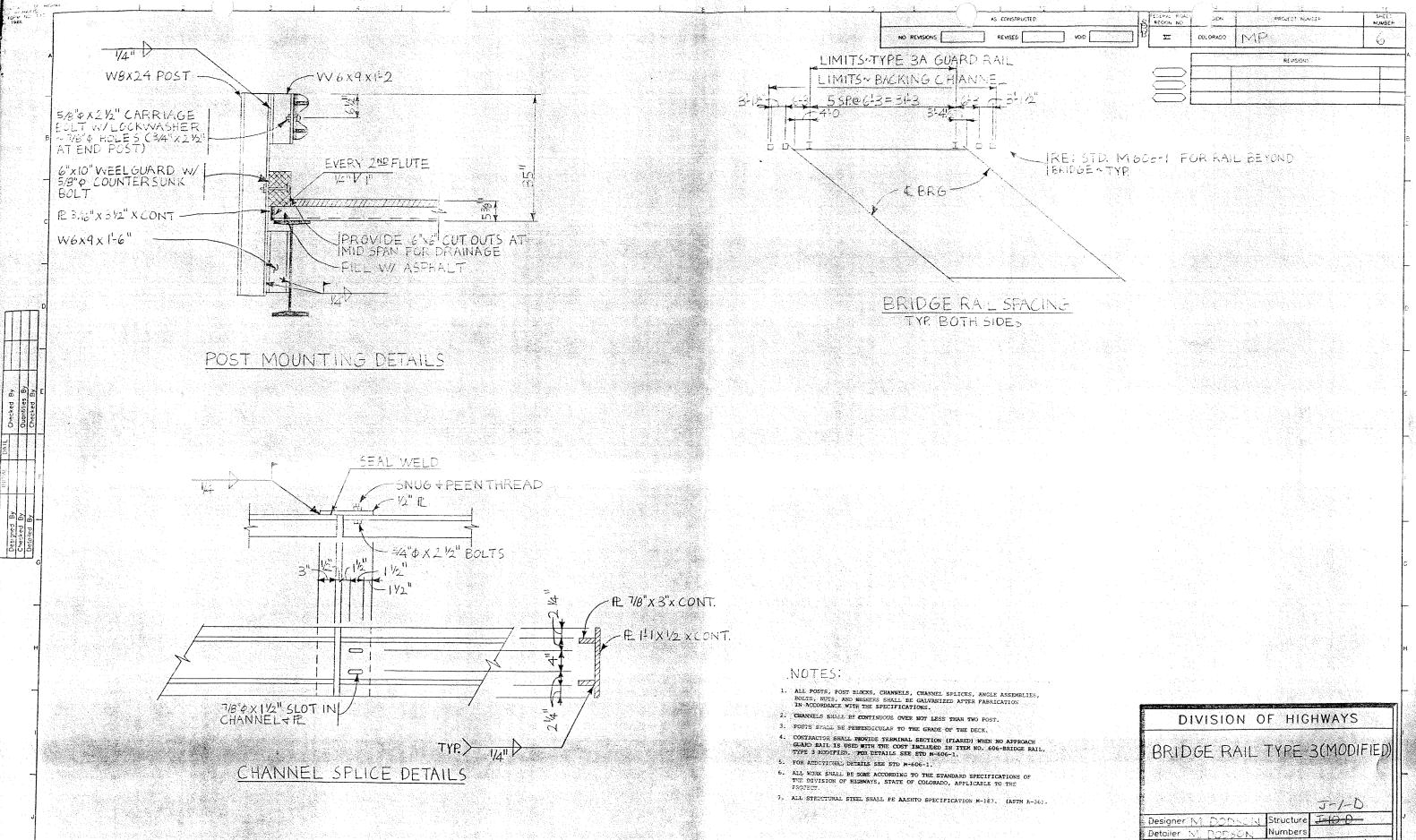




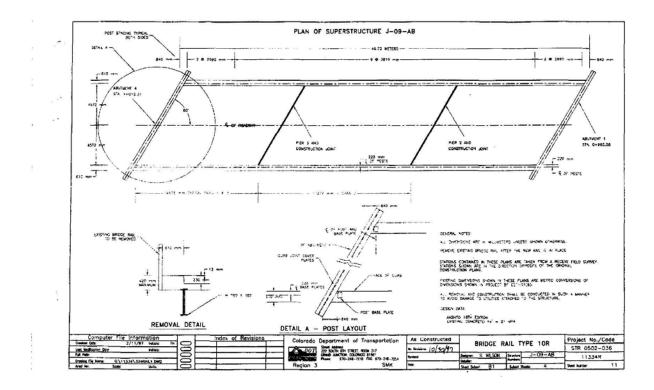
	Designer	Μ.	POPSON	ľ	Structi	he	J-1-D
100	Detailer	M.	DODSQU		Vumbe	ers	
	Drawing	. Nu	muer BA		, of	6	Drawings

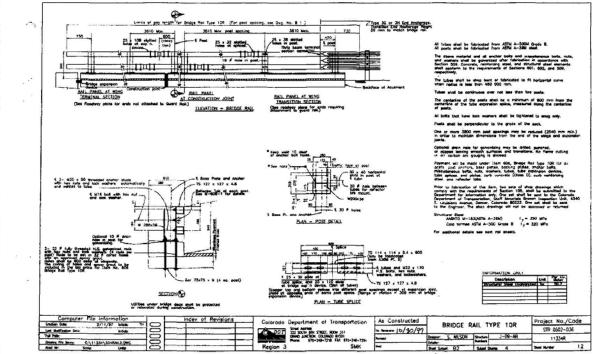
S RECKN NO U. S. O. PROFESSION ADDRESS SHEL? NUMBER VE 3 VOID MP COLORADO REVISION $\overline{}$ ZEPIER SER EFONO ANT A CRULED 374 。 、 年代31日 治QL日: $\sqrt{\sqrt{2}}$ #7812** 0.01 E.F. Ē 文章を正こ TEXT 1 1 -6-#7 LONT REMORE ENERGY Si int (\mathbf{G}) SECTION DIVISION OF HIGHWAYS PIER DETAILS Designer M. DODSON Structure J-D-D Detailer M. DODSON Numbers Drawing Number 83 of 6 Drowings

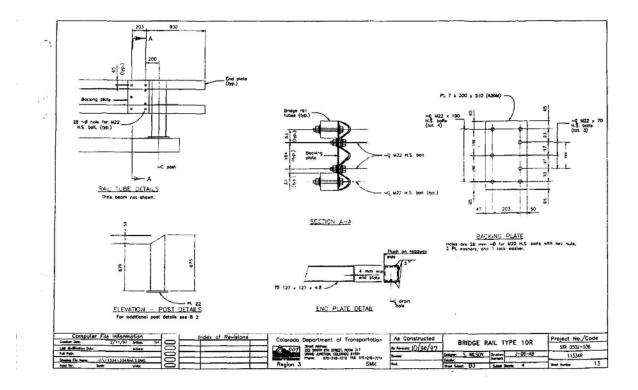
 	FEDERAL ROAL	MISION	PROJECT NUMBER	16 SHELT NUMBER
	3 20	COLORADO	MP	5
			REVISIONS	
		1 3-512	 2—1	

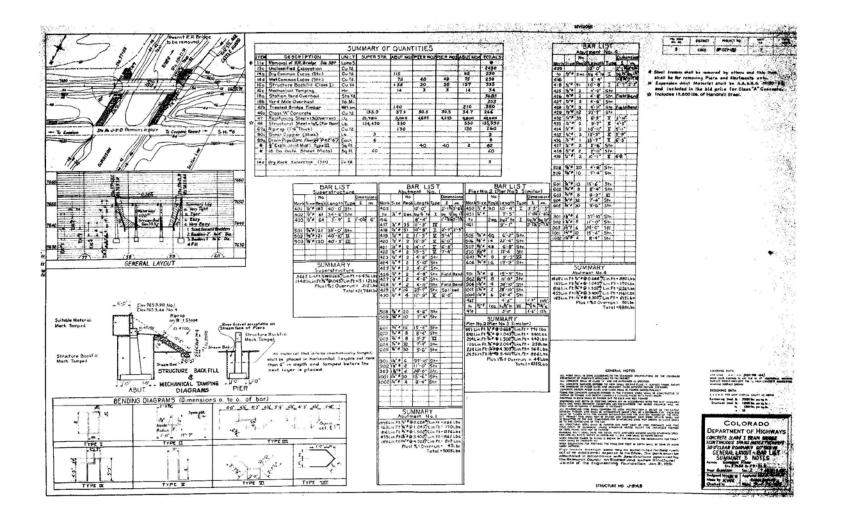

NOTES:

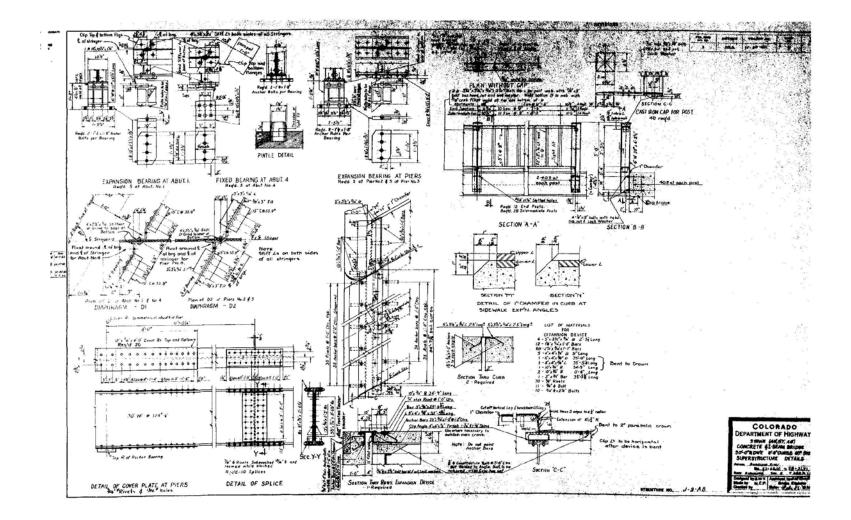
Anchor poit nuts shall be snugged and jammed with jam nuts at fixed bearings. At expansion bearings, provide $\frac{1}{2}$ clearance between jam nut and sole plate under all temperature conditions prior to jamming.

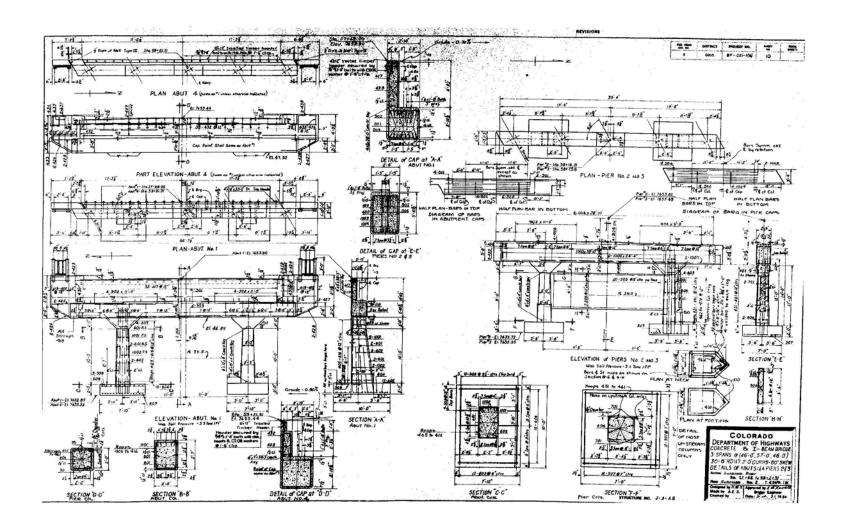

Do not point steel surfaces in contact with elastomeric pad.

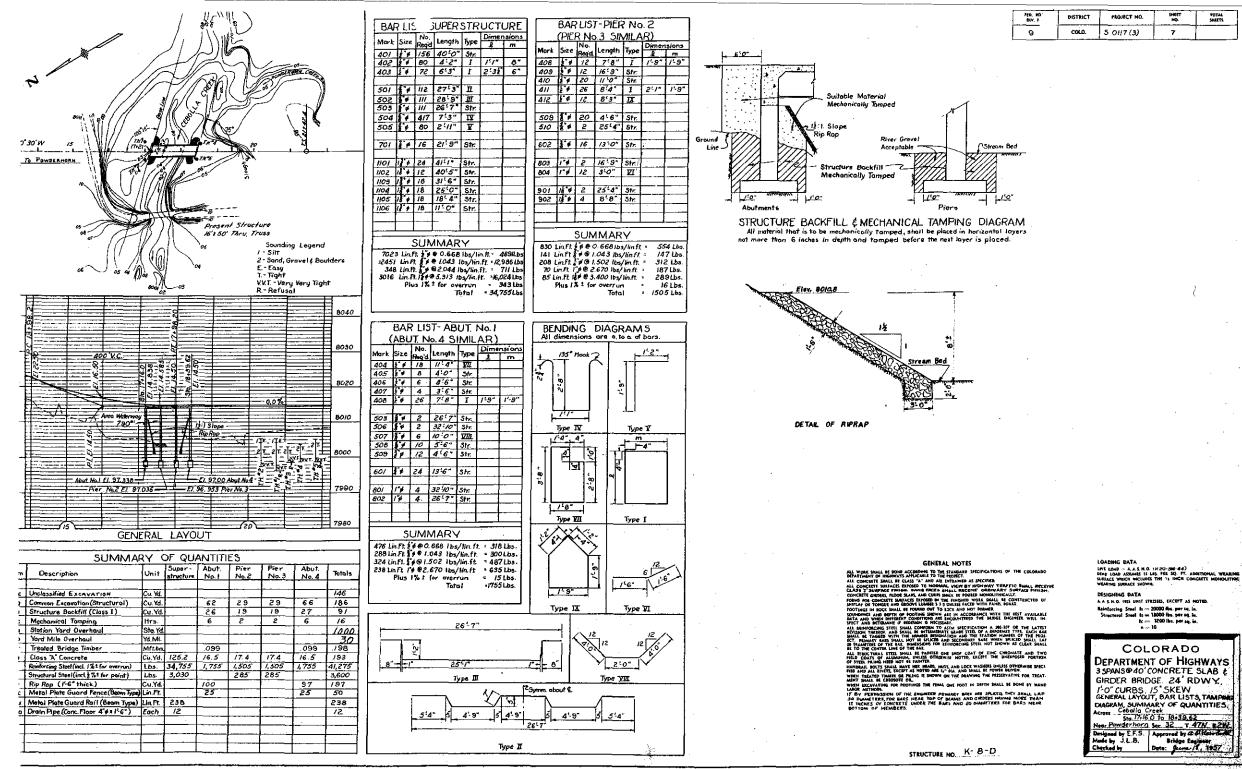

Elastomeric pad, Sole plate, anchor bolts and miscellaneous hardware shall be included in the bid price for Item 512, Bearing Device (Type 1).

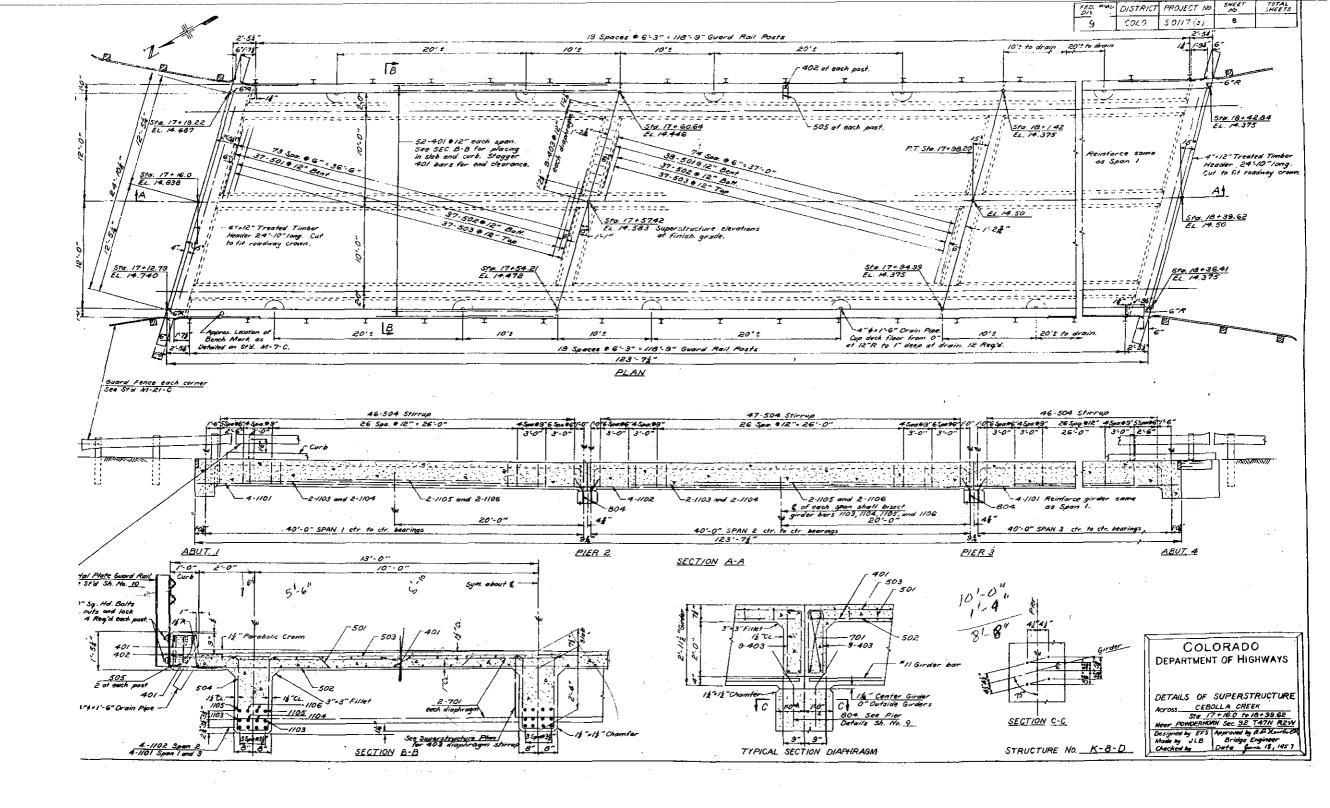

			-	GHWAYS	
	В	FARI	NG DEV	/ICE	
		(т	YPF I)		
		(Т	YPE I)		
		(т	YPE I)	J-1-1	D
Designer	M. Di	<u>ODSOI</u>	N Structure	1.J-10-D	D
Designer Detailer	M. Di	<u>ODSOI</u>		1.J-10-D	<u>D</u>

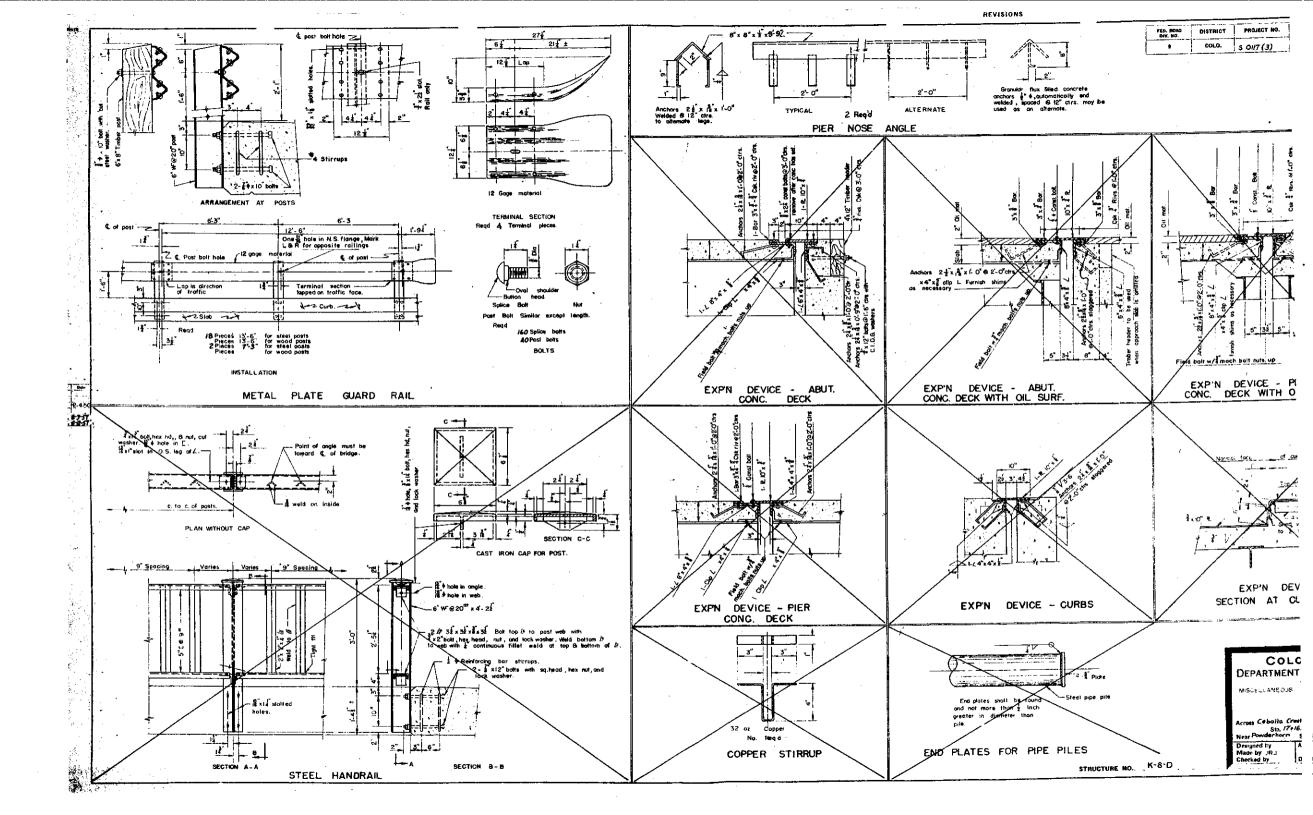

BRIDGE RA	IL TYPE	3(MODIF	IE
			C
가슴 것 같은 것 같은 것 같은 것 같은 것 같은 것 같은 것 같은 것 같이 같이 같이 같이 없다.			
		<u>J-1-D</u>	
Designer M. DODA			
Detoiler M. DODSO	15	6 Drawin	ngs
Drawing Number B	<u> </u>	Same and the second	

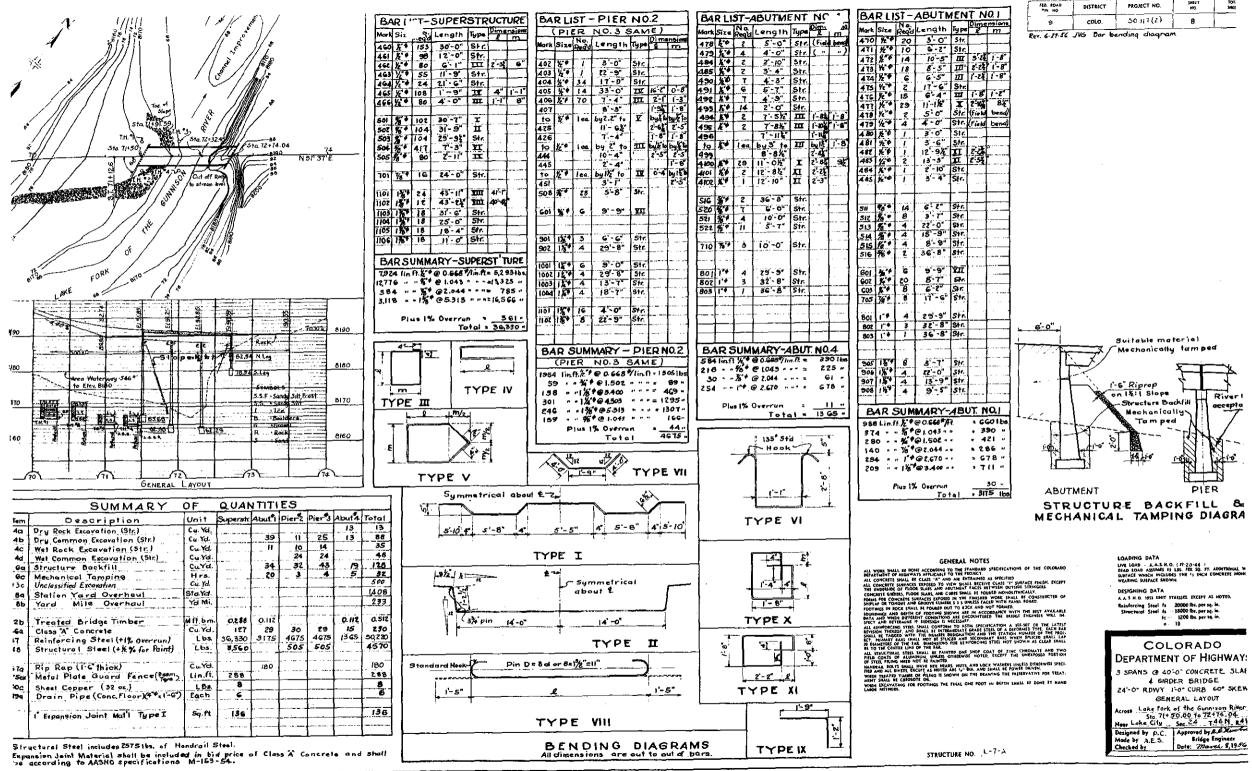




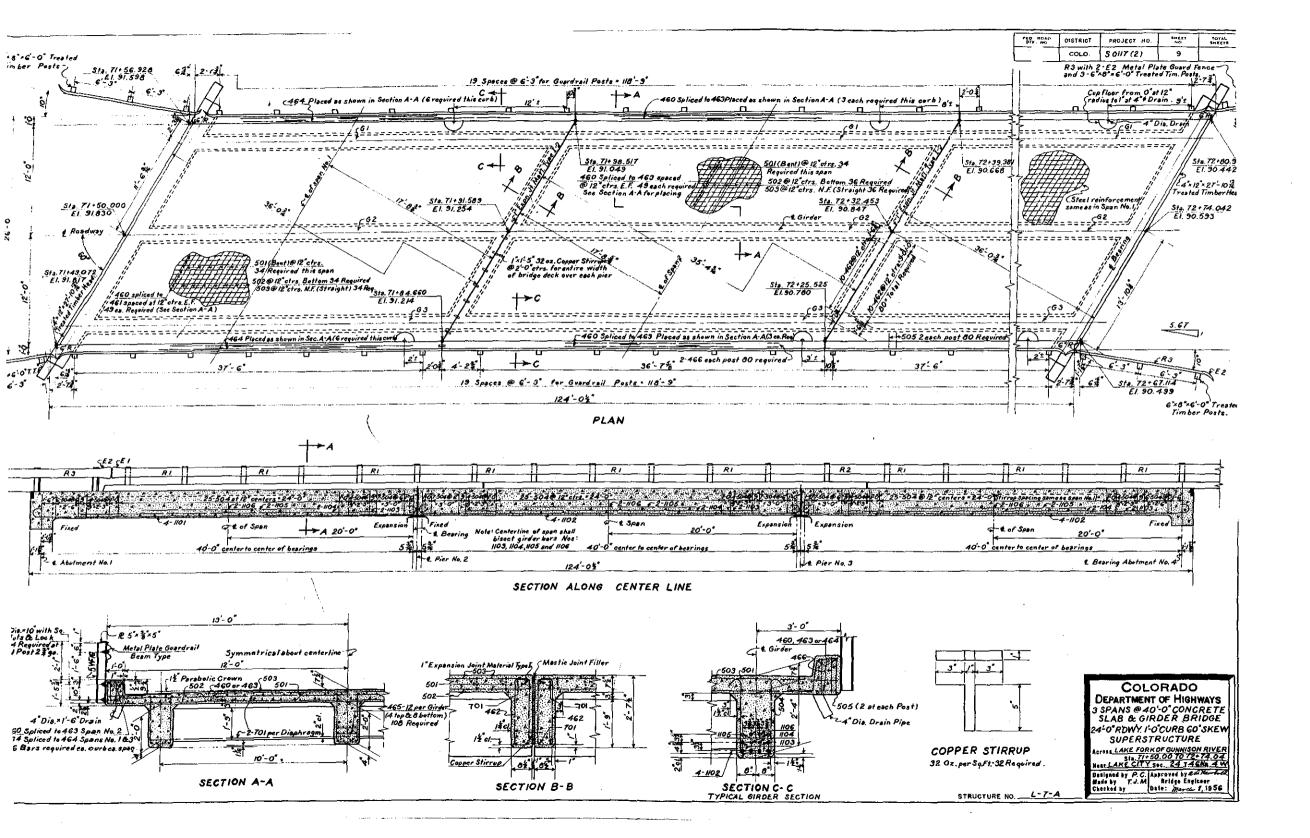



53.8





.



.

.

APPENDIX G – SEDIMENT SIZE ANALYSIS

Two sediment samples were collected from the channel bed near Bridge C-09-AR. Results of the sediment size analysis for the sediment sample collected from the channel are presented below in both tabular and graphical formats.

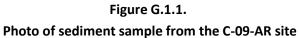
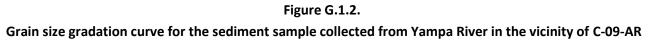
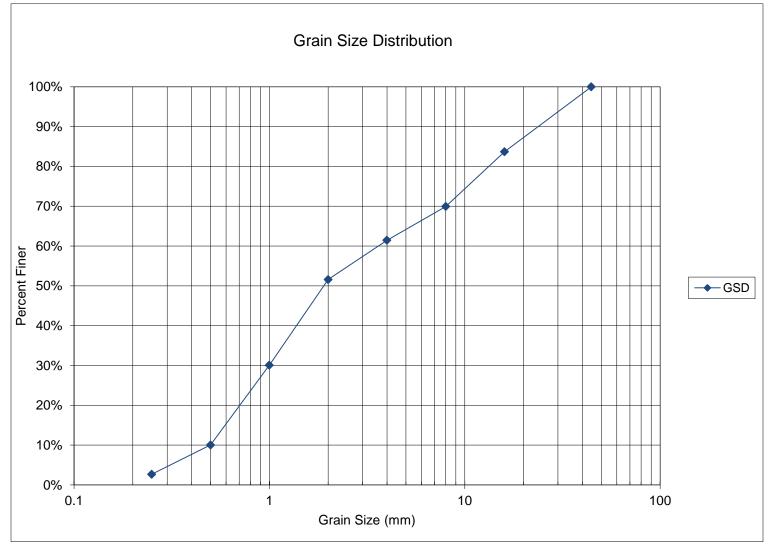
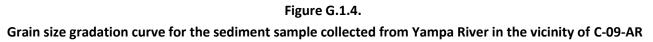




Table G.1.1. Sediment sieve analysis Sample ID: C-09-AR Yampa River Sample Description: 1 of 2 Performed by: JE Date: 8-15-2012

Sieve Size (mm)	% Finer
44.45	100%
16	84%
8	70%
4	61%
2	52%
1	30%
0.5	10%
0.25	3%

Grain size gradation computations for the sediment sample conected from rampa kiver in the vicinity of C-05-AK									
Structure	Waterbody - Yampa	Sample # 1 of 2	Performed by: JE						
# C-09-AR	River	Sample # 1 01 2	Date: 8/15/2012						
Sieve Size (mm)	Weight of Sieve (g)	Weight of Sieve + Soil (g)	Weight of Soil (g)	% Retained	Cumulative % Ret.	% Finer			
44.45	0	0	0	0%	0%	100%			
16	536.47	799.23	262.76	16%	16%	84%			
8	550.36	772.03	221.67	14%	30%	70%			
4	507.95	644.52	136.57	8%	39%	61%			
2	474	633.06	159.06	10%	48%	52%			
1	430.41	776.83	346.42	21%	70%	30%			
0.5	413.58	736.96	323.38	20%	90%	10%			
0.25	392.83	511.28	118.45	7%	97%	3%			
Pan	377.86	421.18	43.32	3%	100%	0%			
		Total Weight of Sample	1611.63						

Table G.1.2.


Grain size gradation computations for the sediment sample collected from Yampa River in the vicinity of C-09-AR

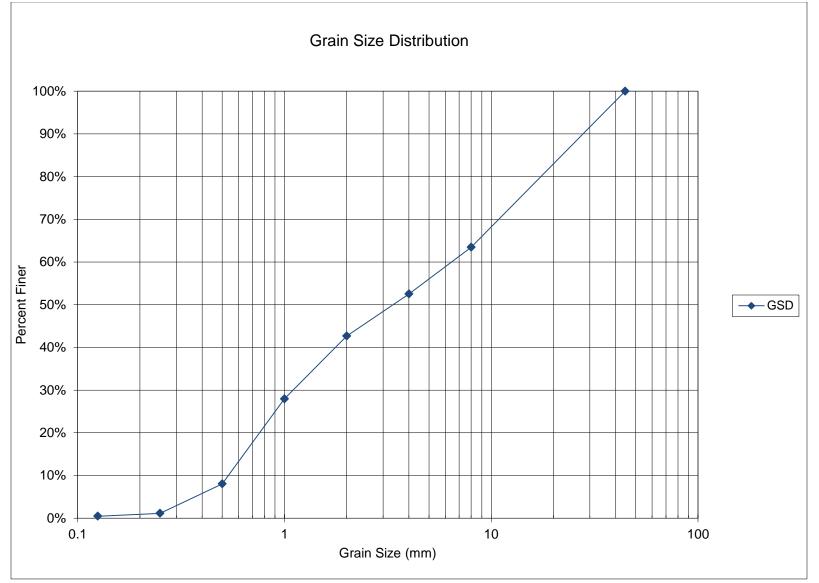
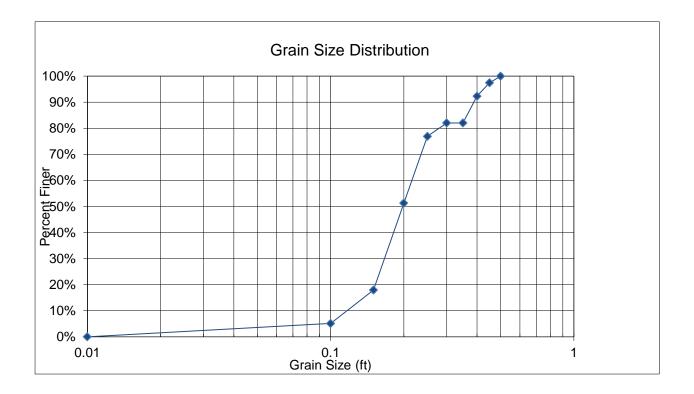


Figure G.1.3. Photo of sediment sample from the C-09-AR site

Table G.1.3. Sediment sieve analysis Sample ID: C-09-AR Yampa River Sample Description: 2 of 2 Performed by: JE Date: 8-15-2012

Sieve Size	% Finer	
(mm)	% FILLEL	
44.45	100%	
8	63%	
4	53%	
2	43%	
1	28%	
0.5	8%	
0.25	1%	
0.125	0%	

Structure #	Waterbody - Yampa	Comula # 2 of 2	Performed by: JE				
C-09-AR	River	Sample # 2 of 2	Date: 8/15/2012				
Sieve Size (mm)	Weight of Sieve (g)	Weight of Sieve + Soil (g)	Weight of Soil (g)	% Retained	Cumulative % Ret.	% Finer	
44.45	0	0	0	0%	0%	100%	
8	550.36	1280.1	729.74	37%	37%	63%	
4	507.95	726.28	218.33	11%	47%	53%	
2	474	670.62	196.62	10%	57%	43%	
1	430.41	724.28	293.87	15%	72%	28%	
0.5	413.58	811.17	397.59	20%	92%	8%	
0.25	392.83	530.53	137.7	7%	99%	1%	
0.125	376.43	389.62	13.19	1%	100%	0%	
Pan	373.86	383.3	9.44	0%	100%	0%	
		Total Weight of Sample	1996.48				


Table G.1.4.

Grain size gradation computations for the sediment sample collected from Yampa River in the vicinity of C-09-AR

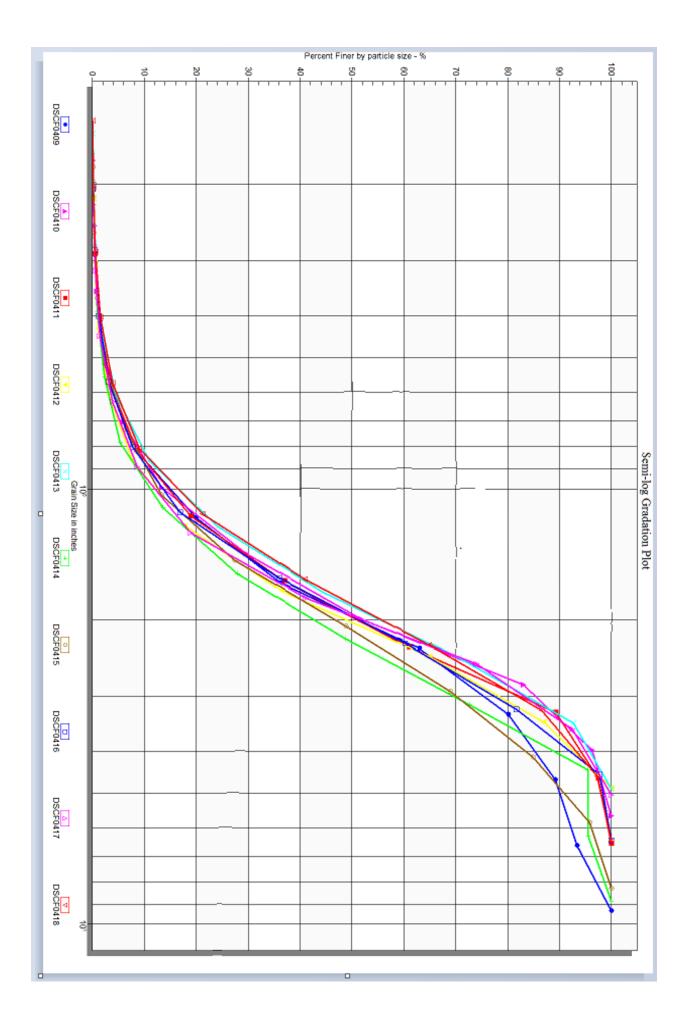
Region	Structure ID	County	Facil	ity Carried	Mile N	Marker	POA Fis	cal Year	Feature Ir	ntersected	D50 min from POA	D50 max from POA
3	C-09-AR	Routt	SH	H 131 ML	64	1.5	20	13	Yampa	a River 1.9		3.4
Sample #	A (ft)	B (ft)		C (ft	:)	Shape	e Factor	[Os (ft)	D	avg (ft)	Volume (ft³)
1	0.38	0.36		0.03	3	0.	081	(0.36	(0.257	0.002
2	0.18	0.1		0.05	5	0.	373		0.1	(0.110	0.000
3	0.5	0.27		0.04	1	0.	109	(0.27	(0.270	0.003
4	0.06	0.04		0.02	2	0.	408	(0.04	(0.040	0.000
5	0.67	0.38		0.26	5	0.	515	(0.38	(0.437	0.035
6	0.3	0.16		0.09	Ð	0.	411	(0.16	(0.183	0.002
7	0.27	0.12		0.03	3	0.	167	(0.12	(0.140	0.001
8	0.38	0.18		0.12	2	0.	459	(D.18	(0.227	0.004
9	0.19	0.18		0.11	L	0.	595	(0.18	(0.160	0.002
10	0.28	0.17		0.08	3	0.	367	Ū	0.17	(0.177	0.002
11	0.28	0.21		0.18	3	0.	742	Ū	0.21	(0.223	0.006
12	0.24	0.2		0.04	1	0.	183		0.2	(0.160	0.001
13	0.36	0.26		0.09	Ð	0.	294		0.26	(0.237	0.004
14	0.45	0.44		0.17	7	0.	382		0.44	(0.353	0.018
15	0.43	0.39		0.13	3	0.	317	Ū	0.39	(0.317	0.011
16	0.39	0.24		0.2		0.	654	(0.24	(0.277	0.010
17	0.69	0.44		0.37	7	0.	672	(0.44	(0.500	0.059
18	0.23	0.15		0.08	3	0.	431	(0.15	(0.153	0.001
19	0.55	0.45		0.18	3	0.	362	(0.45	(0.393	0.023
20	0.23	0.16		0.07	7	0.	365	(0.16	(0.153	0.001
21	0.38	0.19		0.12	2	0.	447	(0.19	(0.230	0.005
22	0.29	0.17		0.1		0.	450	(0.17	(0.187	0.003
23	0.34	0.24		0.04	1	0.	140	(0.24	(0.207	0.002
24	0.15	0.11		0.06	5	0.	467	(0.11	(0.107	0.001
25	0.22	0.17		0.06	5	0.	310	(0.17	(0.150	0.001
26	0.54	0.36		0.22	2	0.	499	(0.36	(0.373	0.022
27	0.23	0.2		0.09	9	0.	420		0.2	(0.173	0.002
28	0.25	0.24		0.05	5	0.	204	Ū	0.24	(0.180	0.002
29	0.2	0.09		0.04	1	0.	298	Ū	0.09	(0.110	0.000
30	0.23	0.2		0.17	7	0.	793		0.2	(0.200	0.004
31	0.3	0.18		0.09	Ð	0.	387	(0.18	(0.190	0.003
32	0.22	0.13		0.09)	0.	532	(0.13	(0.147	0.001
33	0.34	0.24		0.16	5	0.	560		0.24	(0.247	0.007
34	0.26	0.21		0.14	1	0.	599	(0.21	(0.203	0.004
35	0.37	0.22		0.21	L	0.	736	(0.22	(0.267	0.009
36	0.27	0.18		0.05	5	0.	227	(0.18	(0.167	0.001
37	0.15	0.09		0.04	1	0.	344	(0.09	(0.093	0.000
38	0.2	0.14		0.1		0.	598	(0.14	(0.147	0.001
39	0.21	0.18		0.15	5	0.	772		0.18	(0.180	0.003
40	0.27	0.15		0.13	3	0.	646	(0.15	(0.183	0.003

Pebble Count Grain Size Distribution

Structure # C-09-AR	Yampa River at SH 131					
Sieve Size (ft)	Samples Retained	% Retained	Cumulative % Ret.	% Finer		
0.5	0	0%	0%	100%		
0.45	1	3%	3%	97%		
0.4	2	5%	8%	92%		
0.35	4	10%	18%	82%		
0.3	0	0%	18%	82%		
0.25	2	5%	23%	77%		
0.2	10	26%	49%	51%		
0.15	13	33%	82%	18%		
0.1	5	13%	95%	5%		
0.01	2	5%	100%	0%		
Total Samples	39					

Hydraulic Analysis Report

Project Data


Project Title: C-09-AR Designer: Project Date: Friday, September 13, 2013 Project Units: U.S. Customary Units Notes:

Wolman Count Analysis: Gradation Analysis

Notes:

Image Gradation Input Parameters

Name: DSCF0409							
Gradation Type: Image Gradation							
Number of Images: 1							
Image Path: Bridge Pier Scour Scour GSDs_Images\DSCF0409.JPG							
Scale Line Length: 24 in							
Median Filter Radius: 2 px							
Background Subtraction Radius: 3 px							
Advanced Controls:							
Automate Threshold Selection							
Threshold Value: 211							
Morphologic Iterations: 1							
Resolution: 27 %							
Flood Depth: 0.9 px							

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.051469	0	0	0.000000
0.072788	0	0	0.000000
0.102938	0	0	0.000000
0.145576	0	0	0.000000
0.205876	3	3	0.178042
0.291152	5	8	0.474777
0.411751	15	23	1.364985
0.582304	34	57	3.382789
0.823502	89	146	8.664688
1.164608	189	335	19.881306
1.647004	277	612	36.320475
2.329216	448	1060	62.908012
3.294009	291	1351	80.178042
4.658432	151	1502	89.139466
6.588018	72	1574	93.412463
9.316864	111	1685	100.000000

Gradation Result Parameters D5: 0.6562 in D15: 1.0162 in D50: 1.9980 in D85: 4.0282 in D100: 9.3169 in

Image Gradation Input Parameters

Name: DSCF0410 Gradation Type: Image Gradation Number of Images: 1 Image Path: Bridge Pier Scour Scour GSDs_Images\DSCF0410.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 202 Morphologic Iterations: 1 Resolution: 28 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.062258	0	0	0.000000
0.088046	0	0	0.000000
0.124516	0	0	0.000000
0.176092	1	1	0.058411
0.249032	4	5	0.292056
0.352184	9	14	0.817757
0.498063	26	40	2.336449
0.704368	61	101	5.899533
0.996127	128	229	13.376168
1.408736	279	508	29.672897
1.992254	378	886	51.752336
2.817472	536	1422	83.060748
3.984507	226	1648	96.261682
5.634944	64	1712	100.000000

Gradation Result Parameters D5: 0.6523 in D15: 1.0372 in D50: 1.9459 in D85: 2.9889 in D100: 5.6349 in

Image Gradation Input Parameters

Name: DSCF0411 Gradation Type: Image Gradation Number of Images: 1 Image Path: Bridge Pier Scour Scour GSDs_Images\DSCF0411.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 208 Morphologic Iterations: 1 Resolution: 27 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.051029	0	0	0.000000
0.072166	0	0	0.000000
0.102058	0	0	0.000000
0.144332	0	0	0.000000
0.204116	2	2	0.112613
0.288664	6	8	0.450450
0.408233	16	24	1.351351
0.577328	38	62	3.490991
0.816465	90	152	8.558559
1.154656	184	336	18.918919
1.632930	320	656	36.936937
2.309312	427	1083	60.979730
3.265860	502	1585	89.245495
4.618624	146	1731	97.466216
6.531721	45	1776	100.000000

Gradation Result Parameters D5: 0.6485 in D15: 1.0267 in D50: 2.0004 in D85: 3.1222 in D100: 6.5317 in

Image Gradation Input Parameters

Name: DSCF0412 Gradation Type: Image Gradation Number of Images: 1 Image Path: Bridge Pier Scour Scour GSDs_Images\DSCF0412.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 208 Morphologic Iterations: 1 Resolution: 28 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.053685	0	0	0.000000
0.075922	0	0	0.000000
0.107370	0	0	0.000000
0.151844	0	0	0.000000
0.214740	2	2	0.114155
0.303688	5	7	0.399543
0.429480	13	20	1.141553
0.607376	35	55	3.139269
0.858959	79	134	7.648402
1.214752	177	311	17.751142
1.717919	325	636	36.301370
2.429504	502	1138	64.954338
3.435838	386	1524	86.986301
4.859008	228	1752	100.000000

Gradation Result Parameters D5: 0.7112 in D15: 1.1179 in D50: 2.0581 in D85: 3.3451 in D100: 4.8590 in

Image Gradation Input Parameters

Name: DSCF0413 Gradation Type: Image Gradation Number of Images: 1 Image Path: Bridge Pier Scour Scour GSDs_Images\DSCF0413.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 212 Morphologic Iterations: 1 Resolution: 28 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.054003	0	0	0.000000
0.076372	0	0	0.000000
0.108006	0	0	0.000000
0.152744	1	1	0.050403
0.216013	3	4	0.201613
0.305488	8	12	0.604839
0.432025	22	34	1.713710
0.610976	55	89	4.485887
0.864051	128	217	10.937500
1.221952	262	479	24.143145
1.728101	401	880	44.354839
2.443904	520	1400	70.564516
3.456202	439	1839	92.691532
4.887808	145	1984	100.000000

Gradation Result Parameters D5: 0.6311 in D15: 0.9742 in D50: 1.8823 in D85: 3.1043 in D100: 4.8878 in

Image Gradation Input Parameters

Name: DSCF0414 Gradation Type: Image Gradation Number of Images: 1 Image Path: Bridge Pier Scour Scour GSDs_Images\DSCF0414.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 203 Morphologic Iterations: 1 Resolution: 29 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.069212	0	0	0.000000
0.097880	0	0	0.000000
0.138423	0	0	0.000000
0.195760	1	1	0.058789
0.276846	4	5	0.293945
0.391520	11	16	0.940623
0.553693	23	39	2.292769
0.783040	52	91	5.349794
1.107386	140	231	13.580247
1.566080	244	475	27.924750
2.214772	355	830	48.794827
3.132160	406	1236	72.663139
4.429543	389	1625	95.532040
6.264320	0	1625	95.532040
8.859086	76	1701	100.000000

Gradation Result Parameters D5: 0.7568 in D15: 1.1528 in D50: 2.2611 in D85: 3.8320 in D100: 8.8591 in

Image Gradation Input Parameters

Name: DSCF0415 Gradation Type: Image Gradation Number of Images: 1 Image Path: Bridge Pier Scour Scour GSDs_Images\DSCF0415.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 208 Morphologic Iterations: 1 Resolution: 28 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.045690	0	0	0.000000
0.064616	0	0	0.000000
0.091381	0	0	0.000000
0.129232	0	0	0.000000
0.182762	1	1	0.058140
0.258464	3	4	0.232558
0.365523	10	14	0.813953
0.516928	25	39	2.267442
0.731047	71	110	6.395349
1.033856	119	229	13.313953
1.462093	242	471	27.383721
2.067712	368	839	48.779070
2.924186	347	1186	68.953488
4.135424	275	1461	84.941860
5.848373	186	1647	95.755814
8.270848	73	1720	100.000000

Gradation Result Parameters D5: 0.6587 in D15: 1.0852 in D50: 2.1195 in D85: 4.1446 in D100: 8.2708 in

Image Gradation Input Parameters

Name: DSCF0416 Gradation Type: Image Gradation Number of Images: 1 Image Path: Bridge Pier Scour Scour GSDs_Images\DSCF0416.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 205 Morphologic Iterations: 1 Resolution: 28 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.070923	0	0	0.000000
0.100300	0	0	0.000000
0.141846	0	0	0.000000
0.200600	2	2	0.110865
0.283691	6	8	0.443459
0.401200	14	22	1.219512
0.567382	34	56	3.104213
0.802400	83	139	7.705100
1.134765	165	304	16.851441
1.604800	344	648	35.920177
2.269530	438	1086	60.199557
3.209600	387	1473	81.651885
4.539060	290	1763	97.727273
6.419200	41	1804	100.000000

Gradation Result Parameters D5: 0.6642 in D15: 1.0675 in D50: 1.9903 in D85: 3.4865 in D100: 6.4192 in

Image Gradation Input Parameters

Name: DSCF0417 Gradation Type: Image Gradation Number of Images: 1 Image Path: Bridge Pier Scour Scour GSDs_Images\DSCF0417.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 204 Morphologic Iterations: 1 Resolution: 28 % Flood Depth: 0.9 px

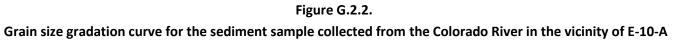
Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.055775	0	0	0.000000
0.078878	0	0	0.000000
0.111550	0	0	0.000000
0.157756	0	0	0.000000
0.223101	3	3	0.184162
0.315512	5	8	0.491099
0.446201	15	23	1.411909
0.631024	39	62	3.806016
0.892403	78	140	8.594230
1.262048	168	308	18.907305
1.784805	362	670	41.129527
2.524096	535	1205	73.971762
3.569611	302	1507	92.510743
5.048192	122	1629	100.000000

Gradation Result Parameters D5: 0.6962 in D15: 1.1220 in D50: 1.9845 in D85: 3.1460 in D100: 5.0482 in

Image Gradation Input Parameters

Name: DSCF0418 Gradation Type: Image Gradation Number of Images: 1 Image Path: Bridge Pier Scour Scour GSDs_Images\DSCF0418.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 207 Morphologic Iterations: 1 Resolution: 29 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.050496	0	0	0.000000
0.071412	0	0	0.000000
0.100992	0	0	0.000000
0.142824	1	1	0.054259
0.201984	2	3	0.162778
0.285648	7	10	0.542594
0.403967	18	28	1.519262
0.571296	42	70	3.798155
0.807935	96	166	9.007054
1.142592	224	390	21.161150
1.615869	365	755	40.965817
2.285184	441	1196	64.894194
3.231738	399	1595	86.543679
4.570368	197	1792	97.232773
6.463476	51	1843	100.000000


Two sediment samples were collected from the channel bed near Bridge E-10-A. Results of the sediment size analysis for the sediment sample collected from the channel are presented below in both tabular and graphical formats.

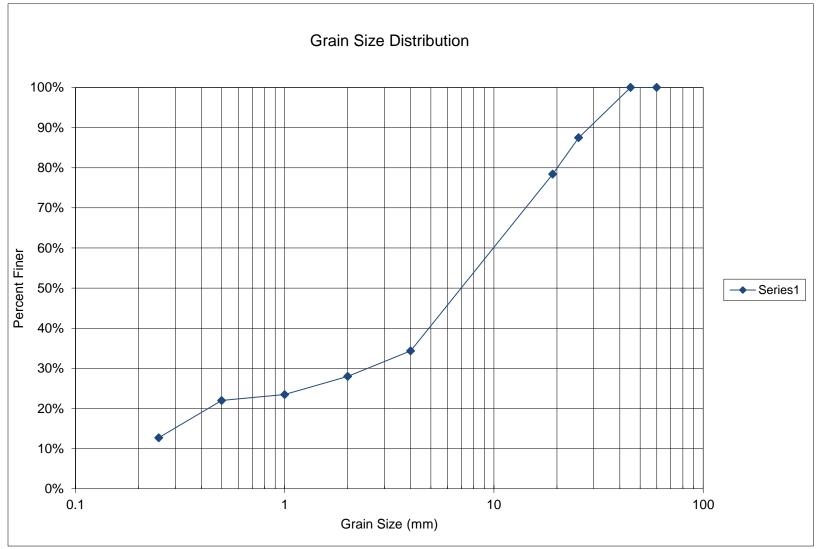


Figure G.2.1. Photo of sediment sample from the E-10-A site

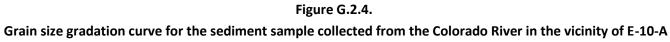
Table G.2.1. Sediment sieve analysis Sample ID: E-10-A Up RR, Colorado River Sample Description: 1 of 2 Performed by: JE Date: 9-20-2011

Sieve Size (mm)	% Finer
60	100%
44.45	100%
25.4	87%
19.1	78%
4	34%
2	28%
1	23%
0.5	22%
0.25	13%

Grain	Grain size gradation computations for the sediment sample conected from the colorado River in the vicinity of E-10-A							
Structure	Waterbody - Upper	Sample # 1 of 2	Performed by: JE					
# E-10-A	Colorado River			Date: 9,	/20/2011			
Sieve Size (mm)	Weight of Sieve (g)	Weight of Sieve + Soil (g)	Weight of Soil (g)	% Retained	Cumulative % Ret.	% Finer		
60	0	0	0	0%	0%	100%		
45	0	0	0	0%	0%	100%		
25.4	692.82	1029.1	336.28	13%	13%	87%		
19.1	610.29	854.01	243.72	9%	22%	78%		
4	507.9	1692.4	1184.5	44%	66%	34%		
2	476.34	646.98	170.64	6%	72%	28%		
1	452.76	574.39	121.63	5%	77%	23%		
0.5	456.43	496.53	40.1	1%	78%	22%		
0.25	395.56	644.93	249.37	9%	87%	13%		
Pan	368.74	710.86	342.12	13%	100%	0%		
		Total Weight of Sample	2688.36					

Table G.2.2.

Grain size gradation computations for the sediment sample collected from the Colorado River in the vicinity of E-10-A



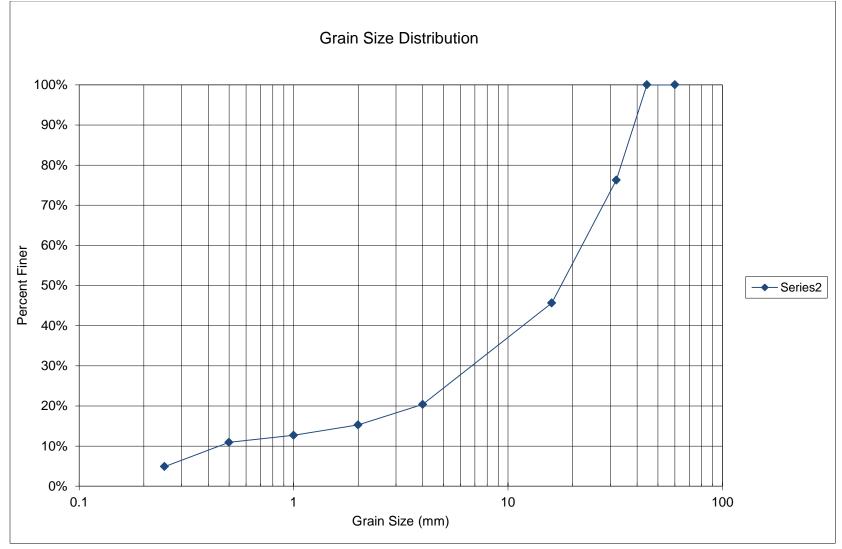

Figure G.2.3. Photo of sediment sample from the E-10-A site

Table G.2.3.

Sediment sieve analysis Sample ID: E-10-A Up RR, Colorado River Sample Description: 2 of 2 Performed by: JE Date: 9-20-2011

Sieve Size (mm)	% Finer
60	100%
44.45	100%
32	76%
16	46%
4	20%
2	15%
1	13%
0.5	11%
0.25	5%

Structure # E-10-A	Waterbody - Upper Colorado River	Sample # 2 of 2	Performed by: JE Date: 9/20/2011			
Sieve Size (mm)	Weight of Sieve (g)	Weight of Sieve + Soil (g)	Weight of Soil (g)	% Retained	Cumulative % Ret.	% Finer
60	0	0	0	0%	0%	100%
44.45	0	0	0	0%	0%	100%
32	549.32	1281.9	732.58	24%	24%	76%
16	558.8	1503.6	944.8	31%	54%	46%
4	507.92	1287.9	779.98	25%	80%	20%
2	476.34	633.57	157.23	5%	85%	15%
1	452.76	532.96	80.2	3%	87%	13%
0.5	456.43	510.86	54.43	2%	89%	11%
0.25	402.38	588.49	186.11	6%	95%	5%
Pan	368.73	519.61	150.88	5%	100%	0%
		Total Weight of Sample	3086.21			

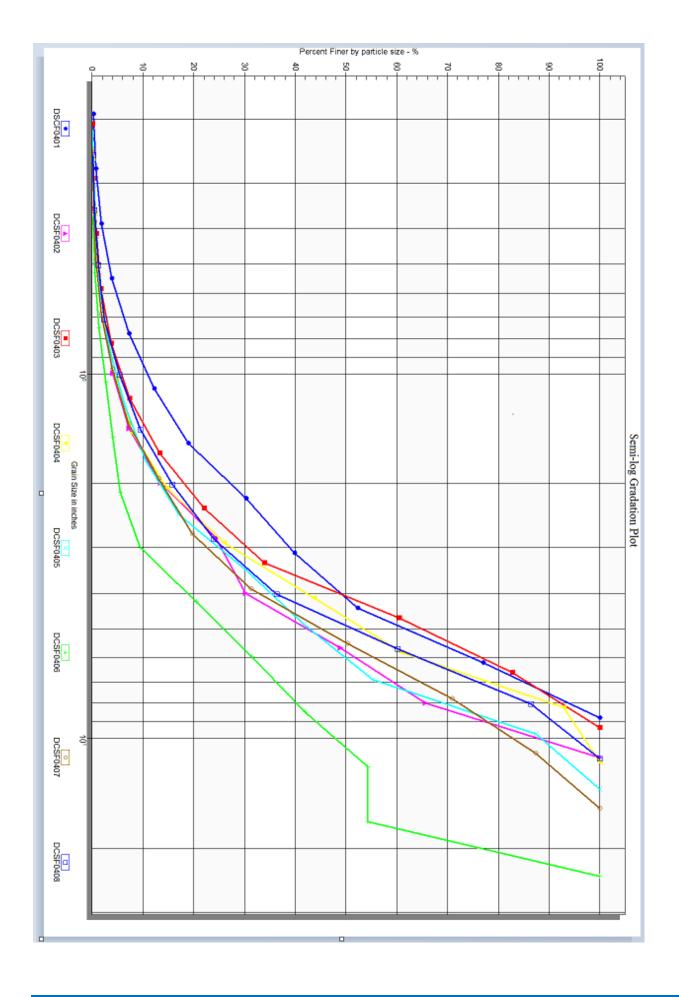

Table G.2.4.

Grain size gradation computations for the sediment sample collected from the Colorado River in the vicinity of E-10-A

Region	Structure ID	County	Facili	ty Carried	Mile Ma	rker F	POA Fiscal	Year	Feature Inter	sected	D50 min from P	DA D5	o max from POA
3	E-10-A	Eagle	SH	131 ML	13.6		2012		Colorado R	iver	7		17
Sample #	A (ft)	B (ft)		C (f	t)	Shape	Factor	D	os (ft)		Davg (ft)	Vo	olume (ft³)
1	0.93	0.58		0.3	2	0.4	36		0.58		0.610		0.090
2	0.56	0.48		0.2	2	0.3	86		0.48		0.413		0.028
3	1.34	0.78		0.4	6	0.4	l50		0.78		0.860		0.252
4	0.74	0.57		0.2	3	0.3	854		0.57		0.513		0.051
5	0.82	0.46		0.3	1	0.5	505		0.46		0.530		0.061
6	0.97	0.72		0.2	6	0.3	811		0.72		0.650		0.095
7	1.02	0.57		0.4	4	0.5	577		0.57		0.677		0.134
8	0.79	0.53		0.3	7	0.5	572		0.53		0.563		0.081
9	0.31	0.18		0.0	6	0.2	254		0.18		0.183		0.002
10	0.32	0.19		0.0	8	0.3	324		0.19		0.197		0.003
11	0.15	0.11		0.0	7	0.5	545		0.11		0.110		0.001
12	0.54	0.15		0.0	7	0.2	246		0.15		0.253		0.003
13	0.57	0.16		0.0	7	0.2	232		0.16		0.267		0.003
14	0.81	0.28		0.0	8	0.1	.68		0.28		0.390		0.010
15	0.85	0.47		0.0	6	0.0)95		0.47		0.460		0.013
16	0.33	0.31		0.0	6	0.1	.88		0.31		0.233		0.003
17	0.52	0.29		0.1	7	0.4	38		0.29		0.327		0.013
18	1.62	0.83		0.1	6	0.1	.38		0.83		0.870		0.113
19	0.78	0.57		0.3	8	0.5	570		0.57		0.577		0.088
20	0.63	0.51		0.0	6	0.1	.06		0.51		0.400		0.010
21	0.64	0.53		0.2	4	0.4	12		0.53		0.470		0.043
22	0.53	0.31		0.2	2	0.5	543		0.31		0.353		0.019
23	1.22	0.84		0.4	8	0.4	74		0.84		0.847		0.258
24	1.1	0.54		0.3	2	0.4	15		0.54		0.653		0.100
25	0.53	0.33		0.1	9	0.4	154		0.33		0.350		0.017
26	0.47	0.39		0.1	9	0.4	44		0.39		0.350		0.018
27	1.25	0.58		0.2	7	0.3	817		0.58		0.700		0.102
28	0.79	0.59		0.1	2	0.1	76		0.59		0.500		0.029
29	0.47	0.33		0.2	2	0.5	59		0.33		0.340		0.018
30	1.13	0.58		0.2	9	0.3	58		0.58		0.667		0.100
31	0.62	0.37		0.2	6	0.5	543		0.37		0.417		0.031
32	0.48	0.19		0.1	6	0.5	30		0.19		0.277		0.008
33	0.66	0.51		0.0	9	0.1	.55		0.51		0.420		0.016
34	0.76	0.47		0.0	8	0.1	.34		0.47		0.437		0.015
35	0.36	0.27		0.0	8	0.2	257		0.27		0.237		0.004
36	1.24	0.78		0.5	6	0.5	69		0.78		0.860		0.284

Pebble Count Grain Size Distribution

Structure # E-10-A	Colorado River at SH 131					
Sieve Size (ft)	Samples Retained	% Retained	Cumulative % Ret.	% Finer		
0.9	0	0%	0%	100%		
0.8	2	6%	6%	94%		
0.7	3	8%	14%	86%		
0.6	0	0%	14%	86%		
0.5	12	33%	47%	53%		
0.4	4	11%	58%	42%		
0.3	6	17%	75%	25%		
0.2	3	8%	83%	17%		
0.1	6	17%	100%	0%		
Total Samples	36					


Hydraulic Analysis Report

Project Data

Project Title: E-10-A Designer: Project Date: Friday, September 13, 2013 Project Units: U.S. Customary Units Notes:

Wolman Count Analysis: Gradation Analysis

Notes:

Image Gradation Input Parameters

Name: DSCF0401 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox Work_Images\DSCF0401.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 184 Morphologic Iterations: 1 Resolution: 29 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.048457	0	0	0.000000
0.068529	0	0	0.000000
0.096914	0	0	0.000000
0.137057	0	0	0.000000
0.193828	4	4	0.277971
0.274115	7	11	0.764420
0.387657	15	26	1.806810
0.548229	29	55	3.822099
0.775313	50	105	7.296734
1.096459	71	176	12.230716
1.550627	96	272	18.902015
2.192917	164	436	30.298819
3.101253	138	574	39.888812
4.385835	179	753	52.328006
6.202507	356	1109	77.067408
8.771669	330	1439	100.000000

Gradation Result Parameters D5: 0.6252 in D15: 1.2850 in D50: 4.1454 in D85: 7.0912 in D100: 8.7717 in

Image Gradation Input Parameters

Name: DCSF0402 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox Work_Images\DSCF0402.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 187 Morphologic Iterations: 1 Resolution: 29 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.062417	0	0	0.000000
0.088271	0	0	0.000000
0.124834	0	0	0.000000
0.176542	0	0	0.000000
0.249667	1	1	0.107296
0.353083	3	4	0.429185
0.499335	6	10	1.072961
0.706166	11	21	2.253219
0.998670	17	38	4.077253
1.412332	30	68	7.296137
1.997340	58	126	13.519313
2.824665	101	227	24.356223
3.994679	55	282	30.257511
5.649330	174	456	48.927039
7.989359	156	612	65.665236
11.298660	320	932	100.000000

Gradation Result Parameters D5: 1.1173 in D15: 2.1104 in D50: 5.7993 in D85: 9.8529 in D100: 11.2987 in

Image Gradation Input Parameters

Name: DCSF0403 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox Work_Images\DSCF0403.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 180 Morphologic Iterations: 1 Resolution: 27 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.051568	0	0	0.000000
0.072928	0	0	0.000000
0.103135	0	0	0.000000
0.145856	0	0	0.000000
0.206271	1	1	0.096339
0.291711	2	3	0.289017
0.412542	6	9	0.867052
0.583422	9	18	1.734104
0.825084	21	39	3.757225
1.166845	37	76	7.321773
1.650168	62	138	13.294798
2.333690	91	229	22.061657
3.300335	123	352	33.911368
4.667379	276	628	60.500963
6.600671	231	859	82.755299
9.334758	179	1038	100.000000

Gradation Result Parameters D5: 0.9442 in D15: 1.7831 in D50: 4.1275 in D85: 6.9566 in D100: 9.3348 in

Image Gradation Input Parameters

Name: DCSF0404 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox Work_Images\DSCF0404.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 184 Morphologic Iterations: 1 Resolution: 27 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.064191	0	0	0.000000
0.090779	0	0	0.000000
0.128381	0	0	0.000000
0.181559	0	0	0.000000
0.256763	2	2	0.171527
0.363118	4	6	0.514580
0.513526	6	12	1.029160
0.726235	16	28	2.401372
1.027052	28	56	4.802744
1.452471	37	93	7.975986
2.054104	79	172	14.751286
2.904941	130	302	25.900515
4.108207	207	509	43.653516
5.809883	202	711	60.977702
8.216415	372	1083	92.881647
11.619765	83	1166	100.000000

Gradation Result Parameters D5: 1.0535 in D15: 2.0731 in D50: 4.7316 in D85: 7.6219 in D100: 11.6198 in

Image Gradation Input Parameters

Name: DCSF0405 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox Work_Images\DSCF0405.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 183 Morphologic Iterations: 1 Resolution: 27 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.053776	0	0	0.000000
0.076051	0	0	0.000000
0.107553	0	0	0.000000
0.152102	0	0	0.000000
0.215105	1	1	0.092166
0.304205	3	4	0.368664
0.430210	5	9	0.829493
0.608409	10	19	1.751152
0.860421	18	37	3.410138
1.216818	32	69	6.359447
1.720841	45	114	10.506912
2.433637	71	185	17.050691
3.441682	143	328	30.230415
4.867274	124	452	41.658986
6.883365	147	599	55.207373
9.734547	350	949	87.465438
13.766729	136	1085	100.000000

Gradation Result Parameters D5: 1.0525 in D15: 2.2103 in D50: 6.1085 in D85: 9.5166 in D100: 13.7667 in

Image Gradation Input Parameters

Name: DCSF0406 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox Work_Images\DSCF0406.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 186 Morphologic Iterations: 1 Resolution: 27 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.066003	0	0	0.000000
0.093342	0	0	0.000000
0.132006	0	0	0.000000
0.186685	0	0	0.000000
0.264012	0	0	0.000000
0.373370	1	1	0.167504
0.528024	2	3	0.502513
0.746739	5	8	1.340034
1.056049	8	16	2.680067
1.493479	8	24	4.020101
2.112098	9	33	5.527638
2.986957	23	56	9.380235
4.224195	66	122	20.435511
5.973914	66	188	31.490787
8.448390	62	250	41.876047
11.947828	74	324	54.271357
16.896781	0	324	54.271357
23.895657	273	597	100.000000

Gradation Result Parameters D5: 1.8956 in D15: 3.6159 in D50: 10.7419 in D85: 21.5999 in D100: 23.8957 in

Image Gradation Input Parameters

Name: DCSF0407 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox Work_Images\DSCF0407.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 156 Morphologic Iterations: 1 Resolution: 28 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.085835	0	0	0.000000
0.121389	0	0	0.000000
0.171670	0	0	0.000000
0.242778	1	1	0.091324
0.343340	2	3	0.273973
0.485556	5	8	0.730594
0.686680	12	20	1.826484
0.971112	23	43	3.926941
1.373359	35	78	7.123288
1.942224	65	143	13.059361
2.746719	73	216	19.726027
3.884447	127	343	31.324201
5.493438	207	550	50.228311
7.768894	226	776	70.867580
10.986875	180	956	87.305936
15.537788	139	1095	100.000000

Gradation Result Parameters D5: 1.1062 in D15: 2.1764 in D50: 5.4740 in D85: 10.5355 in D100: 15.5378 in

Image Gradation Input Parameters

Name: DCSF0408 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox Work_Images\DSCF0408.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 166 Morphologic Iterations: 1 Resolution: 28 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.062859	0	0	0.000000
0.088896	0	0	0.000000
0.125718	0	0	0.000000
0.177792	0	0	0.000000
0.251436	2	2	0.166945
0.355584	3	5	0.417362
0.502872	9	14	1.168614
0.711168	15	29	2.420701
1.005744	36	65	5.425710
1.422337	49	114	9.515860
2.011488	75	189	15.776294
2.844673	98	287	23.956594
4.022975	148	435	36.310518
5.689346	286	721	60.183639
8.045950	315	1036	86.477462
11.378692	162	1198	100.000000

Two sediment samples were collected from the channel bed near Bridge F-06-M. Results of the sediment size analysis for the sediment sample collected from the channel are presented below in both tabular and graphical formats.

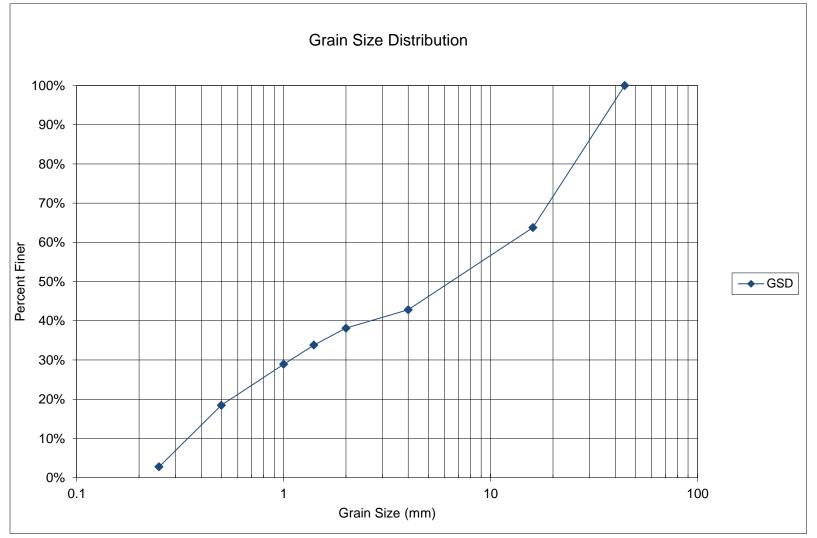


Figure G.3.1. Photo of sediment sample from the F-06-M site

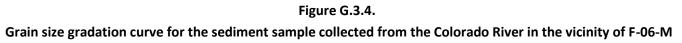
Table G.3.1.
Sediment sieve analysis
Sample ID: F-06-M Colorado River
Sample Description: 1 of 2
Performed by: JE
Date: 10-10-2011

Sieve Size (mm)	% Finer
44.45	100%
16	64%
4	43%
2	38%
1.4	34%
1	29%
0.5	18%
0.25	3%

Grain size gradation computations for the sediment sample conected from the colorado river in the vicinity of 1-00-w						
Structure # F-06-M	Waterbody - Colorado River	Sample # 1 of 2	Performed by: JE Date: 10/10/2011			
F-00-IVI					.0/2011	1
Sieve Size	M_{a} is the efficience (a)	Weight of Sieve + Soil	Weight of Soil	%	Cumulative %	%
(mm)	Weight of Sieve (g)	(g)	(g)	Retained	Ret.	Finer
44.45	0	0	0	0%	0%	100%
16	542.97	1930.8	1387.83	36%	36%	64%
4	519.95	1322.5	802.55	21%	57%	43%
2	468.4	647.45	179.05	5%	62%	38%
1.4	454.95	620.14	165.19	4%	66%	34%
1	502.38	689.81	187.43	5%	71%	29%
0.5	440.34	841.43	401.09	10%	82%	18%
0.25	398.61	999.02	600.41	16%	97%	3%
Pan	356.25	462.72	106.47	3%	100%	0%
		Total Weight of Sample	3830.02			

Table G.3.2.

Grain size gradation computations for the sediment sample collected from the Colorado River in the vicinity of F-06-M



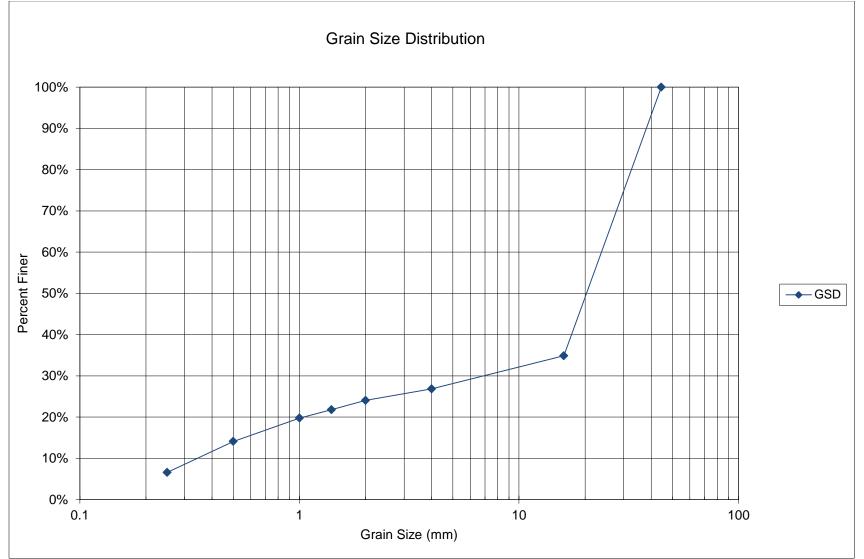
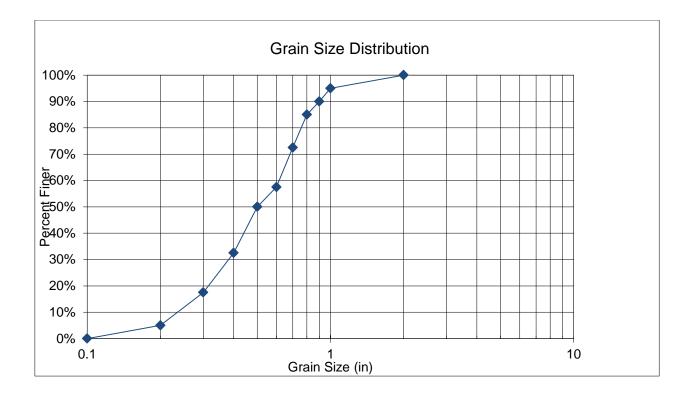

Figure G.3.3. Photo of sediment sample from the F-06-M site

Table G.3.3.

Sediment sieve analysis Sample ID: F-06-M Colorado River Sample Description: 2 of 2 Performed by: JE Date: 9-20-2011

Sieve Size (mm)	% Finer
44.45	100%
16	35%
4	27%
2	24%
1.4	22%
1	20%
0.5	14%
0.25	7%

Structure #	Waterbody -	Sample # 2 of 2		Performe	d by: JE		
F-06-M	Colorado River	Sample # 2 01 2		Date: 10/1	.0/2011		
Sieve Size	Maight of Cioup (g)	Weight of Sieve + Soil	Weight of Soil	%	Cumulative %	%	
(mm)	Weight of Sieve (g)	(g)	(g)	Retained	Ret.	Finer	
44.45	0	0	0	0%	0%	100%	
16	542.97	2612	2069.03	65%	65%	35%	
4	510.34	765.56	255.22	8%	73%	27%	
2	468.4	556.81	88.41	3%	76%	24%	
1.4	442.21	513.91	71.7	2%	78%	22%	
1	500.21	564.97	64.76	2%	80%	20%	
0.5	440.34	620.23	179.89	6%	86%	14%	
0.25	397.44	635.56	238.12	7%	93%	7%	
Pan	355.2	564.5	209.3	7%	100%	0%	
		Total Weight of Sample	3176.43				

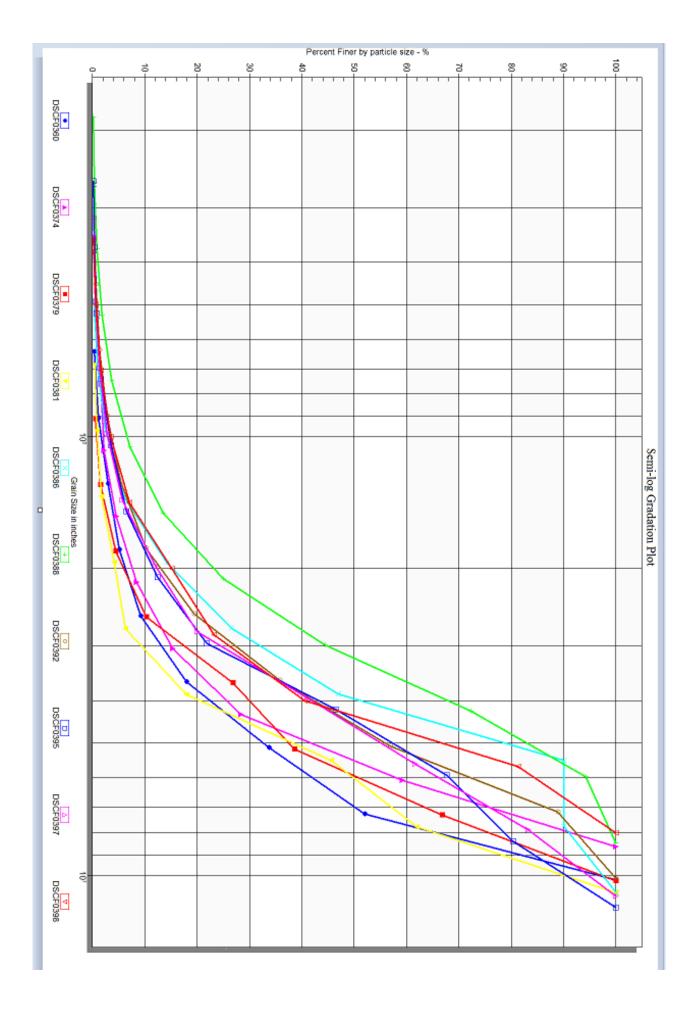

Table G.3.4.

Grain size gradation computations for the sediment sample collected from the Colorado River in the vicinity of F-06-M

Region S	Structure ID	County	Facility Ca	arried Mile Mark	er POA Fiscal Yea	r Feature Intersected	D50 min from POA	D50 max from POA	Date
3	F-06-M	Garfield	170 Acces		2012	Colorado River	6.5	20	8/9/2013
					•			•	<u>,</u>
Sample #	A (ft)	В (ft)	C (ft)	Shape Factor	Ds (ft)	Davg (ft)	Volume	e (ft³)
1	0.59		42	0.29	0.583	0.42	0.433	0.03	
2	0.51	0.	26	0.1	0.275	0.26	0.290	0.00)7
3	0.83	0.	55	0.18	0.266	0.55	0.520	0.04	13
4	1.3	1.	05	0.37	0.317	1.05	0.907	0.26	54
5	0.36	0.	28	0.22	0.693	0.28	0.287	0.01	12
6	0.51	0.	32	0.26	0.644	0.32	0.363	0.02	22
7	1.02	0.	73	0.19	0.220	0.73	0.647	0.07	74
8	0.35	0.	35	0.22	0.629	0.35	0.307	0.01	L4
9	0.96	0	.8	0.54	0.616	0.8	0.767	0.21	L7
10	0.72	0.	59	0.43	0.660	0.59	0.580	0.09	96
11	0.26	0.	19	0.14	0.630	0.19	0.197	0.00)4
12	0.54	0.	47	0.28	0.556	0.47	0.430	0.03	37
13	0.46	0.	31	0.18	0.477	0.31	0.317	0.01	13
14	0.87	0.	42	0.3	0.496	0.42	0.530	0.05	57
15	0.59	0.	57	0.35	0.604	0.57	0.503	0.06	52
16	0.48	0.	36	0.14	0.337	0.36	0.327	0.01	L3
17	0.86	0.	64	0.32	0.431	0.64	0.607	0.09	92
18	0.56	0.	45	0.19	0.378	0.45	0.400	0.02	25
19	0.84	0.	49	0.4	0.623	0.49	0.577	0.08	36
20	0.89	0.	65	0.45	0.592	0.65	0.663	0.13	36
21	0.47	0.	35	0.27	0.666	0.35	0.363	0.02	23
22	0.93	0.	74	0.3	0.362	0.74	0.657	0.10)8
23	0.89	0.	.7	0.3	0.380	0.7	0.630	0.09	98
24	0.31	0.	26	0.2	0.704	0.26	0.257	0.00)8
25	2.42	1.	91	1.56	0.726	1.91	1.963	3.77	75
26	0.83	0.	72	0.36	0.466	0.72	0.637	0.11	L3
27	0.41	0	.3	0.18	0.513	0.3	0.297	0.01	12
28	0.62	0.	49	0.27	0.490	0.49	0.460	0.04	13
29	0.83	0.	62	0.47	0.655	0.62	0.640	0.12	27
30	0.92	0.	68	0.29	0.367	0.68	0.630	0.09	95
31	1.1	0.	92	0.67	0.666	0.92	0.897	0.35	55
32	0.96	0.	64	0.45	0.574	0.64	0.683	0.14	45
33	0.26	0.	22	0.05	0.209	0.22	0.177	0.00)1
34	1.05	0.	87	0.3	0.314	0.87	0.740	0.14	13
35	0.17	0.	13	0.09	0.605	0.13	0.130	0.00)1
36	1.43	0.	75	0.7	0.676	0.75	0.960	0.39	93
37	0.42	0.	41	0.36	0.868	0.41	0.397	0.03	32
38	0.73	0.	66	0.22	0.317	0.66	0.537	0.05	55
39	0.36	0.	23	0.1	0.348	0.23	0.230	0.00)4
40	1.4	0.	96	0.43	0.371	0.96	0.930	0.30)3

Pebble Count Grain Size Distribution

Structure # F-06-M	Colorado River at I 70 Access Road				
Sieve Size (ft)	Samples % Retained Cumulativ		Cumulative %	% Finer	
	Retained		Ret.		
2	0	0%	0%	100%	
1	2	5%	5%	95%	
0.9	2	5%	10%	90%	
0.8	2	5%	15%	85%	
0.7	5	13%	28%	73%	
0.6	6	15%	43%	58%	
0.5	3	8%	50%	50%	
0.4	7	18%	68%	33%	
0.3	6	15%	83%	18%	
0.2	5	13%	95%	5%	
0.1	2	5%	100%	0%	
Total Samples	40				


Hydraulic Analysis Report

Project Data

Project Title: F-06-M Designer: Project Date: Wednesday, September 18, 2013 Project Units: U.S. Customary Units Notes:

Wolman Count Analysis: Rock/Sediment Gradation Analysis

Notes:

Image Gradation Input Parameters

Name: DSCF0360 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0360.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 170 Morphologic Iterations: 1 Resolution: 34 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.056605	0	0	0.000000
0.080052	0	0	0.000000
0.113211	0	0	0.000000
0.160104	0	0	0.000000
0.226421	0	0	0.000000
0.320208	0	0	0.000000
0.452842	0	0	0.000000
0.640416	1	1	0.366300
0.905685	2	3	1.098901
1.280832	5	8	2.930403
1.811370	6	14	5.128205
2.561664	11	25	9.157509
3.622740	24	49	17.948718
5.123328	43	92	33.699634
7.245480	50	142	52.014652
10.246656	131	273	100.000000

Gradation Result Parameters D5: 1.7804 in D15: 3.2668 in D50: 7.0120 in D85: 9.3085 in D100: 10.2467 in

Image Gradation Input Parameters

Name: DSCF0374 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0374.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 173 Morphologic Iterations: 1 Resolution: 32 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.033602	0	0	0.000000
0.047520	0	0	0.000000
0.067203	0	0	0.000000
0.095040	0	0	0.000000
0.134407	0	0	0.000000
0.190080	0	0	0.000000
0.268814	1	1	0.196850
0.380160	1	2	0.393701
0.537627	2	4	0.787402
0.760320	4	8	1.574803
1.075255	3	11	2.165354
1.520640	12	23	4.527559
2.150510	20	43	8.464567
3.041280	35	78	15.354331
4.301019	66	144	28.346457
6.082560	157	301	59.251969
8.602039	207	508	100.000000

Gradation Result Parameters D5: 1.5962 in D15: 2.9955 in D50: 5.5492 in D85: 7.6746 in D100: 8.6020 in

Image Gradation Input Parameters

Name: DSCF0379 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0379.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 184 Morphologic Iterations: 1 Resolution: 32 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.056933	0	0	0.000000
0.080516	0	0	0.000000
0.113867	0	0	0.000000
0.161032	0	0	0.000000
0.227734	0	0	0.000000
0.322064	0	0	0.000000
0.455467	0	0	0.000000
0.644128	0	0	0.000000
0.910935	1	1	0.487805
1.288256	2	3	1.463415
1.821869	6	9	4.390244
2.576512	12	21	10.243902
3.643738	34	55	26.829268
5.153024	24	79	38.536585
7.287476	58	137	66.829268
10.306048	68	205	100.000000

Gradation Result Parameters D5: 1.9005 in D15: 2.8826 in D50: 6.0178 in D85: 8.9410 in D100: 10.3060 in

Image Gradation Input Parameters

Name: DSCF0381 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0381.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 163 Morphologic Iterations: 1 Resolution: 33 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.060500	0	0	0.000000
0.085560	0	0	0.000000
0.121000	0	0	0.000000
0.171120	0	0	0.000000
0.242000	0	0	0.000000
0.342240	0	0	0.000000
0.484000	0	0	0.000000
0.684480	1	1	0.418410
0.968001	1	2	0.836820
1.368960	2	4	1.673640
1.936002	6	10	4.184100
2.737920	5	15	6.276151
3.872004	28	43	17.991632
5.475840	66	109	45.606695
7.744007	39	148	61.924686
10.951680	91	239	100.000000

Gradation Result Parameters D5: 2.2487 in D15: 3.5824 in D50: 6.0865 in D85: 9.6880 in D100: 10.9517 in

Image Gradation Input Parameters

Name: DSCF0386 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0386.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 172 Morphologic Iterations: 1 Resolution: 28 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.042732	0	0	0.000000
0.060432	0	0	0.000000
0.085464	0	0	0.000000
0.120864	0	0	0.000000
0.170928	0	0	0.000000
0.241728	0	0	0.000000
0.341855	0	0	0.000000
0.483456	1	1	0.221239
0.683710	3	4	0.884956
0.966912	7	11	2.433628
1.367420	16	27	5.973451
1.933824	37	64	14.159292
2.734840	56	120	26.548673
3.867648	92	212	46.902655
5.469680	195	407	90.044248
7.735296	0	407	90.044248
10.939361	45	452	100.000000

Gradation Result Parameters D5: 1.2573 in D15: 1.9882 in D50: 3.9827 in D85: 5.2824 in D100: 10.9394 in

Image Gradation Input Parameters

Name: DSCF0388 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0388.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 167 Morphologic Iterations: 1 Resolution: 28 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.065907	0	0	0.000000
0.093206	0	0	0.000000
0.131813	0	0	0.000000
0.186412	1	1	0.098912
0.263626	2	3	0.296736
0.372824	5	8	0.791296
0.527253	10	18	1.780415
0.745648	19	37	3.659743
1.054506	35	72	7.121662
1.491296	64	136	13.452028
2.109011	116	252	24.925816
2.982592	197	449	44.411474
4.218022	281	730	72.205737
5.965184	223	953	94.263106
8.436044	58	1011	100.000000

Gradation Result Parameters D5: 0.8652 in D15: 1.5746 in D50: 3.2310 in D85: 5.2315 in D100: 8.4360 in

Image Gradation Input Parameters

Name: DSCF0392 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0392.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 172 Morphologic Iterations: 1 Resolution: 27 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.079332	0	0	0.000000
0.112192	0	0	0.000000
0.158663	0	0	0.000000
0.224384	0	0	0.000000
0.317327	2	2	0.238379
0.448768	3	5	0.595948
0.634654	6	11	1.311085
0.897536	12	23	2.741359
1.269308	22	45	5.363528
1.795072	40	85	10.131108
2.538615	78	163	19.427890
3.590144	137	300	35.756853
5.077230	177	477	56.853397
7.180288	269	746	88.915375
10.154461	93	839	100.000000

Gradation Result Parameters D5: 1.2178 in D15: 2.1845 in D50: 4.5941 in D85: 6.9235 in D100: 10.1545 in

Image Gradation Input Parameters

Name: DSCF0395 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0395.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 167 Morphologic Iterations: 1 Resolution: 28 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.065417	0	0	0.000000
0.092514	0	0	0.000000
0.130835	0	0	0.000000
0.185028	0	0	0.000000
0.261669	1	1	0.149477
0.370056	1	2	0.298954
0.523338	3	5	0.747384
0.740112	6	11	1.644245
1.046676	13	24	3.587444
1.480224	19	43	6.427504
2.093353	40	83	12.406577
2.960448	63	146	21.823617
4.186706	165	311	46.487294
5.920896	142	453	67.713004
8.373411	85	538	80.418535
11.841792	131	669	100.000000

Gradation Result Parameters D5: 1.2623 in D15: 2.3321 in D50: 4.4737 in D85: 9.1849 in D100: 11.8418 in

Image Gradation Input Parameters

Name: DSCF0397 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0397.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 168 Morphologic Iterations: 1 Resolution: 27 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.043555	0	0	0.000000
0.061596	0	0	0.000000
0.087110	0	0	0.000000
0.123192	0	0	0.000000
0.174220	0	0	0.000000
0.246384	0	0	0.000000
0.348440	1	1	0.162602
0.492768	2	3	0.487805
0.696879	5	8	1.300813
0.985536	9	17	2.764228
1.393758	18	35	5.691057
1.971072	39	74	12.032520
2.787517	49	123	20.000000
3.942144	130	253	41.138211
5.575034	126	379	61.626016
7.884288	133	512	83.252033
11.150067	103	615	100.000000

Gradation Result Parameters D5: 1.2974 in D15: 2.2752 in D50: 4.6484 in D85: 8.2251 in D100: 11.1501 in

Image Gradation Input Parameters

Name: DSCF0398 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0398.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 174 Morphologic Iterations: 1 Resolution: 27 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.062503	0	0	0.000000
0.088392	0	0	0.000000
0.125005	0	0	0.000000
0.176784	0	0	0.000000
0.250010	0	0	0.000000
0.353568	1	1	0.155763
0.500021	3	4	0.623053
0.707136	6	10	1.557632
1.000041	12	22	3.426791
1.414272	23	45	7.009346
2.000083	52	97	15.109034
2.828544	52	149	23.208723
4.000165	111	260	40.498442
5.657088	262	522	81.308411
8.000331	120	642	100.000000

One sediment sample was collected from the channel bed near Bridge H-02-S. Results of the sediment size analysis for the sediment sample collected from the channel are presented below in both tabular and graphical formats.

Figure G.4.1. Photo of sediment sample from the H-02-S site

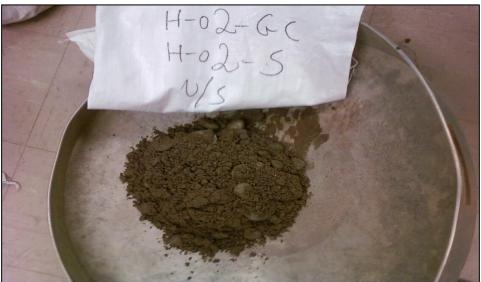
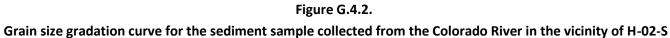
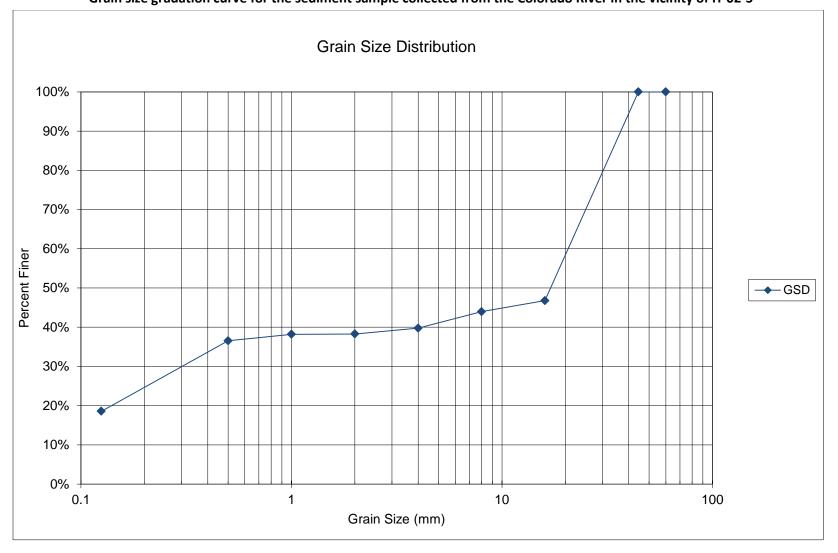
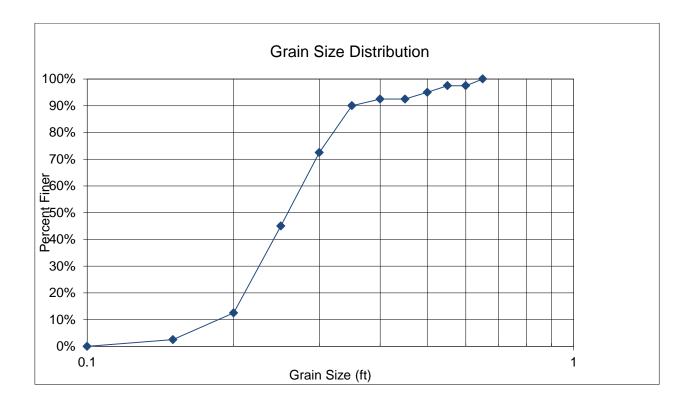




Table G.4.1. Sediment sieve analysis Sample ID: H-02-S Colorado River Sample Description: 1 of 2 Performed by: JE Date: 9-20-2011

Sieve Size (mm)	% Finer
60	100%
44.45	100%
16	47%
8	44%
4	40%
2	38%
1	38%
0.5	37%
0.125	19%

<u> </u>	Waterbody -		Performed by: JE				
Structure # H-02-S	Colorado River	Sample # 1	Date: 10/11/2011		,		
Sieve Size (mm)	Weight of Sieve (g)	Weight of Sieve + Soil (g)	Weight of Soil (g)	% Retained	Cumulative % Ret.	% Finer	
60	0	0	0	0%	0%	100%	
44.45	0	0	0	0%	0%	100%	
16	535.16	1970.8	1435.64	53%	53%	47%	
8	547	623.17	76.17	3%	56%	44%	
4	507.62	620.66	113.04	4%	60%	40%	
2	487.41	527.47	40.06	1%	62%	38%	
1	457.11	459.84	2.73	0%	62%	38%	
0.5	445.21	489.66	44.45	2%	63%	37%	
0.125	379.11	863.95	484.84	18%	81%	19%	
Pan	370.23	870.81	500.58	19%	100%	0%	
		Total Weight of Sample	2697.51				


Table G.4.2.

Grain size gradation computations for the sediment sample collected from the Colorado River in the vicinity of H-02-S

Region	Structure ID	County	Facility Carried	Mile Marker	POA Fisc	al Voar	Feature Int	orcoctod	D ₅₀ max from POA	Date
3	H-02-S	Mesa	SH 340 ML EBND	12.6	201		Colorado		16	8/8/2013
	11-02-3	IVIC3d	STI 340 IVIE EDIVD	12.0	201	.2	Colorado		10	8/8/2013
Sample #	A (ft)	B (ft	:) C (f	t) Sha	pe Factor	D	s (ft)	Da	avg (ft)	Volume (ft ³)
1	0.36	0.28	3 0.0	6	0.189	(0.28	(0.233	0.003
2	0.25	0.16	5 0.1	4	0.700	(0.16	(0.183	0.003
3	0.34	0.23	3 0.1	2	0.429	().23	(0.230	0.005
4	0.43	0.34	4 0.1	6	0.418	().34	(0.310	0.012
5	0.39	0.24	4 0.1	3	0.425	().24	(0.253	0.006
6	0.49	0.37	7 0.0	9	0.211	().37	(0.317	0.009
7	0.3	0.21	1 0.0	7	0.279	().21	(0.193	0.002
8	0.51	0.25	5 0.1	5	0.420	().25	(0.303	0.010
9	0.31	0.24	4 0.1	L	0.367	().24	(0.217	0.004
10	0.91	0.62	2 0.3	8	0.506	(0.62	(0.637	0.112
11	0.33	0.28	3 0.1	4	0.461	().28	(0.250	0.007
12	0.33	0.22	2 0.0	8	0.297	().22	(0.210	0.003
13	0.27	0.19	9 0.0	4	0.177	(0.19	(0.167	0.001
14	0.27	0.22	2 0.0	9	0.369	().22	(0.193	0.003
15	0.61	0.51	1 0.3	3	0.592	().51	(0.483	0.054
16	0.32	0.24	4 0.1	5	0.541	().24	(0.237	0.006
17	0.33	0.28	3 0.1	2	0.395	().28	(0.243	0.006
18	0.37	0.3	0.0	5	0.150		0.3	(0.240	0.003
19	0.36	0.29	9 0.1	9	0.588	().29	(0.280	0.010
20	0.38	0.34	1 0.1	2	0.334	(0.34	(0.280	0.008
21	0.53	0.33	3 0.2	4	0.574	().33	(0.367	0.022
22	0.54	0.34	1 0.1	7	0.397	(0.34	(0.350	0.016
23	0.35	0.31	1 0.1	4	0.425	(0.31	(0.267	0.008
24	0.23	0.18	3 0.0	4	0.197	(0.18	(0.150	0.001
25	0.41	0.29	9 0.0	8	0.232	().29	(0.260	0.005
26	0.39	0.2	0.1	1	0.394		0.2	(0.233	0.004
27	0.41	0.29	9 0.0	9	0.261	(0.29	(0.263	0.006
28	0.3	0.2	0.0	4	0.163		0.2	(0.180	0.001
29	0.33	0.22	2 0.0	7	0.260	().22	(0.207	0.003
30	0.56	0.45	5 0.2	3	0.458	().45	(0.413	0.030
31	0.49	0.25	5 0.1	1	0.314	().25	(0.283	0.007
32	0.28	0.24	1 0.0	9	0.347	().24	(0.203	0.003
33	0.4	0.24	4 0.1	2	0.387	().24	(0.253	0.006
34	0.31	0.21	1 0.0	9	0.353	().21	(0.203	0.003
35	0.29	0.19	9 0.0	8	0.341	(0.19	(0.187	0.002
36	0.36	0.29	9 0.0	5	0.155	().29	(0.233	0.003
37	0.28	0.25	5 0.0	8	0.302	().25	(0.203	0.003
38	0.44	0.34	4 0.1	3	0.336	(0.34	(0.303	0.010
39	0.3	0.25	5 0.0	7	0.256	().25	(0.207	0.003
40	0.25	0.13	3 0.0	6	0.333	(0.13	(0.147	0.001

Pebble Count Grain Size Distribution

Structure # H-02-S	Colorado River at SH 340 EBND				
Sieve Size (ft)	Samples Retained	% Retained	Cumulative % Ret.	% Finer	
0.65	0	0%	0%	100%	
0.6	1	3%	3%	98%	
0.55	0	0%	3%	98%	
0.5	1	3%	5%	95%	
0.45	1	3%	8%	93%	
0.4	0	0%	8%	93%	
0.35	1	3%	10%	90%	
0.3	7	18%	28%	73%	
0.25	11	28%	55%	45%	
0.2	13	33%	88%	13%	
0.15	4	10%	98%	3%	
0.1	1	3%	100%	0%	
Total Samples	40				

Hydraulic Analysis Report

Project Data

Project Title: H-02-GC & S Designer: Project Date: Thursday, September 19, 2013 Project Units: U.S. Customary Units Notes:

Wolman Count Analysis: Hydraulic Toolbox GSD

Notes:

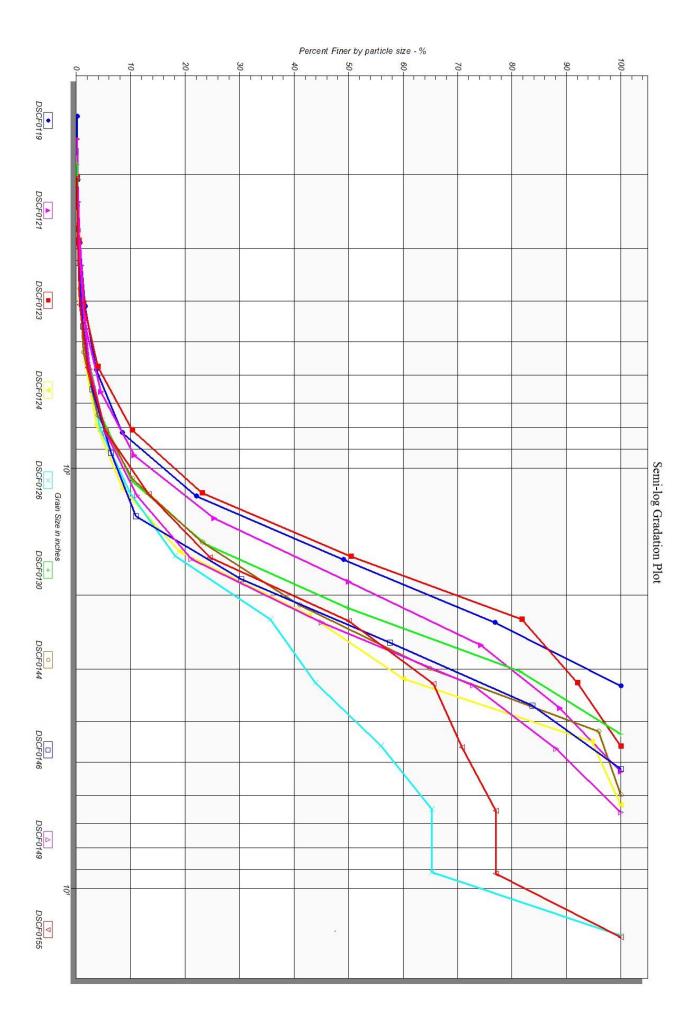


Image Gradation Input Parameters

Name: DSCF0119 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0119.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 175 Morphologic Iterations: 1 Resolution: 31 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.025726	0	0	0.000000
0.036381	0	0	0.000000
0.051451	0	0	0.000000
0.072763	0	0	0.000000
0.102902	0	0	0.000000
0.145526	1	1	0.134048
0.205804	1	2	0.268097
0.291051	3	5	0.670241
0.411609	7	12	1.608579
0.582103	15	27	3.619303
0.823218	36	63	8.445040
1.164205	101	164	21.983914
1.646435	202	366	49.061662
2.328411	207	573	76.809651
3.292870	173	746	100.000000

Gradation Result Parameters D5: 0.6511 in D15: 0.9883 in D50: 1.6695 in D85: 2.6690 in D100: 3.2929 in

Image Gradation Input Parameters

Name: DSCF0121 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0121.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 189 Morphologic Iterations: 1 Resolution: 31 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.029101	0	0	0.000000
0.041155	0	0	0.000000
0.058202	0	0	0.000000
0.082310	0	0	0.000000
0.116404	0	0	0.000000
0.164620	1	1	0.111982
0.232808	2	3	0.335946
0.329240	5	8	0.895857
0.465615	8	16	1.791713
0.658479	24	40	4.479283
0.931230	55	95	10.638298
1.316959	131	226	25.307951
1.862461	221	447	50.055991
2.633917	217	664	74.356103
3.724922	129	793	88.801792
5.267835	100	893	100.000000

Gradation Result Parameters D5: 0.6815 in D15: 1.0459 in D50: 1.8612 in D85: 3.4378 in D100: 5.2678 in

Image Gradation Input Parameters

Name: DSCF0123 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0123.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 200 Morphologic Iterations: 1 Resolution: 34 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.025299	0	0	0.000000
0.035778	0	0	0.000000
0.050598	0	0	0.000000
0.071557	0	0	0.000000
0.101196	0	0	0.000000
0.143113	0	0	0.000000
0.202393	1	1	0.147059
0.286227	2	3	0.441176
0.404786	6	9	1.323529
0.572454	18	27	3.970588
0.809572	43	70	10.294118
1.144908	87	157	23.088235
1.619144	186	343	50.441176
2.289815	213	556	81.764706
3.238288	70	626	92.058824
4.579630	54	680	100.000000

Gradation Result Parameters D5: 0.6111 in D15: 0.9329 in D50: 1.6115 in D85: 2.5879 in D100: 4.5796 in

Image Gradation Input Parameters

Name: DSCF0124 Gradation Type: Image Gradation Number of Images: 1 Image Path: <u>Z:\CDOT Bridge Pier Scour\Hydraulic Toolbox GSDs\H-02-GC & S\Analyzed</u> <u>Photos\DSCF0124.JPG</u>

Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 156 Morphologic Iterations: 1 Resolution: 33 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.024689	0	0	0.000000
0.034916	0	0	0.000000
0.049378	0	0	0.000000
0.069831	0	0	0.000000
0.098756	0	0	0.000000
0.139663	0	0	0.000000
0.197513	0	0	0.000000
0.279325	1	1	0.197628
0.395026	2	3	0.592885
0.558651	5	8	1.581028
0.790051	11	19	3.754941
1.117301	24	43	8.498024
1.580103	53	96	18.972332
2.234603	120	216	42.687747
3.160206	88	304	60.079051
4.469206	175	479	94.664032
6.320411	27	506	100.000000

Gradation Result Parameters D5: 0.8760 in D15: 1.4046 in D50: 2.6238 in D85: 4.1034 in D100: 6.3204 in

Image Gradation Input Parameters

Name: DSCF0126 Gradation Type: Image Gradation Number of Images: 1 Image Path: <u>Z:\CDOT Bridge Pier Scour\Hydraulic Toolbox GSDs\H-02-GC & S\Analyzed</u> <u>Photos\DSCF0126.JPG</u>

Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 183 Morphologic Iterations: 1 Resolution: 30 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.035718	0	0	0.000000
0.050513	0	0	0.000000
0.071436	0	0	0.000000
0.101025	0	0	0.000000
0.142872	0	0	0.000000
0.202051	1	1	0.169492
0.285743	1	2	0.338983
0.404102	3	5	0.847458
0.571486	6	11	1.864407
0.808203	15	26	4.406780
1.142972	32	58	9.830508
1.616407	49	107	18.135593
2.285944	103	210	35.593220
3.232813	49	259	43.898305
4.571888	71	330	55.932203
6.465627	55	385	65.254237
9.143777	0	385	65.254237
12.931253	205	590	100.000000

Gradation Result Parameters D5: 0.8448 in D15: 1.4377 in D50: 3.9118 in D85: 11.2962 in D100: 12.9313 in

Image Gradation Input Parameters

Name: DSCF0130 Gradation Type: Image Gradation Number of Images: 1 Image Path: <u>Z:\CDOT Bridge Pier Scour\Hydraulic Toolbox GSDs\H-02-GC & S\Analyzed</u> <u>Photos\DSCF0130.JPG</u>

Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 180 Morphologic Iterations: 1 Resolution: 32 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.033521	0	0	0.000000
0.047405	0	0	0.000000
0.067041	0	0	0.000000
0.094811	0	0	0.000000
0.134082	0	0	0.000000
0.189621	1	1	0.152672
0.268165	1	2	0.305344
0.379242	3	5	0.763359
0.536329	8	13	1.984733
0.758484	18	31	4.732824
1.072658	36	67	10.229008
1.516968	89	156	23.816794
2.145317	170	326	49.770992
3.033936	207	533	81.374046
4.290634	122	655	100.000000

Gradation Result Parameters D5: 0.7738 in D15: 1.2287 in D50: 2.1518 in D85: 3.2786 in D100: 4.2906 in

Image Gradation Input Parameters

Name: DSCF0144 Gradation Type: Image Gradation Number of Images: 1 Image Path: <u>Z:\CDOT Bridge Pier Scour\Hydraulic Toolbox GSDs\H-02-GC & S\Analyzed</u> <u>Photos\DSCF0144.JPG</u>

Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 187 Morphologic Iterations: 1 Resolution: 29 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.033063	0	0	0.000000
0.046758	0	0	0.000000
0.066126	0	0	0.000000
0.093516	0	0	0.000000
0.132252	0	0	0.000000
0.187033	0	0	0.000000
0.264504	1	1	0.150150
0.374065	3	4	0.600601
0.529008	5	9	1.351351
0.748131	17	26	3.903904
1.058017	42	68	10.210210
1.496262	86	154	23.123123
2.116033	119	273	40.990991
2.992523	159	432	64.864865
4.232067	207	639	95.945946
5.985046	27	666	100.000000

Gradation Result Parameters D5: 0.8020 in D15: 1.2206 in D50: 2.4468 in D85: 3.7955 in D100: 5.9850 in

Image Gradation Input Parameters

Name: DSCF0146 Gradation Type: Image Gradation Number of Images: 1 Image Path: <u>Z:\CDOT Bridge Pier Scour\Hydraulic Toolbox GSDs\H-02-GC & S\Analyzed</u> <u>Photos\DSCF0146.JPG</u>

Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 160 Morphologic Iterations: 1 Resolution: 33 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.028686	0	0	0.000000
0.040569	0	0	0.000000
0.057373	0	0	0.000000
0.081137	0	0	0.000000
0.114745	0	0	0.000000
0.162275	0	0	0.000000
0.229491	0	0	0.000000
0.324549	2	2	0.396040
0.458982	4	6	1.188119
0.649098	9	15	2.970297
0.917964	17	32	6.336634
1.298197	23	55	10.891089
1.835927	98	153	30.297030
2.596393	138	291	57.623762
3.671855	132	423	83.762376
5.192787	82	505	100.000000

Gradation Result Parameters D5: 0.8112 in D15: 1.4121 in D50: 2.3842 in D85: 3.7878 in D100: 5.1928 in

Image Gradation Input Parameters

Name: DSCF0149 Gradation Type: Image Gradation Number of Images: 1 Image Path: <u>Z:\CDOT Bridge Pier Scour\Hydraulic Toolbox GSDs\H-02-GC & S\Analyzed</u> <u>Photos\DSCF0149.JPG</u>

Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 203 Morphologic Iterations: 1 Resolution: 31 % Flood Depth: 0.9 px

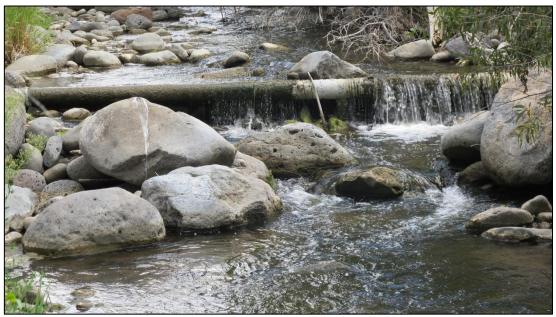
Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.036329	0	0	0.000000
0.051378	0	0	0.000000
0.072659	0	0	0.000000
0.102755	0	0	0.000000
0.145318	0	0	0.000000
0.205510	2	2	0.182648
0.290636	4	6	0.547945
0.411021	7	13	1.187215
0.581271	14	27	2.465753
0.822042	32	59	5.388128
1.162543	63	122	11.141553
1.644084	110	232	21.187215
2.325086	261	493	45.022831
3.288168	305	798	72.876712
4.650172	167	965	88.127854
6.576336	130	1095	100.000000

Gradation Result Parameters D5: 0.7901 in D15: 1.3475 in D50: 2.4972 in D85: 4.3708 in D100: 6.5763 in

Image Gradation Input Parameters

Name: DSCF0155 Gradation Type: Image Gradation Number of Images: 1 Image Path: <u>Z:\CDOT Bridge Pier Scour\Hydraulic Toolbox GSDs\H-02-GC & S\Analyzed</u> <u>Photos\DSCF0155.JPG</u>

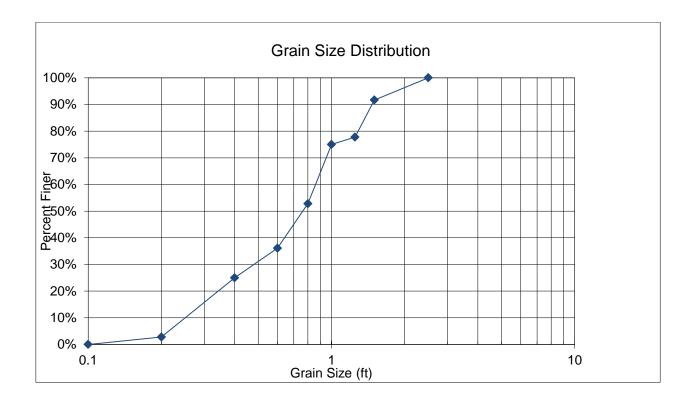
Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 192 Morphologic Iterations: 1 Resolution: 29 % Flood Depth: 0.9 px


Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.036013	0	0	0.000000
0.050930	0	0	0.000000
0.072027	0	0	0.000000
0.101861	0	0	0.000000
0.144053	0	0	0.000000
0.203722	1	1	0.124844
0.288106	1	2	0.249688
0.407444	3	5	0.624220
0.576212	12	17	2.122347
0.814887	26	43	5.368290
1.152425	63	106	13.233458
1.629775	91	197	24.594257
2.304850	204	401	50.062422
3.259550	124	525	65.543071
4.609699	42	567	70.786517
6.519099	50	617	77.028714
9.219399	0	617	77.028714
13.038199	184	801	100.000000

Sediment particles in the channel bed near Structure H-04-G consist of gravel, cobbles, and boulders.

Figure G.5.1. Photo of cobbles and boulders from the H-04-G bridge site

Figure G.5.2. Photo of cobbles and boulders from the H-04-G bridge site

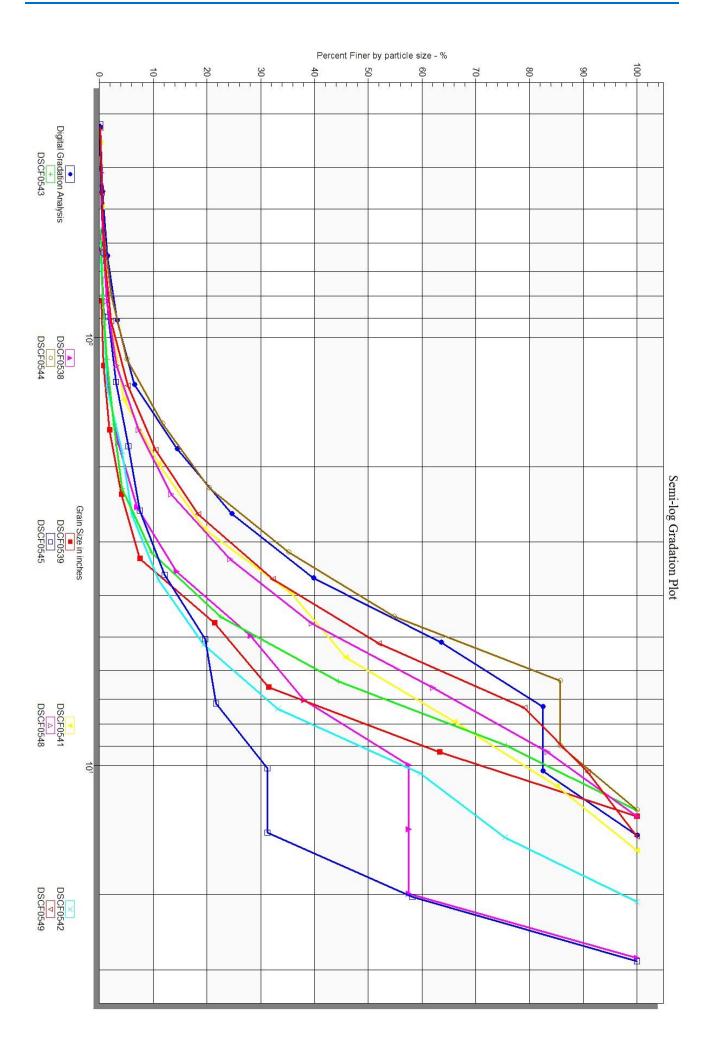


_								
	Region	Structure ID	County	Facility Carried	Mile Marker	POA Fiscal Year	Feature Intersected	Date
Γ	3	H-04-G	Mesa	SH 330 ML	8.7	2013	Big Creek	9/12/2013

Pebble Count Grain Size Distribution	
--------------------------------------	--

12.81.310.5241.31.7001.90620.650.550.30.5020.550.5000.05630.50.30.20.5160.30.3330.01640.90.550.50.7110.550.6500.13050.50.260.250.6930.260.3370.01760.20.160.110.6150.160.1570.00270.840.720.420.5400.720.6600.13380.940.720.410.4980.720.6600.14590.720.550.420.6670.550.5630.087100.470.260.170.4860.260.3000.011111.130.80.550.5780.80.8270.260121.050.920.520.5290.920.8300.263130.570.30.230.5560.30.3470.019160.370.370.220.5950.370.3200.016170.380.20.170.6170.20.2500.007181.230.850.6560.6360.850.9100.356190.920.70.30.3740.70.6400.101201.040.630.290.3680.630.0990.25121 <t< th=""><th>Sample #</th><th>A (ft)</th><th>B (ft)</th><th>C (ft)</th><th>Shape Factor</th><th>Ds (ft)</th><th>Davg (ft)</th><th>Volume (ft³)</th></t<>	Sample #	A (ft)	B (ft)	C (ft)	Shape Factor	Ds (ft)	Davg (ft)	Volume (ft³)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	2.8	1.3	1	0.524	1.3	1.700	1.906
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	0.65	0.55	0.3	0.502	0.55	0.500	0.056
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	0.5	0.3	0.2	0.516	0.3	0.333	0.016
6 0.2 0.16 0.11 0.615 0.16 0.157 0.002 7 0.84 0.72 0.42 0.540 0.72 0.660 0.133 8 0.94 0.72 0.41 0.498 0.72 0.690 0.145 9 0.72 0.55 0.42 0.667 0.55 0.563 0.087 10 0.47 0.26 0.17 0.486 0.26 0.300 0.011 11 1.13 0.8 0.55 0.578 0.8 0.827 0.260 12 1.05 0.922 0.52 0.529 0.92 0.830 0.263 13 0.57 0.3 0.23 0.556 0.3 0.367 0.201 14 0.65 0.6 0.58 0.929 0.6 0.610 0.118 15 0.5 0.3 0.24 0.620 0.3 0.347 0.019 16 0.37 0.37 0.22 0.595 0.37 0.320 0.016 17 0.38 0.2 0.17 0.617 0.2 0.250 0.007 18 1.23 0.85 0.65 0.636 0.85 0.910 0.356 19 0.92 0.7 0.3 0.374 0.7 0.640 0.101 20 1.04 0.63 0.29 0.358 0.63 0.653 0.099 21 0.9 0.8 0.6 0.707 0.8 0.767 0.226 22<	4	0.9	0.55	0.5	0.711	0.55	0.650	0.130
7 0.84 0.72 0.42 0.540 0.72 0.660 0.133 8 0.94 0.72 0.41 0.498 0.72 0.690 0.145 9 0.72 0.55 0.42 0.667 0.55 0.563 0.087 10 0.47 0.266 0.17 0.486 0.26 0.300 0.011 11 1.13 0.8 0.55 0.578 0.8 0.827 0.260 12 1.05 0.92 0.52 0.529 0.92 0.830 0.263 13 0.57 0.3 0.23 0.556 0.3 0.367 0.021 14 0.65 0.6 0.58 0.929 0.6 0.610 0.118 15 0.5 0.3 0.24 0.620 0.3 0.347 0.019 16 0.37 0.37 0.22 0.595 0.37 0.320 0.016 17 0.38 0.2 0.17 0.617 0.2 0.250 0.007 18 1.23 0.85 0.65 0.636 0.85 0.910 0.336 19 0.92 0.7 0.3 0.374 0.7 0.640 0.101 20 1.04 0.63 0.29 0.358 0.63 0.653 0.653 22 2.4 1.75 0.75 0.366 1.75 1.633 1.649 23 0.65 0.44 0.23 0.430 0.44 0.440 0.034 <t< td=""><td>5</td><td>0.5</td><td>0.26</td><td>0.25</td><td>0.693</td><td>0.26</td><td>0.337</td><td>0.017</td></t<>	5	0.5	0.26	0.25	0.693	0.26	0.337	0.017
8 0.94 0.72 0.41 0.498 0.72 0.690 0.145 9 0.72 0.55 0.42 0.667 0.55 0.563 0.087 10 0.47 0.26 0.17 0.486 0.26 0.300 0.011 11 1.13 0.8 0.555 0.578 0.8 0.827 0.260 12 1.05 0.92 0.52 0.529 0.92 0.830 0.263 13 0.57 0.3 0.23 0.556 0.3 0.367 0.021 14 0.65 0.6 0.58 0.299 0.6 0.610 0.118 15 0.5 0.3 0.24 0.620 0.3 0.347 0.019 16 0.37 0.37 0.22 0.595 0.37 0.320 0.016 17 0.38 0.2 0.17 0.617 0.2 0.250 0.007 18 1.23 0.85 0.655 0.636 0.85 0.910 0.356 19 0.92 0.7 0.3 0.374 0.7 0.640 0.101 20 1.04 0.63 0.29 0.358 0.63 0.653 0.099 21 0.9 0.8 0.6 0.707 0.8 0.767 0.226 22 2.4 1.75 0.75 0.366 1.75 1.633 1.649 23 0.65 0.44 0.23 0.430 0.44 0.440 0.034	6	0.2	0.16	0.11	0.615	0.16	0.157	0.002
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	7	0.84	0.72	0.42	0.540	0.72	0.660	0.133
10 0.47 0.26 0.17 0.486 0.26 0.300 0.011 11 1.13 0.8 0.55 0.578 0.8 0.827 0.260 12 1.05 0.92 0.52 0.529 0.92 0.830 0.263 13 0.57 0.3 0.23 0.556 0.3 0.367 0.021 14 0.65 0.6 0.58 0.929 0.6 0.610 0.118 15 0.5 0.3 0.24 0.620 0.3 0.347 0.019 16 0.37 0.37 0.22 0.595 0.37 0.320 0.016 17 0.38 0.2 0.17 0.617 0.2 0.250 0.007 18 1.23 0.85 0.65 0.636 0.85 0.910 0.356 19 0.92 0.7 0.3 0.374 0.7 0.640 0.101 20 1.04 0.63 0.29 0.358 0.63 0.653 0.099 21 0.9 0.8 0.6 0.707 0.8 0.767 0.226 22 2.4 1.75 0.75 0.366 1.75 1.633 1.649 23 0.65 0.444 0.23 0.430 0.44 0.440 0.034 24 0.38 0.32 0.25 0.717 0.32 0.317 0.016 25 3 2.3 2.2 0.838 2.3 2.500 7.948 26 <td>8</td> <td>0.94</td> <td>0.72</td> <td>0.41</td> <td>0.498</td> <td>0.72</td> <td>0.690</td> <td>0.145</td>	8	0.94	0.72	0.41	0.498	0.72	0.690	0.145
111.13 0.8 0.55 0.578 0.8 0.827 0.260 12 1.05 0.92 0.52 0.529 0.92 0.830 0.263 13 0.57 0.3 0.23 0.556 0.3 0.367 0.021 14 0.65 0.6 0.58 0.929 0.6 0.610 0.118 15 0.5 0.3 0.24 0.620 0.3 0.347 0.019 16 0.37 0.37 0.22 0.595 0.37 0.320 0.016 17 0.38 0.2 0.17 0.617 0.2 0.250 0.007 18 1.23 0.85 0.65 0.636 0.85 0.910 0.356 19 0.92 0.7 0.3 0.374 0.7 0.640 0.101 20 1.04 0.63 0.29 0.358 0.63 0.653 0.099 21 0.9 0.8 0.6 0.707 0.8 0.767 0.226 22 2.4 1.75 0.75 0.366 1.75 1.633 1.649 23 0.65 0.44 0.23 0.430 0.44 0.440 0.034 24 0.38 0.32 0.25 0.717 0.32 0.317 0.016 25 3 2.3 2.2 0.88 2.3 2.500 7.948 26 1.07 0.68 0.3 0.352 0.68 0.683 0.114 27 <td< td=""><td>9</td><td>0.72</td><td>0.55</td><td>0.42</td><td>0.667</td><td>0.55</td><td>0.563</td><td>0.087</td></td<>	9	0.72	0.55	0.42	0.667	0.55	0.563	0.087
121.05 0.92 0.52 0.529 0.92 0.830 0.263 13 0.57 0.3 0.23 0.556 0.3 0.367 0.021 14 0.65 0.6 0.58 0.929 0.6 0.610 0.118 15 0.5 0.3 0.24 0.620 0.3 0.347 0.019 16 0.37 0.37 0.22 0.595 0.37 0.320 0.016 17 0.38 0.2 0.17 0.617 0.2 0.250 0.007 18 1.23 0.85 0.65 0.636 0.85 0.910 0.356 19 0.92 0.7 0.3 0.374 0.7 0.640 0.101 20 1.04 0.63 0.29 0.358 0.63 0.653 0.099 21 0.9 0.8 0.6 0.707 0.8 0.767 0.226 22 2.4 1.75 0.75 0.366 1.75 1.633 1.649 23 0.65 0.44 0.23 0.430 0.44 0.440 0.034 24 0.38 0.32 0.25 0.717 0.32 0.317 0.016 25 3 2.3 2.2 0.838 2.3 2.500 7.948 26 1.07 0.68 0.3 0.352 0.68 0.683 0.114 27 1.1 0.8 0.4 0.365 0.8 0.900 0.251 29	10	0.47	0.26	0.17	0.486	0.26	0.300	0.011
13 0.57 0.3 0.23 0.556 0.3 0.367 0.021 14 0.65 0.6 0.58 0.929 0.6 0.610 0.118 15 0.5 0.3 0.24 0.620 0.3 0.347 0.019 16 0.37 0.37 0.22 0.595 0.37 0.320 0.016 17 0.38 0.2 0.17 0.617 0.2 0.250 0.007 18 1.23 0.85 0.655 0.636 0.85 0.910 0.356 19 0.92 0.7 0.3 0.374 0.7 0.640 0.101 20 1.04 0.63 0.29 0.358 0.63 0.653 0.099 21 0.9 0.8 0.6 0.707 0.8 0.767 0.226 22 2.4 1.75 0.75 0.366 1.75 1.633 1.649 23 0.65 0.44 0.23 0.430 0.44 0.440 0.034 24 0.38 0.32 0.25 0.717 0.32 0.317 0.016 25 3 2.3 2.2 0.838 2.3 2.500 7.948 26 1.07 0.68 0.3 0.352 0.68 0.683 0.114 27 1.1 0.8 0.4 0.365 0.8 0.900 0.251 29 1.1 0.8 0.4 0.365 0.8 0.900 0.251 30	11	1.13	0.8	0.55	0.578	0.8	0.827	0.260
14 0.65 0.6 0.58 0.929 0.6 0.610 0.118 15 0.5 0.3 0.24 0.620 0.3 0.347 0.019 16 0.37 0.37 0.22 0.595 0.37 0.320 0.016 17 0.38 0.2 0.17 0.617 0.2 0.250 0.007 18 1.23 0.85 0.65 0.636 0.85 0.910 0.356 19 0.92 0.7 0.3 0.374 0.7 0.640 0.101 20 1.04 0.63 0.29 0.358 0.63 0.653 0.099 21 0.9 0.8 0.6 0.707 0.8 0.767 0.226 22 2.4 1.75 0.75 0.366 1.75 1.633 1.649 23 0.65 0.44 0.23 0.430 0.44 0.440 0.034 24 0.38 0.32 0.25 0.717 0.32 0.317 0.016 25 3 2.3 2.2 0.838 2.3 2.500 7.948 26 1.07 0.68 0.3 0.352 0.68 0.683 0.114 27 1.1 0.8 0.4 0.365 0.8 0.767 0.184 28 1.5 0.8 0.4 0.365 0.8 0.750 0.161 30 1.5 1.45 0.65 0.441 1.45 1.200 0.74	12	1.05	0.92	0.52	0.529	0.92	0.830	0.263
15 0.5 0.3 0.24 0.620 0.3 0.347 0.019 16 0.37 0.37 0.22 0.595 0.37 0.320 0.016 17 0.38 0.2 0.17 0.617 0.2 0.250 0.007 18 1.23 0.85 0.65 0.636 0.85 0.910 0.356 19 0.92 0.7 0.3 0.374 0.7 0.640 0.101 20 1.04 0.63 0.29 0.358 0.63 0.653 0.099 21 0.9 0.8 0.6 0.707 0.8 0.767 0.226 22 2.4 1.75 0.75 0.366 1.75 1.633 1.649 23 0.65 0.44 0.23 0.430 0.44 0.440 0.034 24 0.38 0.32 0.25 0.717 0.32 0.317 0.016 25 3 2.3 2.2 0.838 2.3 2.500 7.948 26 1.07 0.68 0.3 0.352 0.68 0.683 0.114 27 1.1 0.8 0.4 0.426 0.8 0.767 0.184 28 1.5 0.8 0.4 0.365 0.8 0.750 0.161 30 1.5 1.45 0.655 0.441 1.45 1.200 0.740 31 1.5 1.35 0.6 0.436 1.35 1.117 0.5	13	0.57	0.3	0.23	0.556	0.3	0.367	0.021
16 0.37 0.37 0.22 0.595 0.37 0.320 0.016 17 0.38 0.2 0.17 0.617 0.2 0.250 0.007 18 1.23 0.85 0.65 0.636 0.85 0.910 0.356 19 0.92 0.7 0.3 0.374 0.7 0.640 0.101 20 1.04 0.63 0.29 0.358 0.63 0.653 0.099 21 0.9 0.8 0.6 0.707 0.8 0.767 0.226 22 2.4 1.75 0.75 0.366 1.75 1.633 1.649 23 0.65 0.44 0.23 0.430 0.44 0.440 0.034 24 0.38 0.32 0.25 0.717 0.32 0.317 0.016 25 3 2.3 2.2 0.838 2.3 2.500 7.948 26 1.07 0.68 0.3 0.352 0.68 0.683 0.114 27 1.1 0.8 0.4 0.365 0.8 0.767 0.184 28 1.5 0.8 0.4 0.365 0.8 0.900 0.251 29 1.1 0.8 0.4 0.281 1.35 1.083 0.424 31 1.5 1.45 0.65 0.441 1.45 1.200 0.740 31 1.5 1.45 0.66 0.436 1.35 1.117 0.5	14	0.65	0.6	0.58	0.929	0.6	0.610	0.118
17 0.38 0.2 0.17 0.617 0.2 0.250 0.007 18 1.23 0.85 0.65 0.636 0.85 0.910 0.356 19 0.92 0.7 0.3 0.374 0.7 0.640 0.101 20 1.04 0.63 0.29 0.358 0.63 0.653 0.099 21 0.9 0.8 0.6 0.707 0.8 0.767 0.226 22 2.4 1.75 0.75 0.366 1.75 1.633 1.649 23 0.65 0.44 0.23 0.430 0.44 0.440 0.034 24 0.38 0.32 0.25 0.717 0.32 0.317 0.016 25 3 2.3 2.2 0.838 2.3 2.500 7.948 26 1.07 0.68 0.3 0.352 0.68 0.683 0.114 27 1.1 0.8 0.4 0.426 0.8 0.767 0.184 28 1.5 0.8 0.4 0.365 0.8 0.900 0.251 29 1.1 0.8 0.35 0.373 0.8 0.750 0.161 30 1.5 1.45 0.65 0.441 1.45 1.200 0.740 31 1.5 1.35 0.4 0.281 1.35 1.083 0.424 32 1.75 1.4 0.4 0.256 1.4 1.183 0.513 <	15	0.5	0.3	0.24	0.620	0.3	0.347	0.019
18 1.23 0.85 0.65 0.636 0.85 0.910 0.356 19 0.92 0.7 0.3 0.374 0.7 0.640 0.101 20 1.04 0.63 0.29 0.358 0.63 0.653 0.099 21 0.9 0.8 0.6 0.707 0.8 0.767 0.226 22 2.4 1.75 0.75 0.366 1.75 1.633 1.649 23 0.65 0.44 0.23 0.430 0.44 0.400 0.034 24 0.38 0.32 0.25 0.717 0.32 0.317 0.016 25 3 2.3 2.2 0.838 2.3 2.500 7.948 26 1.07 0.68 0.3 0.352 0.68 0.683 0.114 27 1.1 0.8 0.4 0.426 0.8 0.767 0.184 28 1.5 0.8 0.4 <td< td=""><td>16</td><td>0.37</td><td>0.37</td><td>0.22</td><td>0.595</td><td>0.37</td><td>0.320</td><td>0.016</td></td<>	16	0.37	0.37	0.22	0.595	0.37	0.320	0.016
190.920.70.30.3740.70.6400.101201.040.630.290.3580.630.6530.099210.90.80.60.7070.80.7670.226222.41.750.750.3661.751.6331.649230.650.440.230.4300.440.4400.034240.380.320.250.7170.320.3170.0162532.32.20.8382.32.5007.948261.070.680.30.3520.680.6830.114271.10.80.40.4260.80.7670.184281.50.80.40.3650.80.9000.251301.51.450.650.4411.451.2000.740311.51.350.40.2811.351.0830.424321.751.40.40.2561.41.1830.513331.41.350.60.4361.351.1170.594341.20.90.750.7220.90.9500.424351.61.20.750.5411.21.1830.754	17	0.38	0.2	0.17	0.617	0.2	0.250	0.007
201.040.630.290.3580.630.6530.099210.90.80.60.7070.80.7670.226222.41.750.750.3661.751.6331.649230.650.440.230.4300.440.4400.034240.380.320.250.7170.320.3170.0162532.32.20.8382.32.5007.948261.070.680.30.3520.680.6830.114271.10.80.40.4260.80.7670.184281.50.80.40.3650.80.9000.251301.51.450.650.4411.451.2000.740311.51.350.40.2811.351.0830.424321.751.40.40.2561.41.1830.513331.41.350.60.4361.351.1170.594341.20.90.750.7220.90.9500.424351.61.20.750.5411.21.1830.754	18	1.23	0.85	0.65	0.636	0.85	0.910	0.356
210.90.80.60.7070.80.7670.226222.41.750.750.3661.751.6331.649230.650.440.230.4300.440.4400.034240.380.320.250.7170.320.3170.0162532.32.20.8382.32.5007.948261.070.680.30.3520.680.6830.114271.10.80.40.4260.80.7670.184281.50.80.40.3650.80.9000.251301.51.450.650.4411.451.2000.740311.51.350.40.2811.351.0830.424321.751.40.40.2561.41.1830.513331.41.350.60.4361.351.1170.594341.20.90.750.7220.90.9500.424351.61.20.750.5411.21.1830.754	19	0.92	0.7	0.3	0.374	0.7	0.640	0.101
222.41.750.750.3661.751.6331.649230.650.440.230.4300.440.4400.034240.380.320.250.7170.320.3170.0162532.32.20.8382.32.5007.948261.070.680.30.3520.680.6830.114271.10.80.40.4260.80.7670.184281.50.80.40.3650.80.9000.251291.10.80.350.3730.80.7500.161301.51.450.650.4411.451.2000.740311.51.350.40.2561.41.1830.513331.41.350.60.4361.351.1170.594341.20.90.750.7220.90.9500.424351.61.20.750.5411.21.1830.754	20	1.04	0.63	0.29	0.358	0.63	0.653	0.099
230.650.440.230.4300.440.4400.034240.380.320.250.7170.320.3170.0162532.32.20.8382.32.5007.948261.070.680.30.3520.680.6830.114271.10.80.40.4260.80.7670.184281.50.80.40.3650.80.9000.251291.10.80.350.3730.80.7500.161301.51.450.650.4411.451.2000.740311.51.350.40.2561.41.1830.513331.41.350.60.4361.351.1170.594341.20.90.750.7220.90.9500.424351.61.20.750.5411.21.1830.754	21	0.9	0.8	0.6	0.707	0.8	0.767	0.226
240.380.320.250.7170.320.3170.0162532.32.20.8382.32.5007.948261.070.680.30.3520.680.6830.114271.10.80.40.4260.80.7670.184281.50.80.40.3650.80.9000.251291.10.80.350.3730.80.7500.161301.51.450.650.4411.451.2000.740311.51.350.40.2811.351.0830.424321.751.40.40.2561.41.1830.513331.41.350.60.4361.351.1170.594341.20.90.750.7220.90.9500.424351.61.20.750.5411.21.1830.754	22	2.4	1.75	0.75	0.366	1.75	1.633	1.649
2532.32.20.8382.32.5007.948261.070.680.30.3520.680.6830.114271.10.80.40.4260.80.7670.184281.50.80.40.3650.80.9000.251291.10.80.350.3730.80.7500.161301.51.450.650.4411.451.2000.740311.51.350.40.2811.351.0830.424321.751.40.40.2561.41.1830.513331.41.350.60.4361.351.1170.594341.20.90.750.7220.90.9500.424351.61.20.750.5411.21.1830.754	23	0.65	0.44	0.23	0.430	0.44	0.440	0.034
261.070.680.30.3520.680.6830.114271.10.80.40.4260.80.7670.184281.50.80.40.3650.80.9000.251291.10.80.350.3730.80.7500.161301.51.450.650.4411.451.2000.740311.51.350.40.2811.351.0830.424321.751.40.40.2561.41.1830.513331.41.350.60.4361.351.1170.594341.20.90.750.7220.90.9500.424351.61.20.750.5411.21.1830.754	24	0.38	0.32	0.25	0.717	0.32	0.317	0.016
271.10.80.40.4260.80.7670.184281.50.80.40.3650.80.9000.251291.10.80.350.3730.80.7500.161301.51.450.650.4411.451.2000.740311.51.350.40.2811.351.0830.424321.751.40.40.2561.41.1830.513331.41.350.60.4361.351.1170.594341.20.90.750.7220.90.9500.424351.61.20.750.5411.21.1830.754	25	3	2.3	2.2	0.838	2.3	2.500	7.948
28 1.5 0.8 0.4 0.365 0.8 0.900 0.251 29 1.1 0.8 0.35 0.373 0.8 0.750 0.161 30 1.5 1.45 0.65 0.441 1.45 1.200 0.740 31 1.5 1.35 0.4 0.281 1.35 1.083 0.424 32 1.75 1.4 0.4 0.256 1.4 1.183 0.513 33 1.4 1.35 0.6 0.436 1.35 1.17 0.594 34 1.2 0.9 0.75 0.722 0.9 0.950 0.424 35 1.6 1.2 0.75 0.541 1.2 1.183 0.754	26	1.07	0.68	0.3	0.352	0.68	0.683	0.114
29 1.1 0.8 0.35 0.373 0.8 0.750 0.161 30 1.5 1.45 0.65 0.441 1.45 1.200 0.740 31 1.5 1.35 0.4 0.281 1.35 1.083 0.424 32 1.75 1.4 0.4 0.256 1.4 1.183 0.513 33 1.4 1.35 0.6 0.436 1.35 1.117 0.594 34 1.2 0.9 0.75 0.722 0.9 0.950 0.424 35 1.6 1.2 0.75 0.541 1.2 1.183 0.754	27	1.1	0.8	0.4	0.426	0.8	0.767	0.184
30 1.5 1.45 0.65 0.41 1.45 1.200 0.740 31 1.5 1.35 0.4 0.281 1.35 1.083 0.424 32 1.75 1.4 0.4 0.256 1.4 1.183 0.513 33 1.4 1.35 0.6 0.436 1.35 1.117 0.594 34 1.2 0.9 0.75 0.722 0.9 0.950 0.424 35 1.6 1.2 0.75 0.541 1.2 1.183 0.754	28	1.5	0.8	0.4	0.365	0.8	0.900	0.251
31 1.5 1.35 0.4 0.281 1.35 1.083 0.424 32 1.75 1.4 0.4 0.256 1.4 1.183 0.513 33 1.4 1.35 0.6 0.436 1.35 1.117 0.594 34 1.2 0.9 0.75 0.722 0.9 0.950 0.424 35 1.6 1.2 0.75 0.541 1.2 1.183 0.754	29	1.1	0.8	0.35	0.373	0.8	0.750	0.161
32 1.75 1.4 0.4 0.256 1.4 1.183 0.513 33 1.4 1.35 0.6 0.436 1.35 1.117 0.594 34 1.2 0.9 0.75 0.722 0.9 0.950 0.424 35 1.6 1.2 0.75 0.541 1.2 1.183 0.754	30	1.5	1.45	0.65	0.441	1.45	1.200	0.740
33 1.4 1.35 0.6 0.436 1.35 1.117 0.594 34 1.2 0.9 0.75 0.722 0.9 0.950 0.424 35 1.6 1.2 0.75 0.541 1.2 1.183 0.754	31	1.5	1.35	0.4	0.281	1.35	1.083	0.424
34 1.2 0.9 0.75 0.722 0.9 0.950 0.424 35 1.6 1.2 0.75 0.541 1.2 1.183 0.754	32	1.75	1.4	0.4	0.256	1.4	1.183	0.513
35 1.6 1.2 0.75 0.541 1.2 1.183 0.754	33	1.4	1.35	0.6	0.436	1.35	1.117	0.594
	34	1.2	0.9	0.75	0.722	0.9	0.950	0.424
36 2.3 1.7 1.3 0.657 1.7 1.767 2.661	35	1.6	1.2	0.75	0.541	1.2	1.183	0.754
	36	2.3	1.7	1.3	0.657	1.7	1.767	2.661

Structure # H-04-G	Big Creek at SH 330			
Sieve Size (ft)	Samples Retained	% Retained	Cumulative % Ret.	% Finer
2.5	0	0%	0%	100%
1.5	3	8%	8%	92%
1.25	5	14%	22%	78%
1	1	3%	25%	75%
0.8	8	22%	47%	53%
0.6	6	17%	64%	36%
0.4	4	11%	75%	25%
0.2	8	22%	97%	3%
0.1	1	3%	100%	0%
Total Samples	36			


Hydraulic Analysis Report

Project Data

Project Title: H-04-G Designer: Project Date: Thursday, September 19, 2013 Project Units: U.S. Customary Units Notes:

Wolman Count Analysis: Hydraulic Toolbox GSD

Notes:

Image Gradation Input Parameters

Name: Digital Gradation Analysis Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0537.JPG Scale Line Length: 48 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 168 Morphologic Iterations: 1 Resolution: 29 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.080517	0	0	0.000000
0.113868	0	0	0.000000
0.161034	0	0	0.000000
0.227736	0	0	0.000000
0.322067	1	1	0.143266
0.455472	3	4	0.573066
0.644135	6	10	1.432665
0.910944	13	23	3.295129
1.288269	22	45	6.446991
1.821888	56	101	14.469914
2.576539	71	172	24.641834
3.643776	106	278	39.828080
5.153077	166	444	63.610315
7.287552	132	576	82.521490
10.306155	0	576	82.521490
14.575104	122	698	100.000000

Gradation Result Parameters D5: 1.1150 in D15: 1.8612 in D50: 4.2893 in D85: 10.9115 in D100: 14.5751 in

Image Gradation Input Parameters

Name: DSCF0538 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0538.JPG Scale Line Length: 48 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 164 Morphologic Iterations: 1 Resolution: 29 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.077845	0	0	0.000000
0.110090	0	0	0.000000
0.155691	0	0	0.000000
0.220180	0	0	0.000000
0.311382	0	0	0.000000
0.440360	0	0	0.000000
0.622763	1	1	0.270270
0.880720	2	3	0.810811
1.245526	2	5	1.351351
1.761440	8	13	3.513514
2.491052	13	26	7.027027
3.522880	27	53	14.324324
4.982105	51	104	28.108108
7.045760	37	141	38.108108
9.964209	72	213	57.567568
14.091520	0	213	57.567568
19.928419	0	213	57.567568
28.183040	157	370	100.000000

Gradation Result Parameters D5: 2.0701 in D15: 3.5944 in D50: 8.8293 in D85: 25.2650 in D100: 28.1830 in

Image Gradation Input Parameters

Name: DSCF0539 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0539.JPG Scale Line Length: 48 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 161 Morphologic Iterations: 1 Resolution: 27 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.102641	0	0	0.000000
0.145156	0	0	0.000000
0.205282	0	0	0.000000
0.290312	0	0	0.000000
0.410563	0	0	0.000000
0.580624	0	0	0.000000
0.821126	1	1	0.374532
1.161248	1	2	0.749064
1.642253	3	5	1.872659
2.322496	6	11	4.119850
3.284505	9	20	7.490637
4.644992	37	57	21.348315
6.569011	27	84	31.460674
9.289984	85	169	63.295880
13.138021	98	267	100.000000

Gradation Result Parameters D5: 2.5737 in D15: 4.0217 in D50: 8.1536 in D85: 11.5654 in D100: 13.1380 in

Image Gradation Input Parameters

Name: DSCF0541 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0541.JPG Scale Line Length: 48 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 205 Morphologic Iterations: 1 Resolution: 33 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.043670	0	0	0.000000
0.061758	0	0	0.000000
0.087339	0	0	0.000000
0.123516	0	0	0.000000
0.174678	0	0	0.000000
0.247032	0	0	0.000000
0.349356	1	1	0.153374
0.494064	2	3	0.460123
0.698712	3	6	0.920245
0.988128	10	16	2.453988
1.397424	14	30	4.601227
1.976256	42	72	11.042945
2.794848	55	127	19.478528
3.952512	106	233	35.736196
5.589696	66	299	45.858896
7.905024	132	431	66.104294
11.179392	124	555	85.122699
15.810048	97	652	100.000000

Gradation Result Parameters D5: 1.4333 in D15: 2.3603 in D50: 6.0633 in D85: 11.1583 in D100: 15.8100 in

Image Gradation Input Parameters

Name: DSCF0542 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0542.JPG Scale Line Length: 48 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 182 Morphologic Iterations: 1 Resolution: 27 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.081428	0	0	0.000000
0.115156	0	0	0.000000
0.162855	0	0	0.000000
0.230312	0	0	0.000000
0.325710	0	0	0.000000
0.460624	0	0	0.000000
0.651421	1	1	0.276243
0.921248	2	3	0.828729
1.302841	2	5	1.381215
1.842496	10	15	4.143646
2.605683	7	22	6.077348
3.684992	18	40	11.049724
5.211366	30	70	19.337017
7.369984	50	120	33.149171
10.422731	96	216	59.668508
14.739968	57	273	75.414365
20.845463	89	362	100.000000

Gradation Result Parameters D5: 2.1805 in D15: 4.4126 in D50: 9.3098 in D85: 17.1204 in D100: 20.8455 in

Image Gradation Input Parameters

Name: DSCF0543 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0543.JPG Scale Line Length: 48 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 197 Morphologic Iterations: 1 Resolution: 28 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.070251	0	0	0.000000
0.099350	0	0	0.000000
0.140502	0	0	0.000000
0.198700	0	0	0.000000
0.281004	0	0	0.000000
0.397400	0	0	0.000000
0.562008	1	1	0.263158
0.794800	1	2	0.526316
1.124017	3	5	1.315789
1.589600	5	10	2.631579
2.248034	6	16	4.210526
3.179200	21	37	9.736842
4.496068	49	86	22.631579
6.358400	83	169	44.473684
8.992136	119	288	75.789474
12.716800	92	380	100.000000

Gradation Result Parameters D5: 2.3811 in D15: 3.7167 in D50: 6.8232 in D85: 10.4091 in D100: 12.7168 in

Image Gradation Input Parameters

Name: DSCF0544 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0544.JPG Scale Line Length: 48 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 152 Morphologic Iterations: 1 Resolution: 39 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.070079	0	0	0.000000
0.099106	0	0	0.000000
0.140157	0	0	0.000000
0.198212	0	0	0.000000
0.280314	0	0	0.000000
0.396424	1	1	0.195695
0.560628	3	4	0.782779
0.792848	7	11	2.152642
1.121256	15	26	5.088063
1.585696	34	60	11.741683
2.242513	44	104	20.352250
3.171392	76	180	35.225049
4.485026	100	280	54.794521
6.342784	158	438	85.714286
8.970051	0	438	85.714286
12.685568	73	511	100.000000

Gradation Result Parameters D5: 1.1114 in D15: 1.8342 in D50: 4.1632 in D85: 6.2999 in D100: 12.6856 in

Image Gradation Input Parameters

Name: DSCF0545 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0545.JPG Scale Line Length: 48 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 182 Morphologic Iterations: 1 Resolution: 29 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.079196	0	0	0.000000
0.112000	0	0	0.000000
0.158392	0	0	0.000000
0.224000	0	0	0.000000
0.316784	1	1	0.129199
0.448000	1	2	0.258398
0.633568	4	6	0.775194
0.896000	7	13	1.679587
1.267135	11	24	3.100775
1.792000	18	42	5.426357
2.534271	16	58	7.493540
3.584000	36	94	12.144703
5.068541	58	152	19.638243
7.168000	16	168	21.705426
10.137083	74	242	31.266150
14.336000	0	242	31.266150
20.274166	209	451	58.268734
28.672000	323	774	100.000000

Gradation Result Parameters D5: 1.6958 in D15: 4.1497 in D50: 18.4558 in D85: 25.6535 in D100: 28.6720 in

Image Gradation Input Parameters

Name: DSCF0548 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0548.JPG Scale Line Length: 48 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 175 Morphologic Iterations: 1 Resolution: 27 % Flood Depth: 0.9 px

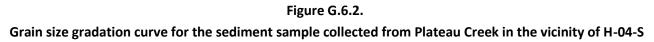
Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.072696	0	0	0.000000
0.102808	0	0	0.000000
0.145392	0	0	0.000000
0.205616	0	0	0.000000
0.290785	0	0	0.000000
0.411232	2	2	0.302572
0.581570	2	4	0.605144
0.822464	5	9	1.361573
1.163140	12	21	3.177005
1.644928	27	48	7.261725
2.326279	40	88	13.313162
3.289856	73	161	24.357035
4.652559	100	261	39.485628
6.579712	149	410	62.027231
9.305118	141	551	83.358548
13.159424	110	661	100.000000

Gradation Result Parameters D5: 1.3782 in D15: 2.4735 in D50: 5.5515 in D85: 9.6853 in D100: 13.1594 in

Image Gradation Input Parameters

Name: DSCF0549 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0549.JPG Scale Line Length: 48 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 183 Morphologic Iterations: 1 Resolution: 27 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.080924	0	0	0.000000
0.114444	0	0	0.000000
0.161848	0	0	0.000000
0.228888	0	0	0.000000
0.323697	1	1	0.109890
0.457776	3	4	0.439560
0.647393	5	9	0.989011
0.915552	11	20	2.197802
1.294786	28	48	5.274725
1.831104	47	95	10.439560
2.589572	72	167	18.351648
3.662208	127	294	32.307692
5.179144	179	473	51.978022
7.324416	247	720	79.120879
10.358288	107	827	90.879121
14.648832	83	910	100.000000


Two sediment samples were collected from the channel bed near Bridge H-04-S. Results of the sediment size analysis for the sediment sample collected from the channel are presented below in both tabular and graphical formats.

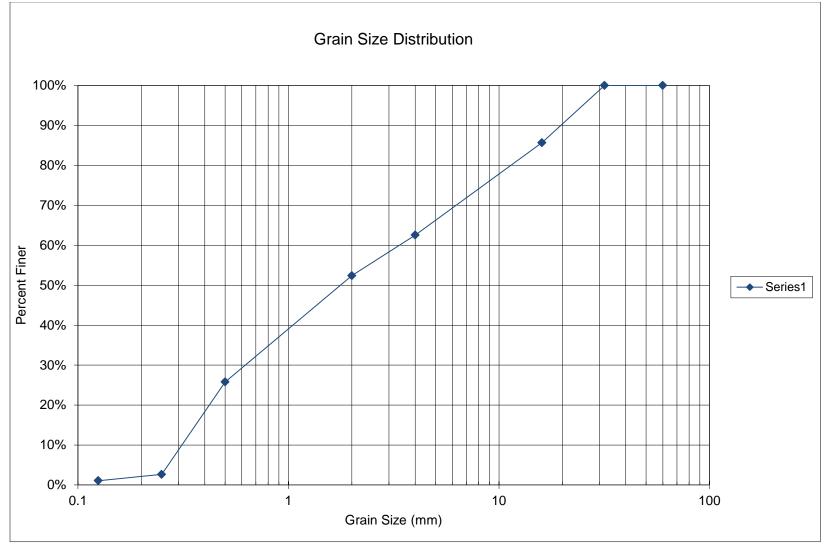
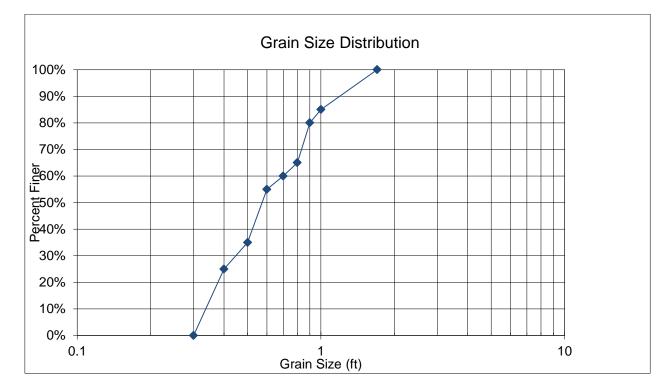


Figure G.6.1. Photo of sediment sample from the H-04-S site

Table G.6.1. Sediment sieve analysis Sample ID: H-04-S Plateau Creek Sample Description: 1 of 2 Performed by: JE Date: 9-20-2011

Sieve Size (mm)	% Finer
60	100%
31.75	100%
16	86%
4	63%
2	52%
0.5	26%
0.25	3%
0.125	1%

Structure # H-04-S	Waterbody - Plateau Creek	Sample # 1 of 1	Performed by: JE Date: 10/03/2011			
Sieve Size (mm)	Weight of Sieve (g)	Weight of Sieve + Soil (g)	Weight of Soil (g)	% Retained	Cumulative % Ret.	% Finer
60	0	0	0	0%	0%	100%
31.75	0	2654.1	0	0%	0%	100%
16	542.49	830.84	288.35	14%	14%	86%
4	610.92	1076.8	465.88	23%	37%	63%
2	524.06	728.41	204.35	10%	48%	52%
0.5	484.03	1019.7	535.67	27%	74%	26%
0.25	418.39	884.03	465.64	23%	97%	3%
0.125	379.13	410.92	31.79	2%	99%	1%
Pan	373.41	394.88	21.47	1%	100%	0%
		Total Weight of Sample	2013.15			

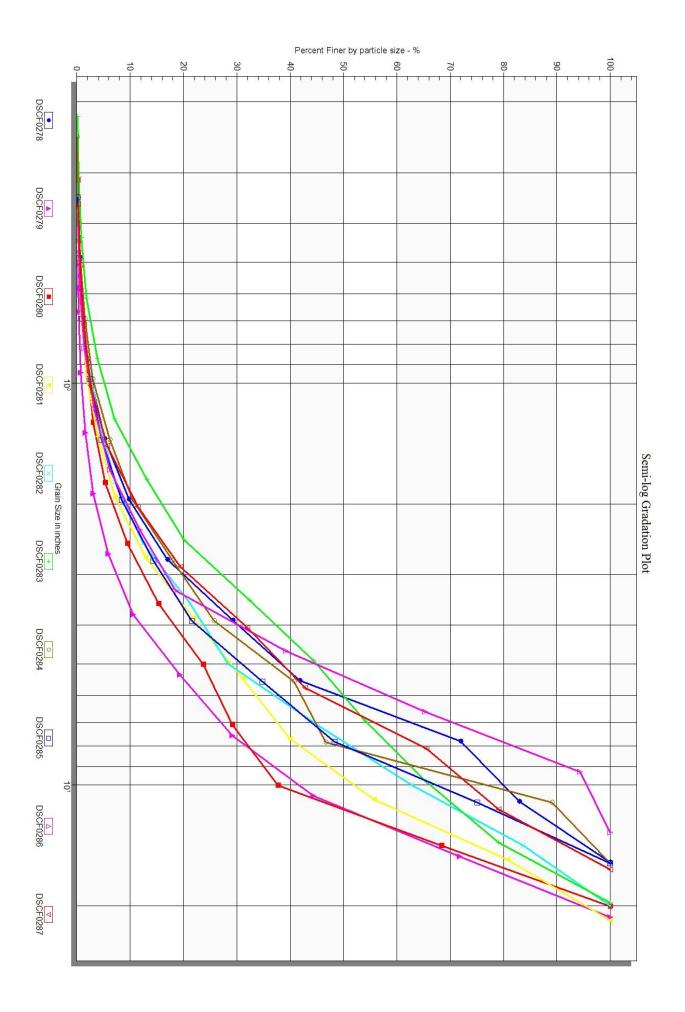

Table G.6.2.

Grain size gradation computations for the sediment sample collected from Plateau Creek in the vicinity of H-04-S

Region	Structure ID	County	Facili	ty Carried	Mile M	Aarker POA Fisc		al Year	Feature Inte	rsected	D ₅₀ max from PO	DA	Date
3	H-04-S	Mesa	SH	1330ML	1.9)	2012 Platea		Plateau C	creek 2		8	/8/2013
Sample #	A (ft)	B (ft)		C (f	t)	Shape	e Factor	0	Ds (ft)		Davg (ft)	Volur	me (ft³)
1	1.7	1.6		1.1		0.	667		1.6		1.467	1	.567
2	0.97	0.71		0.4	3	0.	518		0.71		0.703	0	.155
3	1.12	0.85		0.4	2	0.	430		0.85		0.797	0	.209
4	1.2	0.8		0.2	8	0.	286		0.8		0.760	0	.141
5	0.42	0.35		0.2	6	0.	678		0.35		0.343	0	.020
6	0.63	0.54		0.3	6	0.	617		0.54		0.510	0	.064
7	0.62	0.54		0.1	5	0.	259		0.54		0.437	0	.026
8	1.1	1		0.7	7	0.	667		1		0.933	0	.403
9	0.66	0.4		0.3	8	0.	584		0.4		0.453	0	.041
10	0.78	0.47		0.3	8	0.	495		0.47		0.517	0	.058
11	0.68	0.37		0.2	4	0.	478		0.37		0.430	0	.032
12	1.5	1		0.6	5	0.	490		1		1.033	0	.471
13	0.6	0.38		0.3	4	0.	712		0.38		0.440	0	.041
14	1.35	0.95		0.4	2	0.	371		0.95		0.907	0	.282
15	0.68	0.55		0.3	5	0.	572		0.55		0.527	0	.069
16	0.55	0.52		0.2	6	0.	486		0.52		0.443	0	.039
17	0.55	0.34		0.1	6	0.	370		0.34		0.350	0	.016
18	0.85	0.64		0.3	6	0.	488		0.64		0.617	0	.103
19	0.41	0.38		0.3	3	0.	836		0.38		0.373	0	.027
20	1.1	0.85		0.6	3	0.	652		0.85		0.860	0	.308

Pebble Count Grain Size Distribution

Structure # H-04-S	Plateau Creek at SH 330					
Sieve Size (ft)	Samples Retained	% Retained	Cumulative % Ret.	% Finer		
1.7	0	0%	0%	100%		
1	3	15%	15%	85%		
0.9	1	5%	20%	80%		
0.8	3	15%	35%	65%		
0.7	1	5%	40%	60%		
0.6	1	5%	45%	55%		
0.5	4	20%	65%	35%		
0.4	2	10%	75%	25%		
0.3	5	25%	100%	0%		
Total Samples	20					


Hydraulic Analysis Report

Project Data

Project Title: H-04-S Designer: Project Date: Friday, September 20, 2013 Project Units: U.S. Customary Units Notes:

Wolman Count Analysis: Hydraulic Toolbox GSD

Notes:

Image Gradation Input Parameters

Name: DSCF0278 Gradation Type: Image Gradation Number of Images: 1

Image Path: Hydraulic Toolbox GSD_Images\DSCF0278.JPG

Scale Line Length: 24 in

Median Filter Radius: 2 px

Background Subtraction Radius: 3 px

Advanced Controls:

Automate Threshold Selection

Threshold Value: 207

Morphologic Iterations: 1

Resolution: 28 %

Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.060787	0	0	0.000000
0.085966	0	0	0.000000
0.121574	0	0	0.000000
0.171932	0	0	0.000000
0.243148	0	0	0.000000
0.343864	2	2	0.191022
0.486297	3	5	0.477555
0.687727	6	11	1.050621
0.972593	16	27	2.578797
1.375455	27	54	5.157593
1.945187	48	102	9.742120
2.750910	76	178	17.000955
3.890374	128	306	29.226361
5.501819	132	438	41.833811
7.780747	315	753	71.919771
11.003638	116	869	82.999045
15.561494	178	1047	100.000000

Gradation Result Parameters D5: 1.3508 in D15: 2.5288 in D50: 6.1204 in D85: 11.5401 in D100: 15.5615 in

Image Gradation Input Parameters

Name: DSCF0279 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0279.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 200 Morphologic Iterations: 1 Resolution: 27 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.117741	0	0	0.000000
0.166511	0	0	0.000000
0.235482	0	0	0.000000
0.333022	0	0	0.000000
0.470965	1	1	0.178571
0.666045	1	2	0.357143
0.941930	2	4	0.714286
1.332090	5	9	1.607143
1.883859	8	17	3.035714
2.664179	16	33	5.892857
3.767719	26	59	10.535714
5.328359	49	108	19.285714
7.535437	55	163	29.107143
10.656718	85	248	44.285714
15.070875	154	402	71.785714
21.313435	158	560	100.000000

Gradation Result Parameters D5: 2.4203 in D15: 4.5640 in D50: 11.5739 in D85: 17.9946 in D100: 21.3134 in

Image Gradation Input Parameters

Name: DSCF0280 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0280.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 207 Morphologic Iterations: 1 Resolution: 27 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.078311	0	0	0.000000
0.110749	0	0	0.000000
0.156623	0	0	0.000000
0.221498	0	0	0.000000
0.313246	1	1	0.105820
0.442996	2	3	0.317460
0.626491	5	8	0.846561
0.885992	9	17	1.798942
1.252982	12	29	3.068783
1.771985	21	50	5.291005
2.505965	40	90	9.523810
3.543969	55	145	15.343915
5.011929	79	224	23.703704
7.087938	51	275	29.100529
10.023859	81	356	37.671958
14.175877	290	646	68.359788
20.047717	299	945	100.000000

Gradation Result Parameters D5: 1.7040 in D15: 3.4826 in D50: 11.6918 in D85: 17.2640 in D100: 20.0477 in

Image Gradation Input Parameters

Name: DSCF0281 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0281.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 207 Morphologic Iterations: 1 Resolution: 27 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.060009	0	0	0.000000
0.084866	0	0	0.000000
0.120018	0	0	0.000000
0.169732	0	0	0.000000
0.240037	0	0	0.000000
0.339463	1	1	0.123001
0.480074	1	2	0.246002
0.678927	4	6	0.738007
0.960147	9	15	1.845018
1.357854	17	32	3.936039
1.920295	26	58	7.134071
2.715707	47	105	12.915129
3.840590	73	178	21.894219
5.431414	75	253	31.119311
7.681180	72	325	39.975400
10.862829	128	453	55.719557
15.362360	203	656	80.688807
21.725657	157	813	100.000000

Gradation Result Parameters D5: 1.5450 in D15: 2.9769 in D50: 9.7070 in D85: 16.7830 in D100: 21.7257 in

Image Gradation Input Parameters

Name: DSCF0282 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0282.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 214 Morphologic Iterations: 1 Resolution: 27 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.055265	0	0	0.000000
0.078156	0	0	0.000000
0.110529	0	0	0.000000
0.156312	0	0	0.000000
0.221059	0	0	0.000000
0.312624	1	1	0.092251
0.442117	3	4	0.369004
0.625248	6	10	0.922509
0.884234	13	23	2.121771
1.250496	23	46	4.243542
1.768469	32	78	7.195572
2.500993	57	135	12.453875
3.536938	96	231	21.309963
5.001985	76	307	28.321033
7.073875	181	488	45.018450
10.003971	192	680	62.730627
14.147751	228	908	83.763838
20.007941	176	1084	100.000000

Gradation Result Parameters D5: 1.3832 in D15: 2.7988 in D50: 7.8980 in D85: 14.5939 in D100: 20.0079 in

Image Gradation Input Parameters

Name: DSCF0283 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0283.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 207 Morphologic Iterations: 1 Resolution: 28 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.054256	0	0	0.000000
0.076730	0	0	0.000000
0.108512	0	0	0.000000
0.153460	0	0	0.000000
0.217025	2	2	0.126823
0.306919	3	5	0.317058
0.434049	8	13	0.824350
0.613838	15	28	1.775523
0.868098	33	61	3.868104
1.227676	50	111	7.038681
1.736197	96	207	13.126189
2.455353	110	317	20.101458
3.472393	194	511	32.403297
4.910706	190	701	44.451490
6.944787	152	853	54.090044
9.821412	180	1033	65.504122
13.889574	214	1247	79.074192
19.642823	330	1577	100.000000

Gradation Result Parameters D5: 0.9965 in D15: 1.9294 in D50: 6.0816 in D85: 15.5188 in D100: 19.6428 in

Image Gradation Input Parameters

Name: DSCF0284 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0284.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 194 Morphologic Iterations: 1 Resolution: 27 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.086426	0	0	0.000000
0.122224	0	0	0.000000
0.172851	0	0	0.000000
0.24448	1	1	0.092421
0.345702	2	3	0.277264
0.488897	4	7	0.646950
0.691405	9	16	1.478743
0.977794	16	32	2.957486
1.382809	35	67	6.192237
1.955588	46	113	10.443623
2.765619	81	194	17.929760
3.911175	85	279	25.785582
5.531237	162	441	40.757856
7.822350	64	505	46.672828
11.062474	459	964	89.094270
15.644701	118	1082	100.000000

Gradation Result Parameters D5: 1.2335 in D15: 2.4486 in D50: 8.0765 in D85: 10.7498 in D100: 15.6447 in

Image Gradation Input Parameters

Name: DSCF0285 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0285.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 198 Morphologic Iterations: 1 Resolution: 26 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.061106	0	0	0.000000
0.086417	0	0	0.000000
0.122212	0	0	0.000000
0.172834	0	0	0.000000
0.244425	0	0	0.000000
0.345669	1	1	0.104167
0.488850	3	4	0.416667
0.691338	6	10	1.041667
0.977699	13	23	2.395833
1.382676	21	44	4.583333
1.955398	37	81	8.437500
2.765351	57	138	14.375000
3.910797	69	207	21.562500
5.530702	127	334	34.791667
7.821594	130	464	48.333333
11.061404	257	721	75.104167
15.643188	239	960	100.000000

Gradation Result Parameters D5: 1.4446 in D15: 2.8650 in D50: 8.0233 in D85: 12.8826 in D100: 15.6432 in

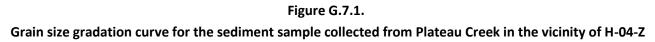
Image Gradation Input Parameters

Name: DSCF0286 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0286.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 195 Morphologic Iterations: 1 Resolution: 27 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.072573	0	0	0.000000
0.102633	0	0	0.000000
0.145145	0	0	0.000000
0.205266	0	0	0.000000
0.290291	0	0	0.000000
0.410533	2	2	0.231750
0.580581	3	5	0.579374
0.821066	7	12	1.390498
1.161162	16	28	3.244496
1.642131	25	53	6.141367
2.322324	49	102	11.819235
3.284262	58	160	18.539977
4.644648	178	338	39.165701
6.568524	225	563	65.237543
9.289296	251	814	94.322132
13.137048	49	863	100.000000

Gradation Result Parameters D5: 1.4526 in D15: 2.7776 in D50: 5.4441 in D85: 8.4172 in D100: 13.1370 in

Image Gradation Input Parameters


Name: DSCF0287 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0287.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 209 Morphologic Iterations: 1 Resolution: 27 % Flood Depth: 0.9 px

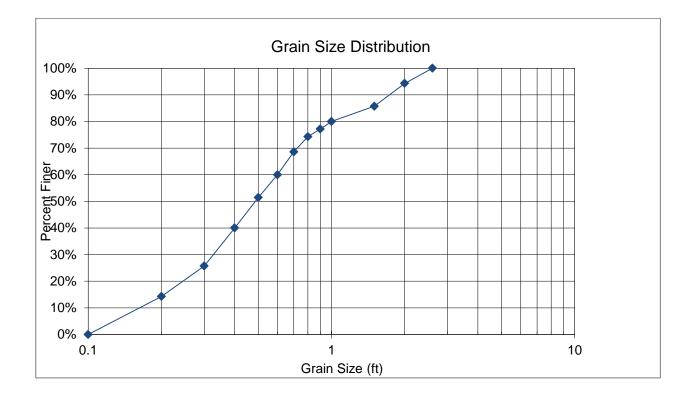
Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.063426	0	0	0.000000
0.089697	0	0	0.000000
0.126851	0	0	0.000000
0.179395	0	0	0.000000
0.253703	0	0	0.000000
0.358790	2	2	0.200000
0.507405	4	6	0.600000
0.717580	7	13	1.300000
1.014811	13	26	2.600000
1.435159	31	57	5.700000
2.029622	57	114	11.400000
2.870319	80	194	19.400000
4.059244	126	320	32.000000
5.740637	108	428	42.800000
8.118487	227	655	65.500000
11.481274	136	791	79.100000
16.236974	209	1000	100.000000

Two sediment samples were collected from the channel bed near Bridge H-04-Z Results of the sediment size analysis for the sediment sample collected from the channel are presented below in both tabular and graphical formats.

Table G.7.1. Sediment sieve analysis Sample ID: H-04-Z Plateau Creek Sample Description: 1 of 2 Performed by: JE Date: 9-20-2011

Sieve Size (mm)	% Finer
60	100%
44.45	100%
22.43	58%
19.1	52%
4	25%
2	18%
0.5	9%
0.25	6%
0.125	4%

Structure # H-04-Z	Waterbody - Plateau Creek	Sample # 1 of 1	Performed by: JE Date: 9/29/2011				
Sieve Size (mm)	Weight of Sieve (g)	Weight of Sieve + Soil (g)	Weight of Soil (g)	% Retained	Cumulative % Ret.	% Finer	
60	0	0	0	0%	0%	100%	
44.45	0	0	0	0%	0%	100%	
22.43	541.61	2024.6	1482.99	42%	42%	58%	
19.1	650.33	856.47	206.14	6%	48%	52%	
4	566.86	1515.3	948.44	27%	75%	25%	
2	463.93	691.23	227.3	6%	82%	18%	
0.5	413.67	736.26	322.59	9%	91%	9%	
0.25	400.44	507.25	106.81	3%	94%	6%	
0.125	382.96	462.98	80.02	2%	96%	4%	
Pan	355.14	487.94	132.8	4%	100%	0%	
		Total Weight of Sample	3507.09				

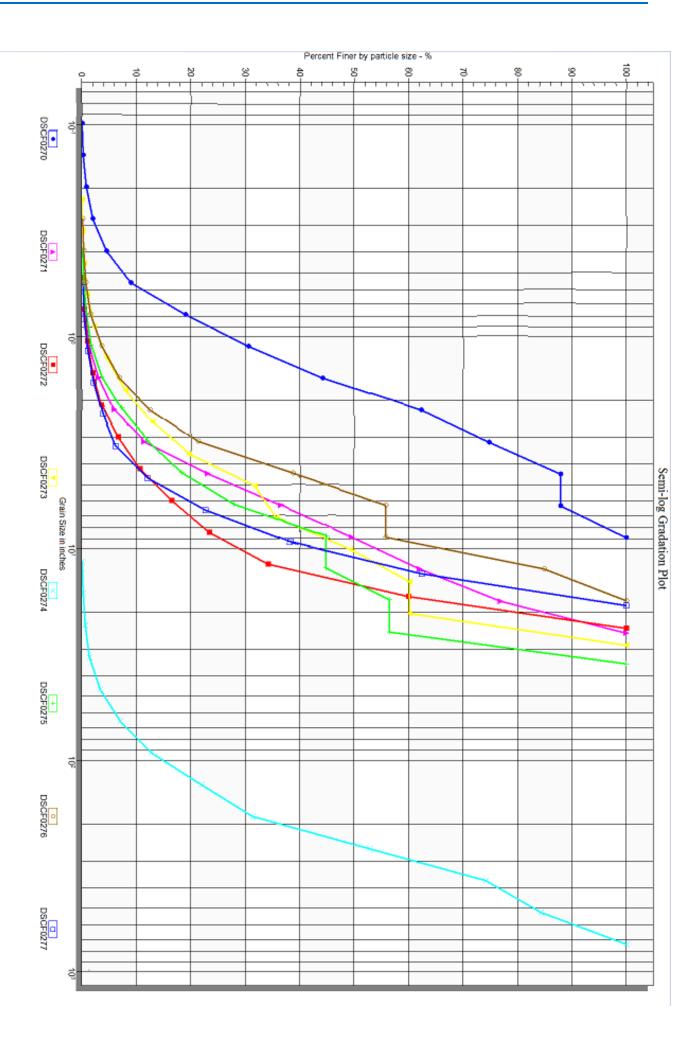

Table G.7.2.

Grain size gradation computations for the sediment sample collected from Plateau Creek in the vicinity of H-04-S

Region	Structure ID	County	Facility Carried	Mile Marker	POA Fisc	al Year	Feature Ir	tersected	D50 max from POA	Date
3	H-04-Z	Mesa	SH 65 ML	51.2	201			u Creek	17	8/8/2013
Sample #	A (ft)	B (ft)	C (ft	:) Sha	pe Factor	D	s (ft)	D	avg (ft)	Volume (ft³)
1	0.79	0.61	0.28	3	0.403	().61	(0.560	0.071
2	0.57	0.41	0.25	5	0.517	().41	(0.410	0.031
3	0.48	0.3	0.25	5	0.659		0.3	(0.343	0.019
4	0.26	0.15	0.03	3	0.152	().15		0.147	0.001
5	1.4	0.75	0.6		0.586	0).75		0.917	0.330
6	0.72	0.48	0.2		0.340	0).48		0.467	0.036
7	0.15	0.11	0.02	2	0.156	0).11		0.093	0.000
8	0.49	0.28	0.25	5	0.675	0).28		0.340	0.018
9	0.17	0.15	0.09)	0.564	0).15		0.137	0.001
10	2.01	1.32	1.1		0.675	1	L.32		1.477	1.528
11	0.37	0.29	0.26	5	0.794	0).29		0.307	0.015
12	0.9	0.85	0.3		0.343	0).85		0.683	0.120
13	2.51	1.52	1.5		0.768	1	l.52		1.843	2.996
14	3.21	2.54	1.8		0.630	2	2.54		2.517	7.684
15	0.18	0.13	0.11	L	0.719	0).13		0.140	0.001
16	0.8	0.73	0.31	L	0.406	0).73		0.613	0.095
17	0.79	0.6	0.35	5	0.508		0.6		0.580	0.087
18	0.58	0.35	0.13	3	0.289	().35		0.353	0.014
19	0.6	0.45	0.34	1	0.654	().45		0.463	0.048
20	0.69	0.63	0.42	2	0.637	().63		0.580	0.096
21	0.27	0.14	0.14	1	0.720	().14	(0.183	0.003
22	1.8	1.8	1.7		0.944		1.8		1.767	2.884
23	0.49	0.49	0.32	2	0.653	().49	(0.433	0.040
24	0.36	0.29	0.1		0.309	().29	(0.250	0.005
25	2	0.35	0.35	5	0.418	().35	(0.900	0.128
26	1.78	1.41	0.9		0.568	1	L.41		1.363	1.183
27	0.65	0.5	0.16	5	0.281		0.5		0.437	0.027
28	1.14	0.9	0.42	2	0.415		0.9		0.820	0.226
29	0.66	0.57	0.21		0.342	().57		0.480	0.041
30	2.2	1.91	1.7		0.829	1	l.91		1.937	3.740
31	0.78	0.56	0.18	3	0.272	().56		0.507	0.041
32	0.4	0.3	0.15	5	0.433		0.3		0.283	0.009
33	0.47	0.29	0.21	L	0.569	().29		0.323	0.015
34	0.49	0.36	0.22	2	0.524	().36		0.357	0.020
35	2.03	2	1.36	5	0.675		2		1.797	2.891

Pebble Count Grain Size Distribution

Structure # H-04-Z	Plateau Creek at SH 65				
Sieve Size (ft)	Samples Retained	% Retained	Cumulative % Ret.	% Finer	
2.6	0	0%	0%	100%	
2	2	6%	6%	94%	
1.5	3	9%	14%	86%	
1	2	6%	20%	80%	
0.9	1	3%	23%	77%	
0.8	1	3%	26%	74%	
0.7	2	6%	31%	69%	
0.6	3	9%	40%	60%	
0.5	3	9%	49%	51%	
0.4	4	11%	60%	40%	
0.3	5	14%	74%	26%	
0.2	4	11%	86%	14%	
0.1	5	14%	100%	0%	
Total Samples	35				


Hydraulic Analysis Report

Project Data

Project Title: H-04-Z Designer: Project Date: Friday, September 20, 2013 Project Units: U.S. Customary Units Notes:

Wolman Count Analysis: Hydraulic Toolbox GSD

Notes:

Image Gradation Input ParametersName:

DSCF0270 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0270.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 174 Morphologic Iterations: 1 Resolution: 32 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.034800	0	0	0.000000
0.049214	0	0	0.000000
0.069599	0	0	0.000000
0.098428	1	1	0.039032
0.139199	6	7	0.273224
0.196857	14	21	0.819672
0.278398	30	51	1.990632
0.393714	64	115	4.488681
0.556795	116	231	9.016393
0.787428	257	488	19.047619
1.113591	295	783	30.562061
1.574855	351	1134	44.262295
2.227182	462	1596	62.295082
3.149711	319	1915	74.746292
4.454363	337	2252	87.900078
6.299421	0	2252	87.900078
8.908727	310	2562	100.000000

Gradation Result Parameters D5: 0.4121 in D15: 0.6944 in D50: 1.7824 in D85: 4.1667 in D100: 8.9087 in

Image Gradation Input Parameters

Name: DSCF0271 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0271.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 196 Morphologic Iterations: 1 Resolution: 27 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.098021	0	0	0.000000
0.138623	0	0	0.000000
0.196042	0	0	0.000000
0.277245	0	0	0.000000
0.392084	0	0	0.000000
0.554490	1	1	0.163666
0.784168	3	4	0.654664
1.108981	4	8	1.309329
1.568336	11	19	3.109656
2.217961	17	36	5.891980
3.136671	34	70	11.456628
4.435923	71	141	23.076923
6.273342	82	223	36.497545
8.871846	80	303	49.590835
12.546685	76	379	62.029460
17.743692	91	470	76.923077
25.093370	141	611	100.000000

Gradation Result Parameters D5: 2.0097 in D15: 3.5329 in D50: 8.9927 in D85: 20.3161 in D100: 25.0934 in

Image Gradation Input Parameters

Name: DSCF0272 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0272.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 207 Morphologic Iterations: 1 Resolution: 28 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.065794	0	0	0.000000
0.093047	0	0	0.000000
0.131589	0	0	0.000000
0.186095	0	0	0.000000
0.263178	0	0	0.000000
0.372190	0	0	0.000000
0.526356	1	1	0.196850
0.744380	1	2	0.393701
1.052712	3	5	0.984252
1.488759	5	10	1.968504
2.105424	8	18	3.543307
2.977519	16	34	6.692913
4.210847	20	54	10.629921
5.955037	30	84	16.535433
8.421694	35	119	23.425197
11.910074	55	174	34.251969
16.843389	131	305	60.039370
23.820149	203	508	100.000000

Gradation Result Parameters D5: 2.5088 in D15: 5.5015 in D50: 14.9228 in D85: 21.2013 in D100: 23.8201 in

Image Gradation Input Parameters

Name: DSCF0273 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0273.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 212 Morphologic Iterations: 1 Resolution: 27 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.056001	0	0	0.000000
0.079198	0	0	0.000000
0.112002	0	0	0.000000
0.158395	0	0	0.000000
0.224005	1	1	0.079872
0.316790	1	2	0.159744
0.448009	4	6	0.479233
0.633581	7	13	1.038339
0.896018	16	29	2.316294
1.267161	29	58	4.632588
1.792037	42	100	7.987220
2.534322	62	162	12.939297
3.584073	85	247	19.728435
5.068645	151	398	31.789137
7.168146	48	446	35.623003
10.137290	172	618	49.361022
14.336293	135	753	60.143770
20.274580	0	753	60.143770
28.672586	499	1252	100.000000

Gradation Result Parameters D5: 1.3246 in D15: 2.8530 in D50: 10.3861 in D85: 25.5120 in D100: 28.6726 in

Image Gradation Input Parameters

Name: DSCF0274 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0274.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 187 Morphologic Iterations: 1 Resolution: 27 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
4.085502	0	0	0.000000
5.777773	0	0	0.000000
8.171005	0	0	0.000000
11.555545	1	1	0.073910
16.342009	2	3	0.221729
23.111091	5	8	0.591279
32.684018	11	19	1.404287
46.222182	27	46	3.399852
65.368036	49	95	7.021434
92.444363	78	173	12.786401
130.736072	124	297	21.951220
184.888726	127	424	31.337768
261.472144	291	715	52.845528
369.777453	289	1004	74.205469
522.944289	137	1141	84.331116
739.554906	212	1353	100.000000

Gradation Result Parameters D5: 54.6815 in D15: 101.6930 in D50: 251.3400 in D85: 532.1911 in D100: 739.5549 in

Image Gradation Input Parameters

Name: DSCF0275 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0275.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 211 Morphologic Iterations: 1 Resolution: 28 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.068442	0	0	0.000000
0.096792	0	0	0.000000
0.136884	0	0	0.000000
0.193583	0	0	0.000000
0.273768	0	0	0.000000
0.387167	1	1	0.116279
0.547537	2	3	0.348837
0.774334	4	7	0.813953
1.095073	8	15	1.744186
1.548667	16	31	3.604651
2.190146	31	62	7.209302
3.097334	41	103	11.976744
4.380292	55	158	18.372093
6.194669	83	241	28.023256
8.760585	144	385	44.767442
12.389338	0	385	44.767442
17.521169	101	486	56.511628
24.778675	0	486	56.511628
35.042338	374	860	100.000000

Gradation Result Parameters D5: 1.7970 in D15: 3.7038 in D50: 14.6758 in D85: 31.5022 in D100: 35.0423 in

Image Gradation Input Parameters

Name: DSCF0276 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0276.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 221 Morphologic Iterations: 1 Resolution: 28 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)		
0.069258	0	0	0.000000		
0.097945	0	0	0.000000		
0.138516	0	0	0.000000		
0.195891	0	0	0.000000		
0.277031	1	1	0.106270		
0.391781	2	3	0.318810		
0.554063	4	7	0.743889		
0.783563	8	15	1.594049		
1.108125	19	34	3.613177		
1.567126	31	65	6.907545		
2.216251	53	118	12.539851		
3.134252	82	200	21.253985		
4.432501	164	364	38.682253		
6.268503	161	525	55.791711		
8.865003	0	525	55.791711		
12.537007	274	799	84.909671		
17.730005	142	941	100.000000		

Gradation Result Parameters D5: 1.3013 in D15: 2.4754 in D50: 5.6470 in D85: 12.5681 in D100: 17.7300 in

Image Gradation Input Parameters

Name: DSCF0277 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0277.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 192 Morphologic Iterations: 1 Resolution: 28 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)		
0.072794	0	0	0.000000		
0.102946	0	0	0.000000		
0.145587	0	0	0.000000		
0.205892	0	0	0.000000		
0.291175	0	0	0.000000		
0.411783	0	0	0.000000		
0.582350	1	1	0.214592		
0.823567	1	2	0.429185		
1.164700	3	5	1.072961		
1.647134	5	10	2.145923		
2.329399	8	18	3.862661		
3.294268	11	29	6.223176		
4.658798	27	56	12.017167		
6.588536	50	106	22.746781		
9.317597	72	178	38.197425		
13.177071	113	291	62.446352		
18.635193	175	466	100.000000		

Two sediment samples were collected from the channel bed near Bridge H-07-H. Results of the sediment size analysis for the sediment sample collected from the channel are presented below in both tabular and graphical formats.

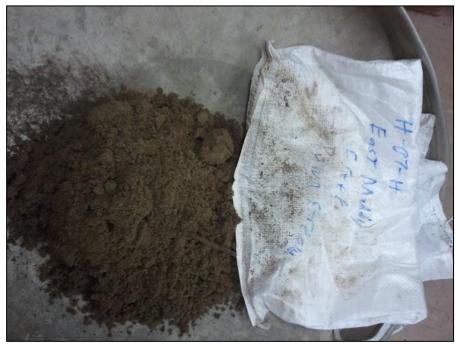
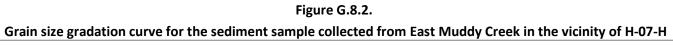
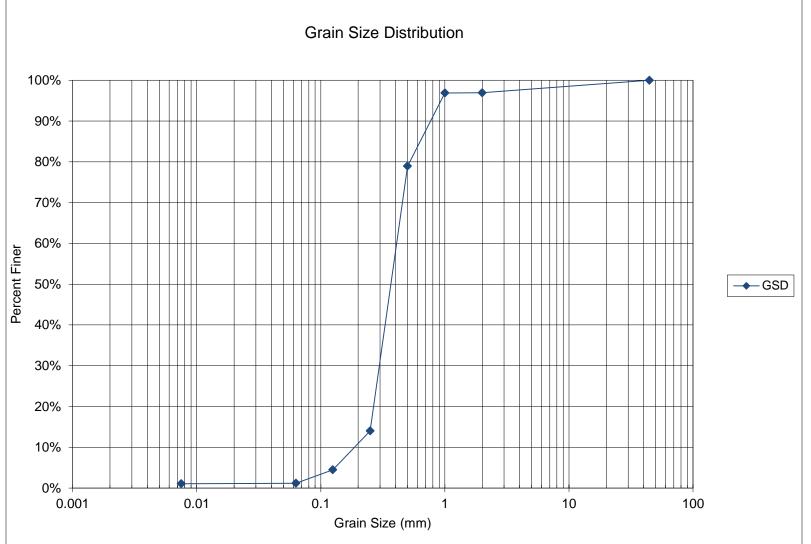




Figure G.8.1. Photo of sediment sample from the H-07-H site

Table G.8.1. Sediment sieve analysis Sample ID: H-07-H East Muddy Creek Sample Description: 1 of 2 Performed by: JE Date: 8-15-2012

Sieve Size (mm)	% Finer
44.45	100%
2	97%
1	97%
0.5	79%
0.25	14%
0.125	4%
0.063	1%
0.075	1%

Grain size gradation computations for the sediment sample collected from East Muddy Creek in the vicinity of H-07-H								
Structure #	Waterbody - E.	Sample # 1 of 2	Performed by: JE Date: 9/12/2012					
H-07-H	Muddy Creek	Sample # 1 01 2						
Sieve Size (mm)	Weight of Sieve (g)	Weight of Sieve + Soil (g)	Weight of Soil (g)	% Retained	Cumulative % Ret.	% Finer		
44.45	0	0	0	0%	0%	100%		
2	479.61	561.3	81.69	3%	3%	97%		
1	500.31	501.61	1.3	0%	3%	97%		
0.5	441.02	919.69	478.67	18%	21%	79%		
0.25	392.91	2125.1	1732.19	65%	86%	14%		
0.125	377.3	631.36	254.06	10%	96%	4%		
0.063	359.61	447.54	87.93	3%	99%	1%		
0.0075	321.01	324.23	3.22	0%	99%	1%		
Pan	371.72	399.98	28.26	1%	100%	0%		
		Total Weight of Sample	2667.32					

Table G.8.2. Grain size gradation computations for the sediment sample collected from Fast Muddy Creek in the vicinity of H-07-H

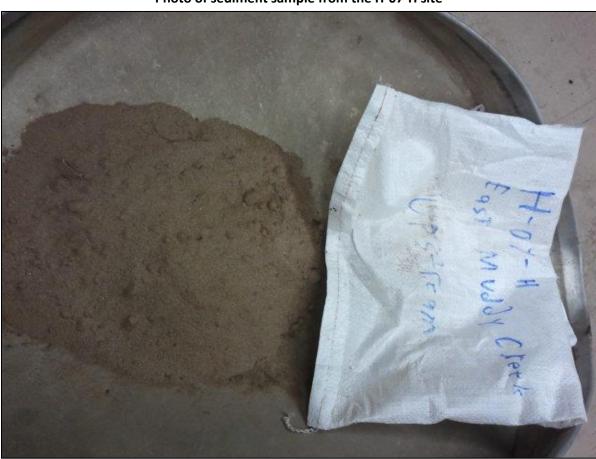


Figure G.8.3. Photo of sediment sample from the H-07-H site

Table G.8.3. Sediment sieve analysis Sample ID: H-07-H East Muddy Creek Sample Description: 2 of 2 Performed by: JE Date: 8-15-2012

Sieve Size (mm)	% Finer
44.45	100%
4	90%
2	84%
1	79%
0.5	73%
0.25	18%
0.125	8%
0.0075	3%

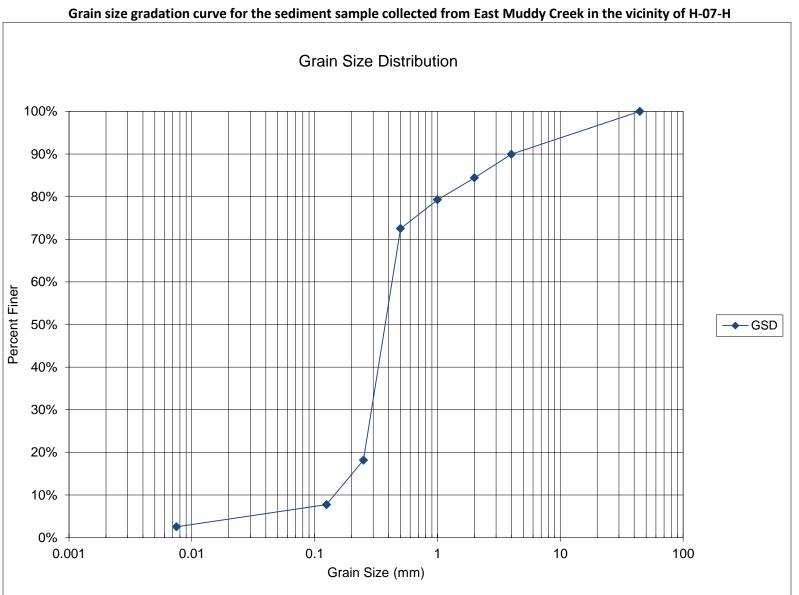


Figure G.8.4.

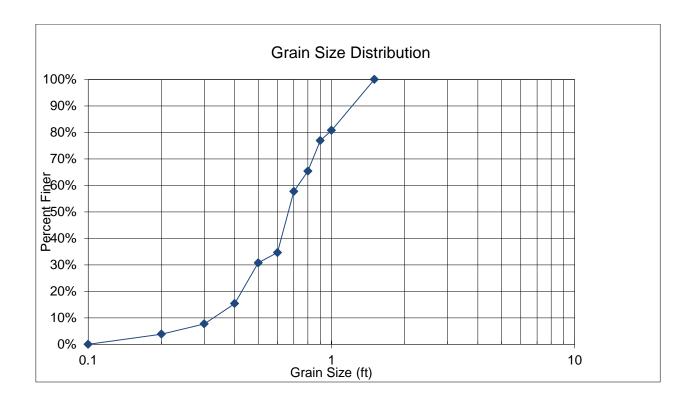
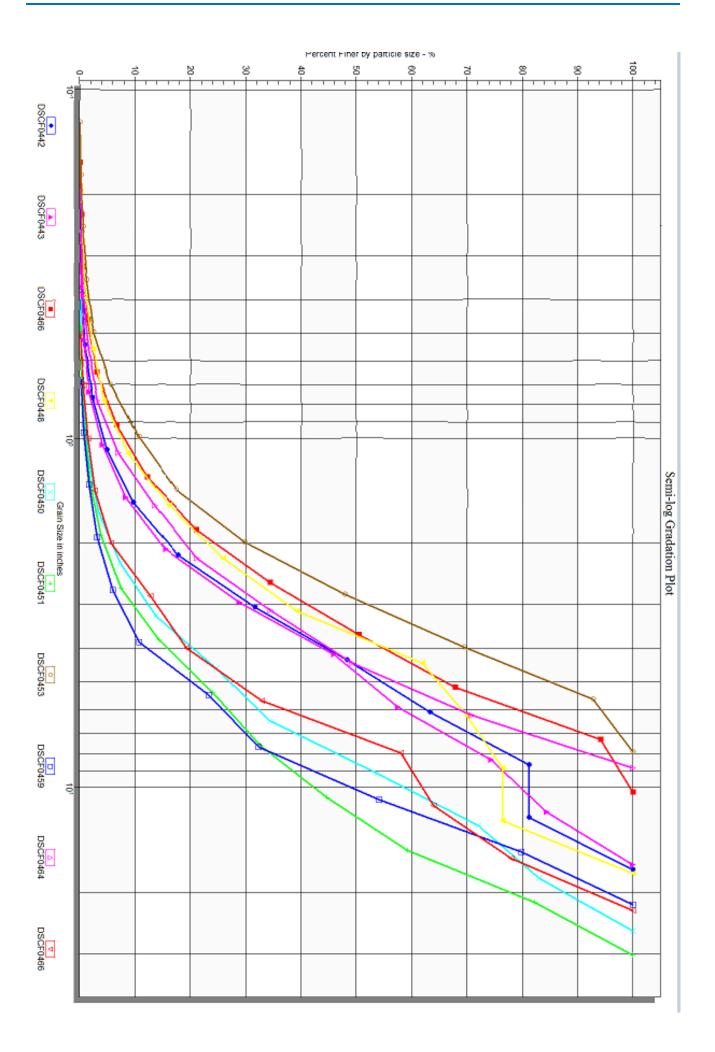

Structure #	Waterbody - E.	•	Performed by: JE					
Н-07-Н	Muddy Creek	Sample # 2 of 2	Date: 9/12/2012					
Sieve Size (mm)	Weight of Sieve (g)	Weight of Sieve + Soil (g)	Weight of Soil (g)	% Retained	Cumulative % Ret.	% Finer		
44.45	0	0	0	0%	0%	100%		
4	491.59	675.07	183.48	10%	10%	90%		
2	479.61	580.34	100.73	6%	16%	84%		
1	500.31	594.19	93.88	5%	21%	79%		
0.5	441.02	564.51	123.49	7%	27%	73%		
0.25	392.91	1383.9	990.99	54%	82%	18%		
0.125	377.3	567.68	190.38	10%	92%	8%		
0.0075	321.01	415.88	94.87	5%	5% 97%			
Pan	371.72	418.09	46.37	3%	100%	0%		
		Total Weight of Sample	1824.19					

Table G.8.4. Grain size gradation computations for the sediment sample collected from East Muddy Creek in the vicinity of H-07-H

Region	Structure	ID Coun	ty F	Facility Carried		/ile Marker POA Fiscal Y		Fiscal Year	Fiscal Year Feature Intersec	
3	H-07-H	Gunni	son	SH 133 ML		36.1 2013		East	East Muddy Creek	
Sample #	A (ft)	B (ft)	C (f	t) Shape F	actor	Ds (ft)		Davg (ft)		Volume (ft³)
1	1.04	1	0.3	2 0.31	.4	1		0.787		0.174
2	1.4	1.22	0.5	5 0.42	1	1.22		1.057		0.492
3	0.7	0.6	0.3	8 0.58	6	0.6		0.560		0.084
4	0.8	0.42	0.2	2 0.34	5	0.42		0.473		0.035
5	1	0.85	0.5	5 0.59	17	0.85		0.800		0.245
6	0.3	0.25	0.2	2 0.73	0	0.25		0.250		0.008
7	0.6	0.4	0.3	3 0.67	4	0.4		0.443		0.041
8	0.78	0.4	0.3	5 0.62	.7	0.4		0.510		0.057
9	1.35	1.2	0.8	3 0.62	9	1.2		1.117		0.679
10	0.7	0.55	0.1	.8 0.29	0.290 0.			0.477		0.036
11	1.3	0.8	0.4	5 0.44	1	0.8	0.850			0.245
12	0.67	0.6	0.3	3 0.47	'3	0.6		0.523		0.063
13	0.86	0.65	0.3	3 0.40	1 0.65			0.603		0.088
14	1.05	0.9	0.5	5 0.56	6	0.9		0.833		0.272
15	0.42	0.38	0.3	3 0.82	6	0.38		0.377		0.028
16	2	1.3	1	0.62	0	1.3		1.433		1.361
17	1	0.65	0.4	4 0.49	6	0.65		0.683		0.136
18	0.85	0.1	0.5	5 1.71	.5	0.1		0.483		0.022
19	0.75	0.6	0.2	2 0.29	8	0.6		0.517		0.047
20	0.55	0.34	0.2	2 0.46	2	0.34		0.363		0.020
21	0.55	0.45	0.2	5 0.50	0.503 0.45			0.417		0.032
22	1	1	0.0	5 0.60	0	1		0.867		0.314
23	0.9	0.8	0.3	5 0.41	2	0.8		0.683		0.132
24	1.15	0.78	0.4	0.42 0.44		0.78		0.783		0.197
25	0.82	0.75	0.1	7 0.89	3	0.75		0.757		0.225
26	0.25	0.15	0.3	1 0.51	.6	0.15		0.167		0.002

Pebble Count Grain Size Distribution

Structure # H-07-H	East Muddy Creek at SH 133			
Sieve Size (ft)	Samples	% Retained	Cumulative	% Finer
	Retained		% Ret.	
1.5	0	0%	0%	100%
1	5	19%	19%	81%
0.9	1	4%	23%	77%
0.8	3	12%	35%	65%
0.7	2	8%	42%	58%
0.6	6	23%	65%	35%
0.5	1	4%	69%	31%
0.4	4	15%	85%	15%
0.3	2	8%	92%	8%
0.2	1	4%	96%	4%
0.1	1	4%	100%	0%
Total Samples	26			


Hydraulic Analysis Report

Project Data

Project Title: H-07-H Designer: Project Date: Friday, September 20, 2013 Project Units: U.S. Customary Units Notes:

Wolman Count Analysis: Hydraulic Toolbox GSD

Notes:

Image Gradation Input Parameters

Name: DSCF0442 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0442.JPG Scale Line Length: 48 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 207 Morphologic Iterations: 1 Resolution: 30 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.067450	0	0	0.000000
0.095389	0	0	0.000000
0.134900	0	0	0.000000
0.190777	0	0	0.000000
0.269800	2	2	0.114025
0.381554	5	7	0.399088
0.539599	9	16	0.912201
0.763108	24	40	2.280502
1.079198	47	87	4.960091
1.526217	82	169	9.635120
2.158396	143	312	17.787913
3.052434	243	555	31.641961
4.316793	293	848	48.346636
6.104867	263	1111	63.340935
8.633586	314	1425	81.242873
12.209734	0	1425	81.242873
17.267172	329	1754	100.000000

Gradation Result Parameters D5: 1.0830 in D15: 1.9422 in D50: 4.5140 in D85: 13.2228 in D100: 17.2672 in

Image Gradation Input Parameters

Name: DSCF0443 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0443.JPG Scale Line Length: 48 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 206 Morphologic Iterations: 1 Resolution: 30 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.065222	0	0	0.000000
0.092238	0	0	0.000000
0.130444	0	0	0.000000
0.184475	0	0	0.000000
0.260887	1	1	0.058005
0.368950	4	5	0.290023
0.521774	8	13	0.754060
0.737900	17	30	1.740139
1.043549	42	72	4.176334
1.475800	72	144	8.352668
2.087097	123	267	15.487239
2.951601	230	497	28.828306
4.174194	296	793	45.997680
5.903202	199	992	57.540603
8.348388	291	1283	74.419954
11.806404	173	1456	84.454756
16.696777	268	1724	100.000000

Gradation Result Parameters D5: 1.1288 in D15: 2.0453 in D50: 4.7737 in D85: 11.9779 in D100: 16.6968 in

Image Gradation Input Parameters

Name: DSCF0466 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0446.JPG Scale Line Length: 48 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 198 Morphologic Iterations: 1 Resolution: 46 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.040421	0	0	0.000000
0.057164	0	0	0.000000
0.080843	0	0	0.000000
0.114329	0	0	0.000000
0.161685	1	1	0.051787
0.228657	3	4	0.207147
0.323370	8	12	0.621440
0.457315	16	28	1.450026
0.646741	32	60	3.107198
0.914630	69	129	6.680476
1.293482	107	236	12.221647
1.829259	170	406	21.025375
2.586964	259	665	34.438115
3.658519	309	974	50.440186
5.173927	336	1310	67.840497
7.317038	508	1818	94.148110
10.347854	113	1931	100.000000

Gradation Result Parameters D5: 0.7886 in D15: 1.4626 in D50: 3.6290 in D85: 6.5718 in D100: 10.3479 in

Image Gradation Input Parameters

Name: DSCF0448 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0448.JPG Scale Line Length: 48 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 185 Morphologic Iterations: 1 Resolution: 34 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.048777	0	0	0.000000
0.068982	0	0	0.000000
0.097555	0	0	0.000000
0.137963	0	0	0.000000
0.195109	3	3	0.167504
0.275926	5	8	0.446678
0.390218	11	19	1.060860
0.551852	23	42	2.345059
0.780437	37	79	4.410944
1.103705	78	157	8.766052
1.560874	132	289	16.136237
2.207409	175	464	25.907314
3.121748	239	703	39.251815
4.414818	406	1109	61.920715
6.243496	145	1254	70.016750
8.829637	115	1369	76.437744
12.486992	0	1369	76.437744
17.659273	422	1791	100.000000

Gradation Result Parameters D5: 0.8242 in D15: 1.4904 in D50: 3.7348 in D85: 14.3665 in D100: 17.6593 in

Image Gradation Input Parameters

Name: DSCF0450 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0450.JPG Scale Line Length: 48 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 211 Morphologic Iterations: 1 Resolution: 28 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.100872	0	0	0.000000
0.142655	0	0	0.000000
0.201745	0	0	0.000000
0.285310	0	0	0.000000
0.403490	1	1	0.115340
0.570621	1	2	0.230681
0.806980	4	6	0.692042
1.141242	8	14	1.614764
1.613960	15	29	3.344867
2.282484	35	64	7.381776
3.227920	55	119	13.725490
4.564968	95	214	24.682814
6.455839	84	298	34.371396
9.129935	168	466	53.748558
12.911678	159	625	72.087659
18.259870	95	720	83.044983
25.823356	147	867	100.000000

Gradation Result Parameters D5: 1.8881 in D15: 3.3834 in D50: 8.6126 in D85: 19.1320 in D100: 25.8234 in

Image Gradation Input Parameters

Name: DSCF0451 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0451.JPG Scale Line Length: 48 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 208 Morphologic Iterations: 1 Resolution: 29 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.118561	0	0	0.000000
0.167671	0	0	0.000000
0.237122	0	0	0.000000
0.335341	0	0	0.000000
0.474244	1	1	0.105042
0.670683	2	3	0.315126
0.948488	5	8	0.840336
1.341365	10	18	1.890756
1.896977	19	37	3.886555
2.682730	34	71	7.457983
3.793953	66	137	14.390756
5.365460	92	229	24.054622
7.587906	82	311	32.668067
10.730920	115	426	44.747899
15.175813	138	564	59.243697
21.461841	219	783	82.247899
30.351626	169	952	100.000000

Gradation Result Parameters D5: 2.1419 in D15: 3.8930 in D50: 12.3414 in D85: 22.8400 in D100: 30.3516 in

Image Gradation Input Parameters

Name: DSCF0453 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0453.JPG Scale Line Length: 48 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 194 Morphologic Iterations: 1 Resolution: 55 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.043805	0	0	0.000000
0.061950	0	0	0.000000
0.087610	0	0	0.000000
0.123899	1	1	0.073368
0.175220	2	3	0.220103
0.247799	4	7	0.513573
0.350440	9	16	1.173881
0.495597	18	34	2.494497
0.700880	41	75	5.502568
0.991194	70	145	10.638298
1.401761	92	237	17.388114
1.982389	169	406	29.787234
2.803521	247	653	47.909024
3.964778	294	947	69.479090
5.607042	318	1265	92.809978
7.929555	98	1363	100.000000

Gradation Result Parameters D5: 0.6666 in D15: 1.2565 in D50: 2.9161 in D85: 5.0573 in D100: 7.9296 in

Image Gradation Input Parameters

Name: DSCF0459 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0459.JPG Scale Line Length: 48 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 196 Morphologic Iterations: 1 Resolution: 29 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.084921	0	0	0.000000
0.120096	0	0	0.000000
0.169842	0	0	0.000000
0.240193	0	0	0.000000
0.339684	0	0	0.000000
0.480385	0	0	0.000000
0.679368	1	1	0.239808
0.960771	2	3	0.719424
1.358735	4	7	1.678657
1.921542	6	13	3.117506
2.717470	12	25	5.995204
3.843083	20	45	10.791367
5.434940	52	97	23.261391
7.686166	38	135	32.374101
10.869880	91	226	54.196643
15.372332	107	333	79.856115
21.739761	84	417	100.000000

Gradation Result Parameters D5: 2.4422 in D15: 4.3803 in D50: 10.2576 in D85: 16.9983 in D100: 21.7398 in

Image Gradation Input Parameters

Name: DSCF0464 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0464.JPG Scale Line Length: 48 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 205 Morphologic Iterations: 1 Resolution: 27 % Flood Depth: 0.9 px

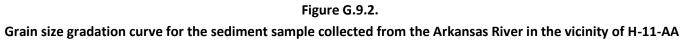
Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.048719	0	0	0.000000
0.068900	0	0	0.000000
0.097439	0	0	0.000000
0.137799	0	0	0.000000
0.194878	1	1	0.083403
0.275599	2	3	0.250209
0.389756	5	8	0.667223
0.551198	11	19	1.584654
0.779511	19	38	3.169308
1.102395	46	84	7.005838
1.559023	79	163	13.594662
2.204791	91	254	21.184320
3.118045	160	414	34.528774
4.409582	177	591	49.291076
6.236090	259	850	70.892410
8.819164	349	1199	100.000000

Gradation Result Parameters D5: 0.9336 in D15: 1.6786 in D50: 4.4695 in D85: 7.4880 in D100: 8.8192 in

Image Gradation Input Parameters

Name: DSCF0466 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0466.JPG Scale Line Length: 48 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 201 Morphologic Iterations: 1 Resolution: 28 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.088332	0	0	0.000000
0.124920	0	0	0.000000
0.176663	0	0	0.000000
0.249840	0	0	0.000000
0.353326	0	0	0.000000
0.499679	1	1	0.163934
0.706653	3	4	0.655738
0.999358	5	9	1.475410
1.413306	8	17	2.786885
1.998716	18	35	5.737705
2.826611	43	78	12.786885
3.997432	40	118	19.344262
5.653223	83	201	32.950820
7.994864	153	354	58.032787
11.306445	36	390	63.934426
15.989729	86	476	78.032787
22.612891	134	610	100.000000


Two sediment samples were collected from the channel bed near Bridge H-11-AA Results of the sediment size analysis for the sediment sample collected from the channel are presented below in both tabular and graphical formats.

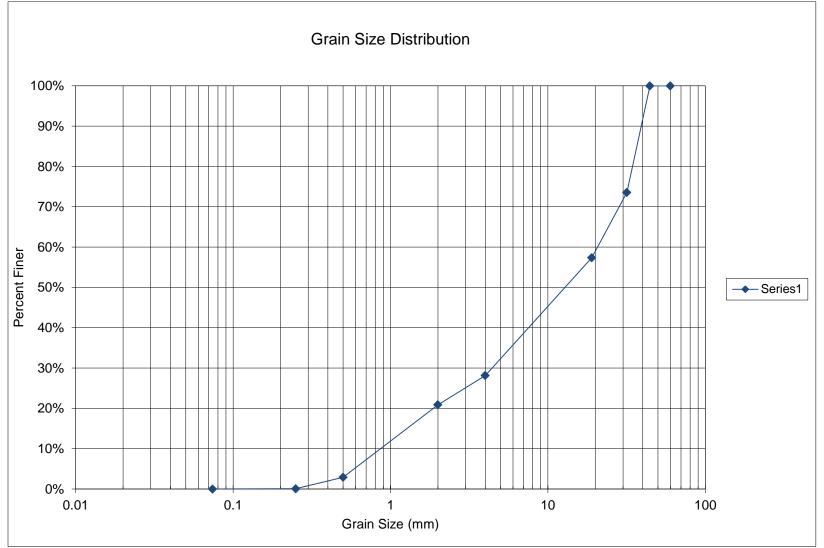


Figure G.9.1. Photo of sediment sample from the H-11-AA site

Table G.9.1. Sediment sieve analysis Sample ID: H-11-AA Arkansas River Sample Description: 1 of 2 Performed by: JE Date: 9-20-2011

Sieve Size (mm)	% Finer
60	100%
44.45	100%
31.75	74%
19	57%
4	28%
2	21%
0.5	3%
0.25	0%
0.074	0%

Structure			Performed by: BS and JE				
# H-11- AA	Waterbody - Arkansas River	Sample # 1 of 2	/14/2011				
Sieve Size (mm)	Weight of Sieve (g)	Weight of Sieve + Soil (g)	Weight of Soil (g)	% Retained	Cumulative % Ret.	% Finer	
60	0	0	0	0%	0%	100%	
44.45	0	0	0	0%	0%	100%	
31.75	550.22	1796	1245.78	26%	26%	74%	
19	651.7	1414.3	762.6	16%	43%	57%	
4	520.5	1897.5	1377	29%	72%	28%	
2	479.5	821.5	342	7%	79%	21%	
0.5	412.95	1260.8	847.85	18%	97%	3%	
0.25	389.74	523.3	133.56	3%	100%	0%	
0.074	375.12	378.4	3.28	0%	100%	0%	
Pan	371.99	372.1	0.11	0%	100%	0%	
		Total Weight of Sample	4712.18				

 Table G.9.2.

 Grain size gradation computations for the sediment sample collected from the Arkansas River in the vicinity of H-11-AA

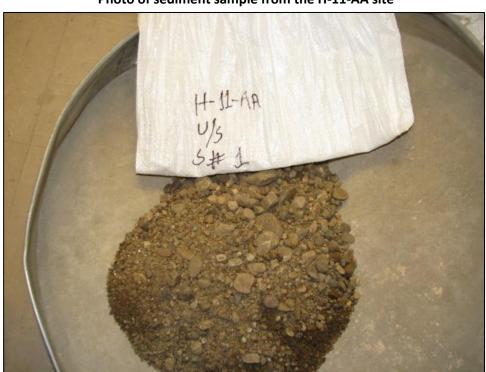
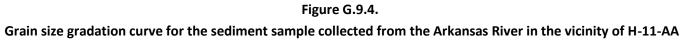
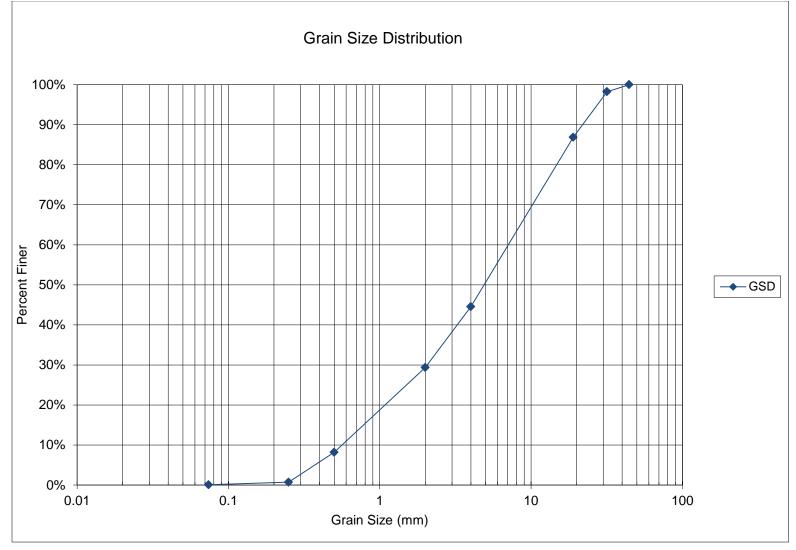
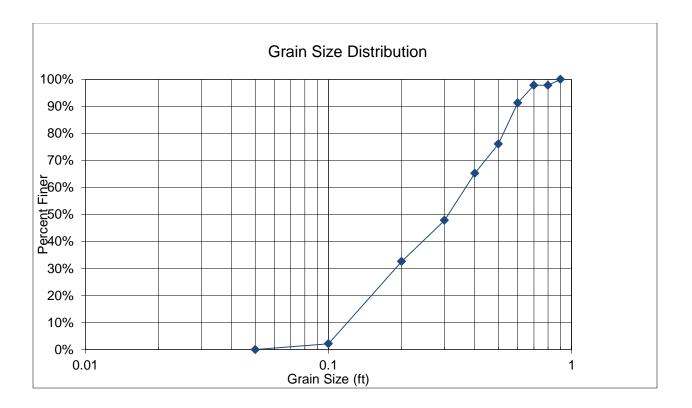




Figure G.9.3. Photo of sediment sample from the H-11-AA site

Table G.9.3. Sediment sieve analysis Sample ID: H-11-AA Arkansas River Sample Description: 2 of 2 Performed by: JE Date: 9-20-2011

Sieve Size (mm)	% Finer
44.45	100%
31.75	98%
19	87%
4	45%
2	29%
0.5	8%
0.25	1%
0.074	0%

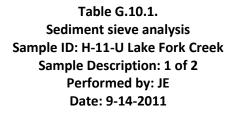
Structure # H-11-AA	Waterbody - Arkansas River	Sample # 2 of 2		Performed by Date: 9/14		
Sieve Size (mm)	Weight of Sieve (g)	Weight of Sieve + Soil (g)	Weight of Soil (g)	% Retained	Cumulative % Ret.	% Finer
44.45	0	0	0	0%	0%	100%
31.75	550.22	635.63	85.41	2%	2%	98%
19	651.7	1201.8	550.1	11%	13%	87%
4	520.5	2569.5	2049	42%	55%	45%
2	479.5	1214.3	734.8	15%	71%	29%
0.5	412.95	1438.4	1025.45	21%	92%	8%
0.25	389.74	752.12	362.38	7%	99%	1%
0.074	375.12	405.65	30.53	1%	100%	0%
Pan	371.99	376.2	4.21	0%	100%	0%
		Total Weight of Sample	4841.88			


Table G.9.4.

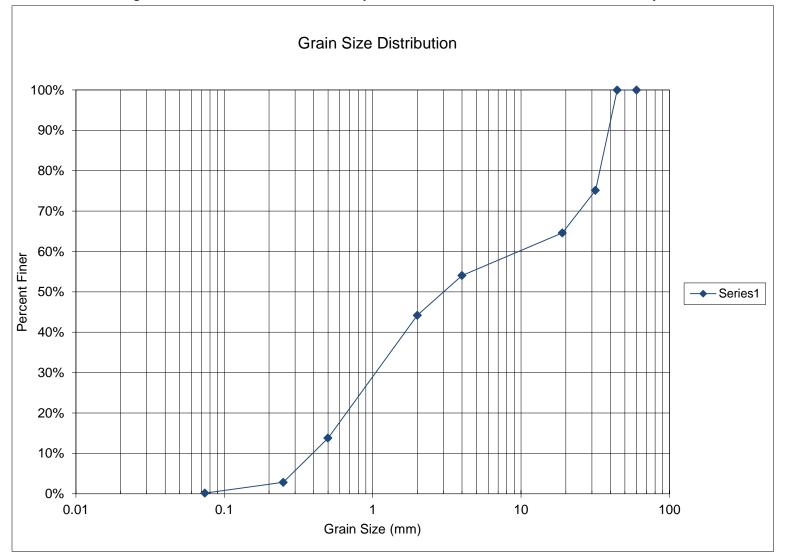
Grain size gradation computations for the sediment sample collected from the Arkansas River in the vicinity of H-11-AA

Region	Structure ID	County	/ Facil	ty Carried	Mile Marker	POA Fiscal Yea	r Feature Intersected	D50 min from POA	D50 max from POA Date		
3	H-11-AA	Lake		, 1 300 ML	0.4	2012	Arkansas River	5	13 8/8/2013		
Sample #	A (ft)		B (ft)		C (ft)	Shape Factor	Ds (ft)	Davg (ft)	Volume (ft ³)		
1	0.3		0.17		0.17 0.18		0.18	0.797	0.17	0.217	0.005
2	0.31		0.16		0.11	0.494	0.16	0.193	0.003		
3	0.07		0.05		0.05	0.845	0.05	0.057	0.000		
4	0.18		0.15		0.05	0.304	0.15	0.127	0.001		
5	0.23		0.19		0.13	0.622	0.19	0.183	0.003		
6	0.4		0.35		0.11	0.294	0.35	0.287	0.008		
7	0.22		0.16		0.11	0.586	0.16	0.163	0.002		
8	0.35		0.21		0.19	0.701	0.21	0.250	0.007		
9	0.42		0.35		0.23	0.600	0.35	0.333	0.018		
10	0.28		0.18		0.14	0.624	0.18	0.200	0.004		
11	1.33		0.68		0.68	0.715	0.68	0.897	0.322		
12	0.85		0.65		0.65	0.874	0.65	0.717	0.188		
13	0.51		0.34		0.19	0.456	0.34	0.347	0.017		
14	0.8		0.59		0.16	0.233	0.59	0.517	0.040		
15	0.65		0.45		0.15	0.277	0.45	0.417	0.023		
16	0.51		0.29		0.11	0.286	0.29	0.303	0.009		
17	0.31		0.18		0.3	1.270	0.18	0.263	0.009		
18	0.15		0.11		0.06	0.467	0.11	0.107	0.001		
19	0.44		0.32		0.12	0.320	0.32	0.293	0.009		
20	0.24		0.22		0.13	0.566	0.22	0.197	0.004		
21	0.2		0.17		0.09	0.488	0.17	0.153	0.002		
22	0.84		0.59		0.18	0.256	0.59	0.537	0.047		
23	0.61		0.56		0.25	0.428	0.56	0.473	0.045		
24	0.24		0.15		0.1	0.527	0.15	0.163	0.002		
25	0.35		0.26		0.21	0.696	0.26	0.273	0.010		
26	0.66		0.46		0.23	0.417	0.46	0.450	0.037		
27	0.54		0.44		0.25	0.513	0.44	0.410	0.031		
28	0.4		0.35		0.28	0.748	0.35	0.343	0.021		
29	1.1		0.88		0.28	0.285	0.88	0.753	0.142		
30	0.27		0.23		0.06	0.241	0.23	0.187	0.002		
31	0.46		0.43		0.26	0.585	0.43	0.383	0.027		
32	0.3		0.23		0.15	0.571	0.23	0.227	0.005		
33	0.6		0.52		0.38	0.680	0.52	0.500	0.062		
34	0.3		0.19		0.13	0.545	0.19	0.207	0.004		
35	0.8		0.54		0.28	0.426	0.54	0.540	0.063		
36	0.7		0.62		0.32	0.486	0.62	0.547	0.073		
37	0.54		0.35		0.22	0.506	0.35	0.370	0.022		
38	0.47		0.46		0.12	0.258	0.46	0.350	0.014		
39	0.61		0.28		0.22	0.532	0.28	0.370	0.020		
40	0.83		0.59		0.36	0.514	0.59	0.593	0.092		
41	0.25		0.19		0.18	0.826	0.19	0.207	0.004		
42	0.56		0.38		0.21	0.455	0.38	0.383	0.023		
43	0.21		0.14		0.07	0.408	0.14	0.140	0.001		
44	0.49		0.36		0.13	0.310	0.36	0.327	0.012		
45	0.15		0.14		0.07	0.483	0.14	0.120	0.001		
46	0.61		0.59		0.17	0.283	0.59	0.457	0.032		

Pebble Count Grain Size Distribution


Structure # H-11-AA		ver at SH 300		
Sieve Size (ft)	Samples	% Retained	Cumulative	% Finer
	Retained		% Ret.	
0.9	0	0%	0%	100%
0.8	1	2%	2%	98%
0.7	0	0%	2%	98%
0.6	3	7%	9%	91%
0.5	7	15%	24%	76%
0.4	5	11%	35%	65%
0.3	8	17%	52%	48%
0.2	7	15%	67%	33%
0.1	14	30%	98%	2%
0.05	1	2%	100%	0%
Total Samples	46			

Two sediment samples were collected from the channel bed near Bridge H-11-U. Results of the sediment size analysis for the sediment sample collected from the channel are presented below in both tabular and graphical formats.

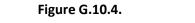

Figure G.10.1. Photo of sediment sample from the H-11-U site

Sieve Size (mm)	% Finer
60	100%
44.45	100%
31.75	75%
19	65%
4	54%
2	44%
0.5	14%
0.25	3%
0.074	0%

Grain size gradation curve for the sediment sample collected from Lake Fork Creek in the vicinity of H-11-U

Structure	Waterbody - Lake	Sample # 1 of 2	Performed by: BS and JE					
# H-11-U	Fort Creek	5ample # 1 01 2	Date: 9/14/2011					
Sieve Size (mm)	Weight of Sieve (g)	Weight of Sieve + Soil (g)	Weight of Soil (g)	% Retained	Cumulative % Ret.	% Finer		
60	0	0	0	0%	0%	100%		
44.45	0	0	0	0%	0%	100%		
31.75	550.22	1732.2	1181.98	25%	25%	75%		
19	651.7	1153.3	501.6	11%	35%	65%		
4	520.5	1023.1	502.6	11%	46%	54%		
2	479.5	947.84	468.34	10%	56%	44%		
0.5	412.95	1858.8	1445.85	30%	86%	14%		
0.25	389.79	911.12	521.33	11%	97%	3%		
0.074	375.12	502.53	127.41	3%	100%	0%		
Pan	371.99	380.12	8.13	0%	100%	0%		
		Total Weight of Sample	4757.24					

 Table G.10.2.


 Grain size gradation computations for the sediment sample collected from Lake Fork Creek in the vicinity of H-11-U

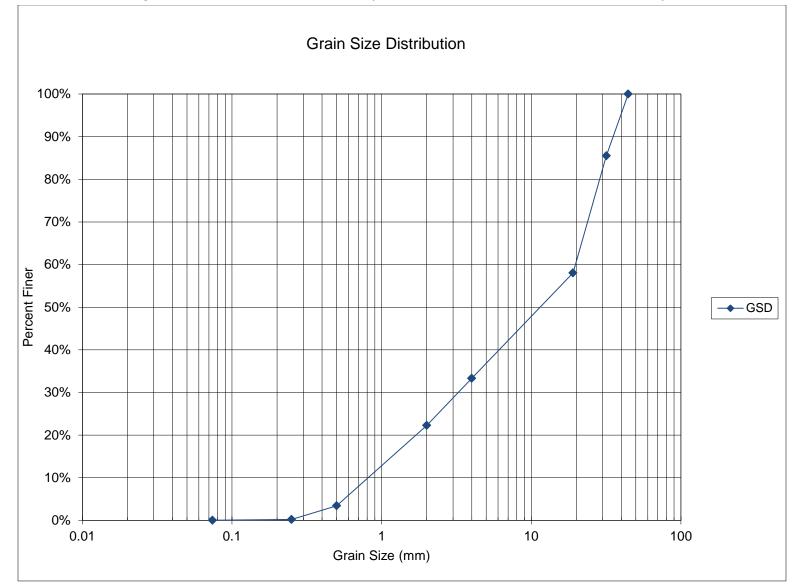
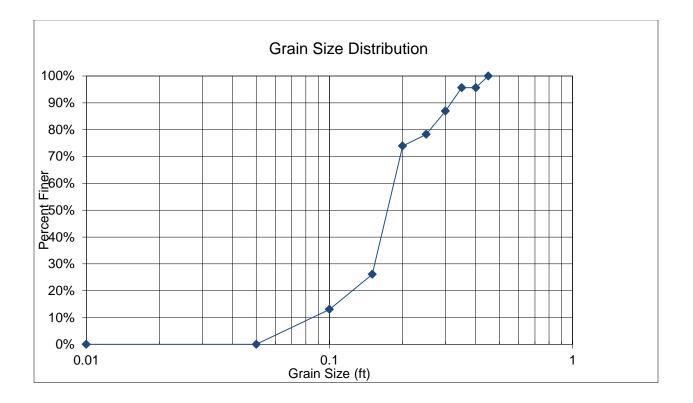

Figure G.10.3. Photo of sediment sample from the H-11-U site

Table G.10.3. Sediment sieve analysis Sample ID: H-11-U Lake Fork Creek Sample Description: 2 of 2 Performed by: JE Date: 9-14-2011

Sieve Size (mm)	% Finer
44.45	100%
31.75	85%
19	58%
4	33%
2	22%
0.5	3%
0.25	0%
0.074	0%

Grain size gradation curve for the sediment sample collected from Lake Fork Creek in the vicinity of H-11-U

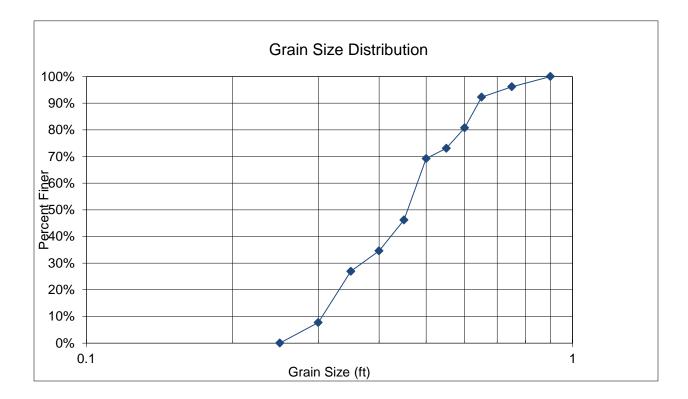
Structure # H-11-U	Waterbody - Lake Fork Creek	Sample # 2 of 2	Performed by: BS and JE Date: 9/14/2011			
Sieve Size (mm)	Weight of Sieve (g)	Weight of Sieve + Soil (g)	Weight of Soil (g)	% Retained	Cumulative % Ret.	% Finer
44.45	0	0	0	0%	0%	100%
31.75	550.22	1274.8	724.58	14%	14%	86%
19	651.7	2027.3	1375.6	27%	42%	58%
4	520.5	1759	1238.5	25%	67%	33%
2	479.5	1032.8	553.3	11%	78%	22%
0.5	412.95	1355.7	942.75	19%	97%	3%
0.25	389.79	550.3	160.51	3%	100%	0%
0.074	368.12	378.2	10.08	0%	100%	0%
Pan	371.99	372.4	0.41	0%	100%	0%
		Total Weight of Sample	5005.73			


Table G.10.4.

Grain size gradation computations for the sediment sample collected from Lake Fork Creek in the vicinity of H-11-U

Region	Structure ID	Co	ounty	Facility C	Carried	Mile Marker	POA Fiscal Yea	r Feature Intersected	D50 min from POA	D50 ma	x from POA	Date
3	H-11-U	L	.ake	SH 30) ML	1.6	2012	Lake Fork Creek	3		12	8/8/2013
Sample #	A (ft)		В (ft)		C (ft)	Shape Factor	Ds (ft)	Davg (ft)		Volume	e (ft³)
1	0.47		0.3	33		0.21	0.533	0.33	0.337		0.01	17
2	0.72		0.4	41		0.17	0.313	0.41	0.433		0.02	26
3	0.43		0.2	28		0.05	0.144	0.28	0.253		0.00)3
4	0.5		0.	3		0.06	0.155	0.3	0.287		0.00)5
5	0.13		0.1	13		0.08	0.615	0.13	0.113		0.00	01
6	0.11		0.0	07		0.03	0.342	0.07	0.070		0.00	00
7	0.14		0.1	14		0.1	0.714	0.14	0.127		0.00	01
8	0.2		0.1	15		0.1	0.577	0.15	0.150		0.00)2
9	0.35		0.1	18		0.13	0.518	0.18	0.220		0.00	04
10	0.22		0.1	16		0.04	0.213	0.16	0.140		0.00	01
11	0.28		0.	2		0.06	0.254	0.2	0.180		0.00	02
12	0.1		0.0	09		0.04	0.422	0.09	0.077		0.00	00
13	0.1		0.0	06		0.05	0.645	0.06	0.070		0.00	00
14	0.51		0.1	16		0.15	0.525	0.16	0.273		0.00	06
15	0.26		0.1	16		0.09	0.441	0.16	0.170		0.00	02
16	0.28		0.1	18		0.11	0.490	0.18	0.190		0.00	03
17	0.17		0.1	12		0.08	0.560	0.12	0.123		0.00	01
18	0.24		0.1	19		0.1	0.468	0.19	0.177		0.00	02
19	0.24		0.1	19		0.07	0.328	0.19	0.167		0.00)2
20	0.3		0.2	25		0.16	0.584	0.25	0.237		0.00	06
21	0.18		0.1	16		0.05	0.295	0.16	0.130		0.00	01
22	0.28		0.3	19		0.16	0.694	0.19	0.210		0.00	04
23	0.29		0.3	19		0.12	0.511	0.19	0.200		0.00	03

Pebble Count Grain Size Distribution


Structure # H-11-U	Lake Fork Creek at SH 300				
Sieve Size (ft)	Samples Retained	% Retained	Cumulative % Ret.	% Finer	
0.45	0	0%	0%	100%	
0.4	1	4%	4%	96%	
0.35	0	0%	4%	96%	
0.3	2	9%	13%	87%	
0.25	2	9%	22%	78%	
0.2	1	4%	26%	74%	
0.15	11	48%	74%	26%	
0.1	3	13%	87%	13%	
0.05	3	13%	100%	0%	
0.01	0	0%	100%	0%	
Pan	0	0%	100%	0%	
Total Samples	23				

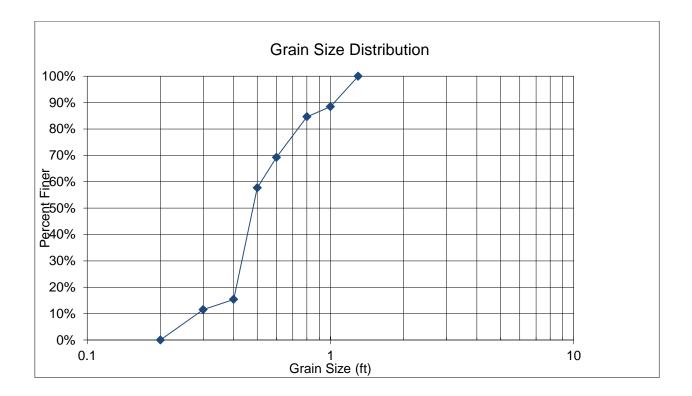
Region	Structure ID C	county Facili	y Carried	Mile Marker	POA Fiscal Year	Feature Intersected	Dso min from POA	D50 max from POA	Date
3	H-11-U	Lake SH	300 ML	1.6	2012	Lake Fork Creek	3	12	9/12/2013
Sample #	A (ft)	B (ft)	(C (ft)	Shape Factor	Ds (ft)	Davg (ft)	Volu	ıme (ft³)
1	0.66	0.46		0.25	0.454	0.46	0.457		0.040
2	0.33	0.27		0.15	0.503	0.27	0.250		0.007
3	0.32	0.3		0.06	0.194	0.3	0.227		0.003
4	0.5	0.32		0.3	0.750	0.32	0.373		0.025
5	0.74	0.45		0.12	0.208	0.45	0.437		0.021
6	0.78	0.47		0.32	0.529	0.47	0.523		0.061
7	0.8	0.62		0.4	0.568	0.62	0.607		0.104
8	0.53	0.36		0.23	0.527	0.36	0.373		0.023
9	0.47	0.33		0.1	0.254	0.33	0.300		0.008
10	0.46	0.4		0.25	0.583	0.4	0.370		0.024
11	0.53	0.45		0.28	0.573	0.45	0.420		0.035
12	0.5	0.25		0.06	0.170	0.25	0.270		0.004
13	0.8	0.8		0.36	0.450	0.8	0.653).121
14	0.63	0.52		0.35	0.611	0.52	0.500		0.060
15	0.47	0.33		0.25	0.635	0.33	0.350		0.020
16	0.34	0.34		0.11	0.324	0.34	0.263		0.007
17	0.5	0.45		0.3	0.632	0.45	0.417		0.035
18	0.42	0.36		0.1	0.257	0.36	0.293		0.008
19	0.8	0.65		0.5	0.693	0.65	0.650		0.136
20	0.65	0.57		0.28	0.460	0.57	0.500		0.054
21	0.56	0.43		0.24	0.489	0.43	0.410		0.030
22	0.7	0.48		0.46	0.794	0.48	0.547		0.081
23	1	0.55		0.35	0.472	0.55	0.633		0.101
24	0.65	0.42		0.3	0.574	0.42	0.457		0.043
25	0.6	0.6		0.22	0.367	0.6	0.473		0.041
26	0.9	0.65		0.55	0.719	0.65	0.700		0.168

Pebble Count Grain Size Distribution

Structure # H-11-U	Lake Fork Creek at SH 300				
Sieve Size (ft)	Samples Retained	% Retained	Cumulative % Ret.	% Finer	
0.9	0	0%	0%	100%	
0.75	1	4%	4%	96%	
0.65	2	8%	12%	92%	
0.6	2	8%	19%	81%	
0.55	2	8%	27%	73%	
0.5	1	4%	31%	69%	
0.45	6	23%	54%	46%	
0.4	3	12%	65%	35%	
0.35	2	8%	73%	27%	
0.3	5	19%	92%	8%	
0.25	2	8%	100%	0%	
Total Samples	26				

Sediment particles in the channel bed near Structure I-06-C, consists of gravel, large cobbles, and boulders.

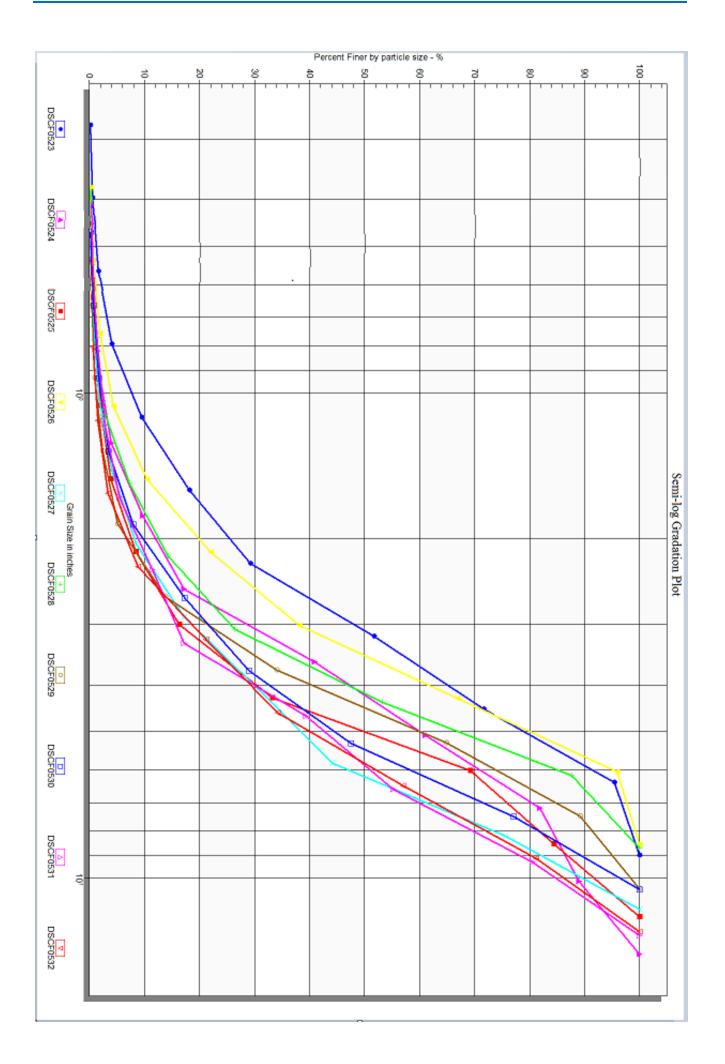
Figure G.11.1. Photo of cobbles and boulders from the I-06-C site


Figure G.11.2. Photo of cobbles and boulders from the I-06-C site

Region	Structure ID	County	Facility Carried	Mile Marker	POA Fiscal Year	Feature Intersected	Date		
3	I-06-C	Delta	SH 187 ML	0.41	2012	North Fork Gunnison River	9/11/2013		
Sample #	A (ft)	B (ft)	C (ft)	Shape Factor	Ds (ft)	Davg (ft)	Volume (ft³)		
1	1.1	0.45	0.4	0.569	0.45	0.650	0.104		
2	0.75	0.66	0.3	0.426	0.66	0.570	0.078		
3	0.5	0.4	0.3	0.671	0.4	0.400	0.031		
4	0.6	0.45	0.25	0.481	0.45	0.433	0.035		
5	1.1	1.2	0.75	0.653	1.2	1.017	0.518		
6	0.3	0.25	0.1	0.365	0.25	0.217	0.004		
7	1	1.1	0.25	0.238	1.1	0.783	0.144		
8	0.6	0.6	0.12	0.200	0.6	0.440	0.023		
9	0.6	0.6	0.3	0.500	0.6	0.500	0.057		
10	0.4	0.4	0.15	0.375	0.4	0.317	0.013		
11	0.45	0.47	0.2	0.435	0.47	0.373	0.022		
12	0.6	0.3	0.3	0.707	0.3	0.400	0.028		
13	0.75	0.5	0.2	0.327	0.5	0.483	0.039		
14	1.08	0.92	0.38	0.381	0.92	0.793	0.198		
15	0.57	0.51	0.16	0.297	0.51	0.413	0.024		
16	1.11	1.02	0.55	0.517	1.02	0.893	0.326		
17	0.51	0.49	0.21	0.420	0.49	0.403	0.027		
18	0.65	0.42	0.22	0.421	0.42	0.430	0.031		
19	0.61	0.45	0.21	0.401	0.45	0.423	0.030		
20	0.73	0.42	0.14	0.253	0.42	0.430	0.022		
21	0.46	0.25	0.17	0.501	0.25	0.293	0.010		
22	0.61	0.58	0.3	0.504	0.58	0.497	0.056		
23	0.62	0.61	0.18	0.293	0.61	0.470	0.036		
24	0.45	0.4	0.11	0.259	0.4	0.320	0.010		
25	0.6	0.43	0.31	0.610	0.43	0.447	0.042		
26	0.43	0.28	0.14	0.403	0.28	0.283	0.009		

Pebble Count Grain Size Distribution

Structure # I -06-C	North Fork Gunnison River at SH 187				
Sieve Size (ft)	Samples Retained	% Retained	Cumulative % Ret.	% Finer	
1.3	0	0%	0%	100%	
1	3	12%	12%	88%	
0.8	1	4%	15%	85%	
0.6	4	15%	31%	69%	
0.5	3	12%	42%	58%	
0.4	11	42%	85%	15%	
0.3	1	4%	88%	12%	
0.2	3	12%	100%	0%	
Total Samples	26				


Hydraulic Analysis Report

Project Data

Project Title: I-06-C Designer: Project Date: Monday, September 23, 2013 Project Units: U.S. Customary Units Notes:

Wolman Count Analysis: Rock/Sediment Gradation Analysis

Notes:

Image Gradation Input Parameters

Name: Digital Gradation Analysis Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0523.JPG Scale Line Length: 48 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 189 Morphologic Iterations: 1 Resolution: 28 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.070227	0	0	0.000000
0.099316	0	0	0.000000
0.140454	0	0	0.000000
0.198632	0	0	0.000000
0.280908	2	2	0.172861
0.397264	4	6	0.518583
0.561816	13	19	1.642178
0.794528	28	47	4.062230
1.123632	63	110	9.507347
1.589056	100	210	18.150389
2.247265	128	338	29.213483
3.178112	260	598	51.685393
4.494529	231	829	71.650821
6.356224	275	1104	95.419188
8.989058	53	1157	100.000000

Gradation Result Parameters D5: 0.8512 in D15: 1.4194 in D50: 3.1083 in D85: 5.5401 in D100: 8.9891 in

Image Gradation Input Parameters

Name: DSCF0524 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0524.JPG Scale Line Length: 48 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 173 Morphologic Iterations: 1 Resolution: 28 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.079400	0	0	0.000000
0.112288	0	0	0.000000
0.158799	0	0	0.000000
0.224576	0	0	0.000000
0.317598	0	0	0.000000
0.449152	2	2	0.302115
0.635197	3	5	0.755287
0.898304	6	11	1.661631
1.270394	15	26	3.927492
1.796608	38	64	9.667674
2.540787	50	114	17.220544
3.593216	157	271	40.936556
5.081575	133	404	61.027190
7.186432	138	542	81.873112
10.163150	47	589	88.972810
14.372864	73	662	100.000000

Gradation Result Parameters D5: 1.3687 in D15: 2.3220 in D50: 4.2647 in D85: 8.4975 in D100: 14.3729 in

Image Gradation Input Parameters

Name: DSCF0525 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0525.JPG Scale Line Length: 48 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 165 Morphologic Iterations: 1 Resolution: 29 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.066481	0	0	0.000000
0.094018	0	0	0.000000
0.132962	0	0	0.000000
0.188036	0	0	0.000000
0.265923	0	0	0.000000
0.376072	0	0	0.000000
0.531846	1	1	0.226244
0.752144	3	4	0.904977
1.063692	5	9	2.036199
1.504288	8	17	3.846154
2.127384	20	37	8.371041
3.008576	35	72	16.289593
4.254769	75	147	33.257919
6.017152	159	306	69.230769
8.509538	67	373	84.389140
12.034304	69	442	100.000000

Gradation Result Parameters D5: 1.6632 in D15: 2.8651 in D50: 5.0750 in D85: 8.6475 in D100: 12.0343 in

Image Gradation Input Parameters

Name: DSCF0526 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0526.JPG Scale Line Length: 48 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 186 Morphologic Iterations: 1 Resolution: 28 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.047167	0	0	0.000000
0.066704	0	0	0.000000
0.094334	0	0	0.000000
0.133408	0	0	0.000000
0.188667	0	0	0.000000
0.266816	0	0	0.000000
0.377335	2	2	0.272109
0.533632	3	5	0.680272
0.754670	9	14	1.904762
1.067264	18	32	4.353741
1.509339	45	77	10.476190
2.134528	85	162	22.040816
3.018678	119	281	38.231293
4.269056	211	492	66.938776
6.037357	213	705	95.918367
8.538112	30	735	100.000000

Gradation Result Parameters D5: 1.1139 in D15: 1.7539 in D50: 3.5313 in D85: 5.3711 in D100: 8.5381 in

Image Gradation Input Parameters

Name: DSCF0527 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0527.JPG Scale Line Length: 48 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 168 Morphologic Iterations: 1 Resolution: 28 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.090657	0	0	0.000000
0.128208	0	0	0.000000
0.181313	0	0	0.000000
0.256416	0	0	0.000000
0.362627	0	0	0.000000
0.512832	1	1	0.249377
0.725254	2	3	0.748130
1.025664	4	7	1.745636
1.450508	9	16	3.990025
2.051328	18	34	8.478803
2.901016	35	69	17.206983
4.102656	55	124	30.922693
5.802032	53	177	44.139651
8.205312	126	303	75.561097
11.604064	98	401	100.000000

Gradation Result Parameters D5: 1.5857 in D15: 2.6862 in D50: 6.2503 in D85: 9.5180 in D100: 11.6041 in

Image Gradation Input Parameters

Name: DSCF0528 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0528.JPG Scale Line Length: 48 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 178 Morphologic Iterations: 1 Resolution: 29 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)	
0.067913	0	0	0.000000	
0.096044	0	0	0.000000	
0.135827	0	0	0.000000	
0.192088	0	0	0.000000	
0.271653	0	0	0.000000	
0.384176	1	1	0.182149	
0.543307	2	3	0.546448	
0.768352	4	7	1.275046	
1.086614	7	14	2.550091	
1.536704	26	40	7.285974	
2.173228	38	78	14.207650	
3.073408	67	145	26.411658	
4.346455	147	292	53.187614	
6.146816	189	481	87.613843	
8.692911	68	549 100.00000		

Gradation Result Parameters D5: 1.3194 in D15: 2.2317 in D50: 4.1949 in D85: 6.0101 in D100: 8.6929 in

Image Gradation Input Parameters

Name: DSCF0529 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0529.JPG Scale Line Length: 48 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 169 Morphologic Iterations: 1 Resolution: 28 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)	
0.082389	0	0	0.000000	
0.116516	0	0	0.000000	
0.164779	0	0	0.000000	
0.233032	0	0	0.000000	
0.329557	0	0	0.000000	
0.466064	1	1	0.240964	
0.659114	1	2	0.481928	
0.932128	2	4	0.963855	
1.318228	6	10	2.409639	
1.864256	11	21	5.060241	
2.636456	36	57	13.734940	
3.728512	84	141	33.975904	
5.272912	128	269	64.819277	
7.457024	101	370	89.156627	
10.545824	45	415	100.000000	

Gradation Result Parameters D5: 1.8518 in D15: 2.7047 in D50: 4.5309 in D85: 7.0840 in D100: 10.5458 in

Image Gradation Input Parameters

Name: DSCF0530 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0530.JPG Scale Line Length: 48 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 176 Morphologic Iterations: 1 Resolution: 28 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)	
0.082623	0	0	0.000000	
0.116846	0	0	0.000000	
0.165245	0	0	0.000000	
0.233692	0	0	0.000000	
0.330490	0	0	0.000000	
0.467384	1	1	0.189394	
0.660981	3	4	0.757576	
0.934768	5	9	1.704545	
1.321962	9	18	3.409091	
1.869536	24	42	7.954545	
2.643923	49	91	17.234848	
3.739072	62	153	28.977273	
5.287846	98	251 47.537879		
7.478144	156	407	77.083333	
10.575693	121	528 100.00000		

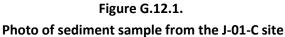
Gradation Result Parameters D5: 1.5136 in D15: 2.4574 in D50: 5.4704 in D85: 8.5482 in D100: 10.5757 in

Image Gradation Input Parameters

Name: DSCF0531 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0531.JPG Scale Line Length: 48 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 171 Morphologic Iterations: 1 Resolution: 30 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)	
0.072560	0	0	0.000000	
0.102616	0	0	0.000000	
0.145121	0	0	0.000000	
0.205232	0	0	0.000000	
0.290242	0	0	0.000000	
0.410464	2	2	0.326797	
0.580484	2	4	0.653595	
0.820928	5	9	1.470588	
1.160968	8	17	2.777778	
1.641856	16	33	5.392157	
2.321935	37	70	11.437908	
3.283712	35	105	17.156863	
4.643870	136	241	39.379085	
6.567424	97	338	55.228758	
9.287740	155	493	80.555556	
13.134848	119	612 100.00000		

Gradation Result Parameters D5: 1.5697 in D15: 2.9210 in D50: 5.9328 in D85: 10.1671 in D100: 13.1348 in


Image Gradation Input Parameters

Name: DSCF0532 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0532.JPG Scale Line Length: 48 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 180 Morphologic Iterations: 1 Resolution: 30 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)	
0.071341	0	0	0.000000	
0.100892	0	0	0.000000	
0.142683	0	0	0.000000	
0.201784	0	0	0.000000	
0.285366	0	0	0.000000	
0.403568	0	0	0.000000	
0.570731	0	0	0.000000	
0.807136	2	2	0.606061	
1.141463	3	5	1.515152	
1.614272	6	11	3.333333	
2.282925	18	29	8.787879	
3.228544	41	70	21.212121	
4.565851	43	113	34.242424	
6.457088	75	188 56.969697		
9.131701	80	268	81.212121	
12.914176	62	330 100.00000		

One sediment sample was collected from the channel bed near Structure J-01-C. Results of the sediment size analysis for the sediment sample collected from the channel are presented below in both tabular and graphical formats.

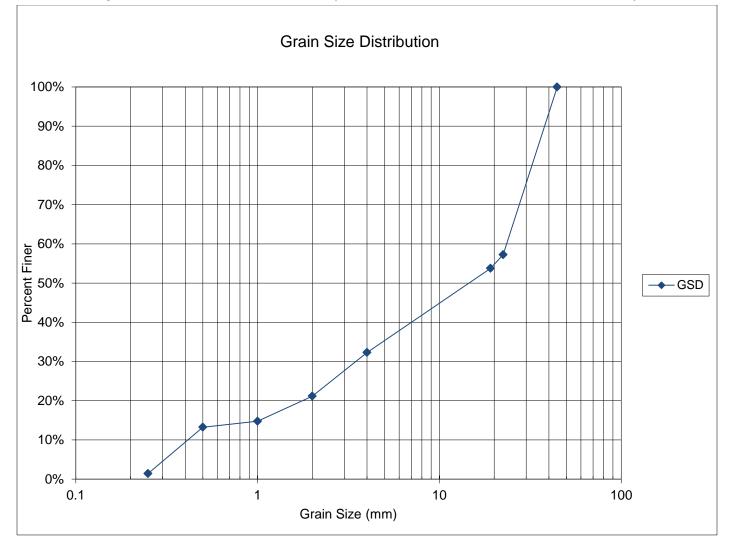
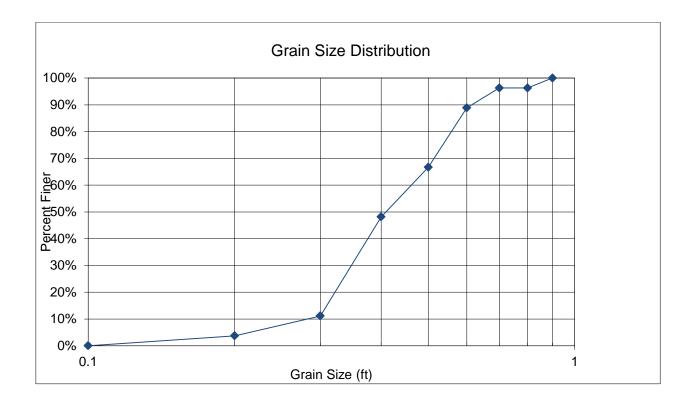


Table G.12.1. Sediment sieve analysis Sample ID: J-01-C Dolores River Sample Description: 1 of 2 Performed by: JE Date: 10-03-2011

Sieve Size (mm)	% Finer
60	100%
44.45	100%
22.43	57%
19.1	54%
4	32%
2	21%
1	15%
0.5	13%
0.25	1%

Grain size gradation curve for the sediment sample collected from the Dolores River in the vicinity of J-01-C

Structure # J-01-C	Waterbody - Dolores River	Sample # 1 of 1	Performed by: JE Date: 10/03/2011			
Sieve Size (mm)	Weight of Sieve (g)	Weight of Sieve + Soil (g)	Weight of Soil (g)	% Retained	Cumulative % Ret.	% Finer
60	0	0	0	0%	0%	100%
44.45	0	0	0	0%	0%	100%
22.43	554.93	2350.2	1795.27	43%	43%	57%
19.1	652.12	798.4	146.28	3%	46%	54%
4	566.85	1468	901.15	21%	68%	32%
2	484.03	951.74	467.71	11%	79%	21%
1	453.26	720.9	267.64	6%	85%	15%
0.5	419.39	483.66	64.27	2%	87%	13%
0.25	392.71	888.56	495.85	12%	99%	1%
Pan	368.73	429.19	60.46	1%	100%	0%
		Total Weight of Sample	4198.63			

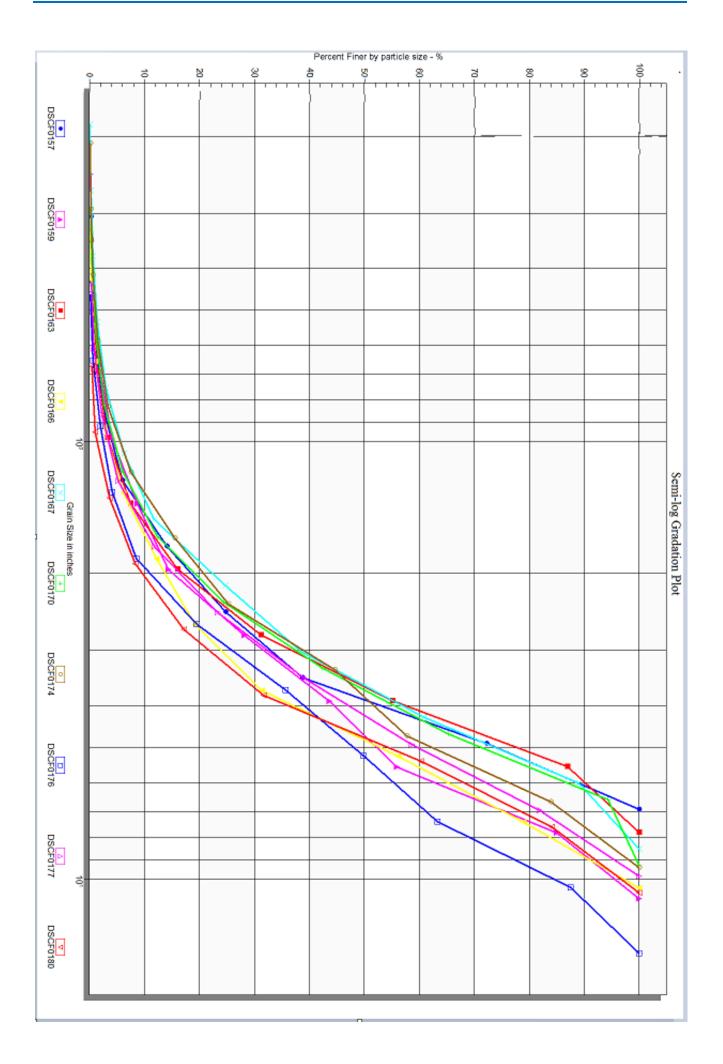

Table G.12.2.

Grain size gradation computations for the sediment sample collected from the Dolores River in the vicinity of J-01-C

Region	Structure ID	County	Facility Carried	Mile Marke	er POA Fiso	cal Year	Feature Inter	rsected	D50 max from PO	A Date
3	J-01-C	Mesa	SH 141 ML	110.9	201	12	Dolores R	iver	15	8/8/2013
Sample #	A (ft)	B (ft)	C (f	t) Sh	ape Factor	Ds	(ft)	Da	avg (ft)	Volume (ft³)
1	0.44	0.36	0.2	7	0.678	0.	36	().357	0.022
2	0.24	0.15	0.0	9	0.474	0.	15	(0.160	0.002
3	0.68	0.3	0.2	5	0.554	0	.3	(0.410	0.027
4	0.56	0.48	0.2	4	0.463	0.	48	().427	0.034
5	0.34	0.23	0.1	5	0.536	0.	23	(0.240	0.006
6	0.86	0.39	0.3	4	0.587	0.	39	(0.530	0.060
7	0.58	0.37	0.3	1	0.669	0.	37	(0.420	0.035
8	0.79	0.61	0.2	9	0.418	0.	61	(0.563	0.073
9	1.11	0.86	0.5	7	0.583	0.	86	().847	0.285
10	0.41	0.31	0.2	2	0.617	0.	31	(0.313	0.015
11	0.47	0.35	0.1	6	0.394	0.	35	().327	0.014
12	0.49	0.42	0.1	3	0.287	0.	42	().347	0.014
13	1	0.52	0.4	6	0.638	0.	52	(0.660	0.125
14	0.85	0.58	0.3	9	0.555	0.	58	(0.607	0.101
15	0.87	0.56	0.3	4	0.487	0.	56	(0.590	0.087
16	0.51	0.36	0.2	2	0.467	0.	36	().357	0.019
17	0.43	0.34	0.1	9	0.497	0.	34	(0.320	0.015
18	0.66	0.49	0.2	8	0.492	0.	49	().477	0.047
19	0.61	0.52	0.4	3	0.763	0.	52	(0.520	0.071
20	0.46	0.34	0.2	4	0.607	0.	34	().347	0.020
21	0.72	0.53	0.3	2	0.518	0.	53	().523	0.064
22	0.41	0.34	0.1	1	0.295	0.	34	().287	0.008
23	0.81	0.54	0.3	7	0.559	0.	54	().573	0.085
24	0.43	0.41	0.1	2	0.286	0.	41	(0.320	0.011
25	0.66	0.47	0.3	6	0.646	0.	47	().497	0.058
26	1.22	0.65	0.5	3	0.595	0.	65	(0.800	0.220
27	0.31	0.27	0.1	1	0.380	0.	27	(0.230	0.005

Pebble Count Grain Size Distribution

Structure # J-01-C	Dolores River at SH 141				
Sieve Size (ft)	Samples Retained	% Retained	Cumulative % Ret.	% Finer	
0.9	0	0%	0%	100%	
0.8	1	4%	4%	96%	
0.7	0	0%	4%	96%	
0.6	2	7%	11%	89%	
0.5	6	22%	33%	67%	
0.4	5	19%	52%	48%	
0.3	10	37%	89%	11%	
0.2	2	7%	96%	4%	
0.1	1	4%	100%	0%	
Total Samples	27				


Hydraulic Analysis Report

Project Data

Project Title: J-01-C Designer: Project Date: Monday, September 23, 2013 Project Units: U.S. Customary Units Notes:

Wolman Count Analysis: Hydraulic Toolbox GSD

Notes:

Image Gradation Input Parameters

Name: DSCF0157 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0157.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 167 Morphologic Iterations: 1 Resolution: 30 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.054020	0	0	0.000000
0.076395	0	0	0.000000
0.108039	0	0	0.000000
0.152790	0	0	0.000000
0.216078	0	0	0.000000
0.305581	1	1	0.198020
0.432156	1	2	0.396040
0.611161	4	6	1.188119
0.864313	8	14	2.772277
1.222323	16	30	5.940594
1.728625	41	71	14.059406
2.444645	54	125	24.752475
3.457250	71	196	38.811881
4.889290	169	365	72.277228
6.914501	140	505	100.000000

Gradation Result Parameters D5: 1.1160 in D15: 1.7916 in D50: 3.9360 in D85: 5.8187 in D100: 6.9145 in

Image Gradation Input Parameters

Name: DSCF0159 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0159.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 166 Morphologic Iterations: 1 Resolution: 31 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.030586	0	0	0.000000
0.043255	0	0	0.000000
0.061172	0	0	0.000000
0.086510	0	0	0.000000
0.122344	0	0	0.000000
0.173021	0	0	0.000000
0.244688	1	1	0.154799
0.346041	1	2	0.309598
0.489376	4	6	0.928793
0.692082	7	13	2.012384
0.978752	13	26	4.024768
1.384164	30	56	8.668731
1.957504	37	93	14.396285
2.768329	89	182	28.173375
3.915008	100	282	43.653251
5.536657	79	361	55.882353
7.830016	188	549	84.984520
11.073314	97	646	100.000000

Gradation Result Parameters D5: 1.0639 in D15: 1.9930 in D50: 4.7566 in D85: 7.8334 in D100: 11.0733 in

Image Gradation Input Parameters

Name: DSCF0163 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0163.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 174 Morphologic Iterations: 1 Resolution: 36 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.061069	0	0	0.000000
0.086364	0	0	0.000000
0.122138	0	0	0.000000
0.172729	0	0	0.000000
0.244275	0	0	0.000000
0.345457	2	2	0.217155
0.488550	3	5	0.542888
0.690915	8	13	1.411509
0.977101	17	30	3.257329
1.381829	39	69	7.491857
1.954202	78	147	15.960912
2.763658	140	287	31.161781
3.908403	221	508	55.157438
5.527317	293	801	86.970684
7.816806	120	921	100.000000

Gradation Result Parameters D5: 1.1437 in D15: 1.8893 in D50: 3.6624 in D85: 5.4270 in D100: 7.8168 in

Image Gradation Input Parameters

Name: DSCF0166 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0166.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 165 Morphologic Iterations: 1 Resolution: 35 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.057832	0	0	0.000000
0.081787	0	0	0.000000
0.115665	0	0	0.000000
0.163574	0	0	0.000000
0.231329	0	0	0.000000
0.327149	1	1	0.150376
0.462658	2	3	0.451128
0.654297	4	7	1.052632
0.925316	11	18	2.706767
1.308595	23	41	6.165414
1.850632	40	81	12.180451
2.617189	47	128	19.248120
3.701264	81	209	31.428571
5.234378	165	374	56.240602
7.402529	151	525	78.947368
10.468756	140	665	100.000000

Gradation Result Parameters D5: 1.1794 in D15: 2.1564 in D50: 4.8488 in D85: 8.2841 in D100: 10.4688 in

Image Gradation Input Parameters

Name: DSCF0167 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0167.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 173 Morphologic Iterations: 1 Resolution: 43 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.047033	0	0	0.000000
0.066515	0	0	0.000000
0.094066	0	0	0.000000
0.133029	0	0	0.000000
0.188132	1	1	0.092166
0.266059	2	3	0.276498
0.376264	4	7	0.645161
0.532117	8	15	1.382488
0.752527	17	32	2.949309
1.064234	36	68	6.267281
1.505054	59	127	11.705069
2.128468	142	269	24.792627
3.010108	149	418	38.525346
4.256936	242	660	60.829493
6.020217	306	966	89.032258
8.513872	119	1085	100.000000

Gradation Result Parameters D5: 0.9452 in D15: 1.6620 in D50: 3.6516 in D85: 5.7681 in D100: 8.5139 in

Image Gradation Input Parameters

Name: DSCF0170 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0170.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 167 Morphologic Iterations: 1 Resolution: 33 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.051382	0	0	0.000000
0.072666	0	0	0.000000
0.102765	0	0	0.000000
0.145332	0	0	0.000000
0.205530	0	0	0.000000
0.290663	1	1	0.125313
0.411060	3	4	0.501253
0.581326	6	10	1.253133
0.822120	11	21	2.631579
1.162653	27	48	6.015038
1.644239	50	98	12.280702
2.325306	97	195	24.436090
3.288479	143	338	42.355890
4.650612	183	521	65.288221
6.576958	232	753	94.360902
9.301223	45	798	100.000000

Gradation Result Parameters D5: 1.0605 in D15: 1.7966 in D50: 3.7425 in D85: 5.9567 in D100: 9.3012 in

Image Gradation Input Parameters

Name: DSCF0174 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0174.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 168 Morphologic Iterations: 1 Resolution: 39 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.036691	0	0	0.000000
0.051889	0	0	0.000000
0.073382	0	0	0.000000
0.103778	0	0	0.000000
0.146764	0	0	0.000000
0.207555	1	1	0.123916
0.293528	1	2	0.247831
0.415111	3	5	0.619579
0.587055	7	12	1.486989
0.830221	15	27	3.345725
1.174110	34	61	7.558860
1.660442	64	125	15.489467
2.348220	79	204	25.278810
3.320885	156	360	44.609665
4.696440	106	466	57.744734
6.641769	211	677	83.890954
9.392880	130	807	100.000000

Gradation Result Parameters D5: 0.9652 in D15: 1.6304 in D50: 3.8854 in D85: 6.8312 in D100: 9.3929 in

Image Gradation Input Parameters

Name: DSCF0176 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0176.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 175 Morphologic Iterations: 1 Resolution: 33 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.040748	0	0	0.000000
0.057627	0	0	0.000000
0.081497	0	0	0.000000
0.115254	0	0	0.000000
0.162994	0	0	0.000000
0.230508	0	0	0.000000
0.325988	0	0	0.000000
0.461016	1	1	0.166667
0.651975	3	4	0.666667
0.922033	8	12	2.000000
1.303951	13	25	4.166667
1.844065	26	51	8.500000
2.607902	66	117	19.500000
3.688130	97	214	35.666667
5.215804	85	299	49.833333
7.376260	81	380	63.333333
10.431607	145	525	87.500000
14.752521	75	600	100.000000

Gradation Result Parameters D5: 1.4078 in D15: 2.2954 in D50: 5.2425 in D85: 10.1155 in D100: 14.7525 in

Image Gradation Input Parameters

Name: DSCF0177 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0177.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 169 Morphologic Iterations: 1 Resolution: 34 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.038380	0	0	0.000000
0.054277	0	0	0.000000
0.076760	0	0	0.000000
0.108555	0	0	0.000000
0.153519	0	0	0.000000
0.217109	0	0	0.000000
0.307039	0	0	0.000000
0.434218	2	2	0.323102
0.614078	3	5	0.807754
0.868437	9	14	2.261712
1.228155	18	32	5.169628
1.736874	41	73	11.793215
2.456311	71	144	23.263328
3.473748	98	242	39.095315
4.912621	121	363	58.642973
6.947495	144	507	81.906300
9.825242	112	619	100.000000

Gradation Result Parameters D5: 1.2072 in D15: 1.9380 in D50: 4.2764 in D85: 7.4395 in D100: 9.8252 in

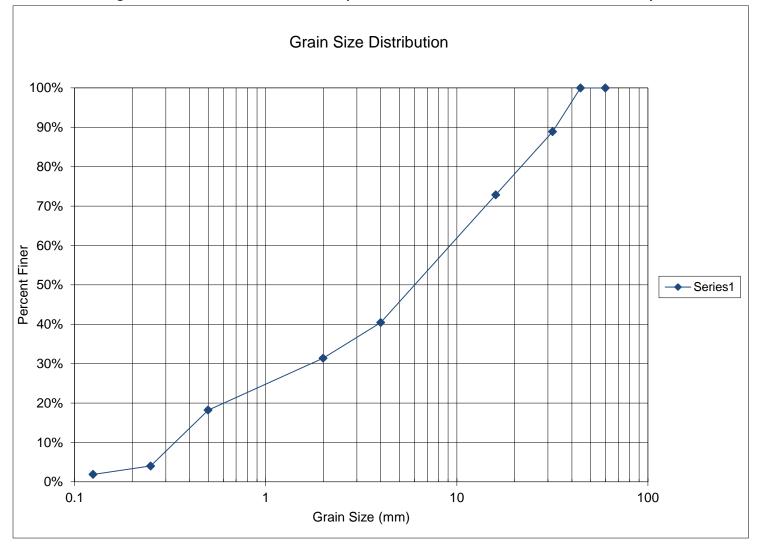
Image Gradation Input Parameters

Name: DSCF0180 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0180.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 178 Morphologic Iterations: 1 Resolution: 36 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.041955	0	0	0.000000
0.059333	0	0	0.000000
0.083909	0	0	0.000000
0.118666	0	0	0.000000
0.167819	0	0	0.000000
0.237331	0	0	0.000000
0.335637	0	0	0.000000
0.474663	0	0	0.000000
0.671275	2	2	0.424628
0.949326	3	5	1.061571
1.342549	12	17	3.609342
1.898652	22	39	8.280255
2.685099	42	81	17.197452
3.797303	68	149	31.634820
5.370197	135	284	60.297240
7.594606	112	396	84.076433
10.740395	75	471	100.000000

Two sediment samples were collected from the channel bed near Structure J-01-D. Results of the sediment size analysis for the sediment sample collected from the channel are presented below in both tabular and graphical formats.

Figure G.13.1. Photo of sediment sample from the J-01-D site


Table G.13.1. Sediment sieve analysis Sample ID: J-01-D John Brown Creek Sample Description: 1 of 2 Performed by: JE

Date: 9-29-2011

Sieve Size (mm)	% Finer
60	100%
44.45	100%
31.75	89%
16	73%
4	40%
2	31%
0.5	18%
0.25	4%
0.125	2%

Grain size gradation curve for the sediment sample collected from John Brown Creek in the vicinity of J-01-D

Structure	Waterbody - John		Performed by: JE						
# J-01-D Brown Creek		Sample # 1 of 2	Date: 9/29/2011						
Sieve Size (mm)	Weight of Sieve (g)	Weight of Sieve + Soil (g)	Weight of Soil % Retained (g)		Cumulative % Ret.	% Finer			
60	0	0	0	0%	0%	100%			
44.45	0	0	0	0%	0%	100%			
31.75	534.4	1046.9	512.5	11%	11%	89%			
16	602.69	1345.4	742.71	16%	27%	73%			
4	566.86	2066.6	1499.74	32%	60%	40%			
2	481.45	899.44	417.99	9%	69%	31%			
0.5	413.2	1022.7	609.5	13%	82%	18%			
0.25	390.17	1046.9	656.73	14%	96%	4%			
0.125	377.23	475.82	98.59	2%	98%	2%			
Pan	371.91	460	88.09	2%	100%	0%			
		Total Weight of Sample	4625.85						

Table G.13.2. Grain size gradation computations for the sediment sample collected from John Brown Creek in the vicinity of J-01-D

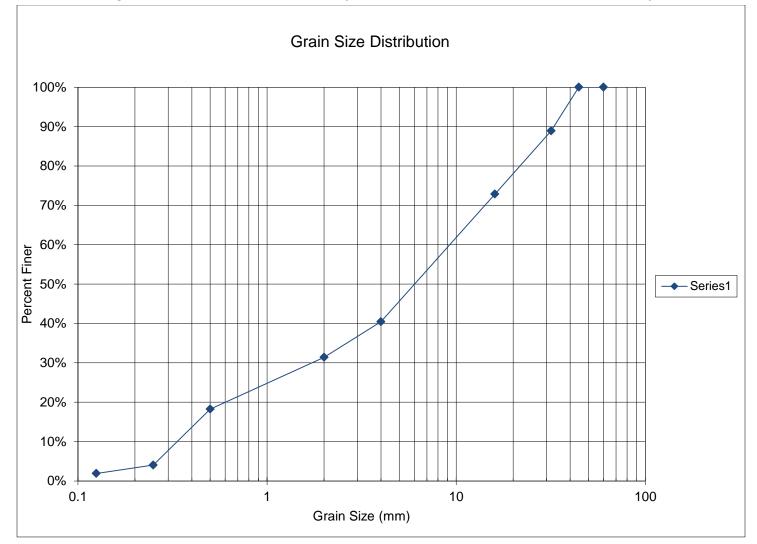
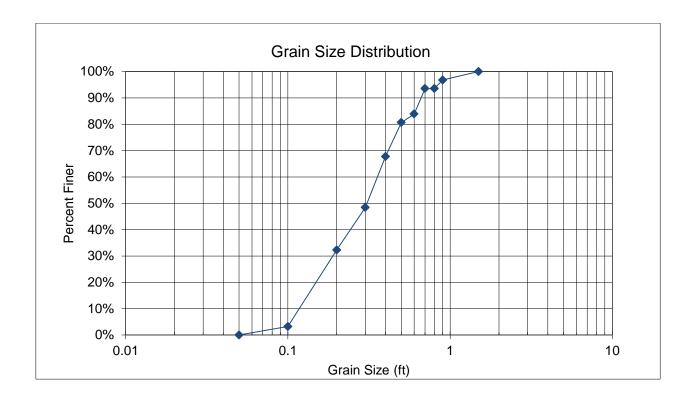

Figure G.13.3. Photo of sediment sample from the J-01-D site

Table G.13.3. Sediment sieve analysis Sample ID: J-01-D John Brown Creek Sample Description: 2 of 2 Performed by: JE Date: 9-29-2011

Sieve Size (mm)	% Finer
60	100%
44.45	100%
22.43	50%
19.1	45%
4	26%
2	20%
0.5	9%
0.25	4%
0.125	1%

Grain size gradation curve for the sediment sample collected from John Brown Creek in the vicinity of J-01-D

Structure # J-01-D	Waterbody - John Brown Creek	Sample # 2 of 2	Performed by: JE Date: 9/29/2011					
Sieve Size (mm)	Weight of Sieve (g)	Weight of Sieve + Soil (g)	Weight of Soil (g)	% Retained	Cumulative % Ret.	% Finer		
60	0	0	0	0%	0%	100%		
44.45	0	0	0	0%	0%	100%		
22.43	541.21	2726	2184.79	50%	50%	50%		
19.1	650.37	869.18	218.81	5%	55%	45%		
4	567.62	1386.5	818.88	19%	74%	26%		
2	464.7	711.16	246.46	6%	80%	20%		
0.5	413.81	867.97	454.16	10%	91%	9%		
0.25	401.07	641.65	240.58	6%	96%	4%		
0.125	379.91	497.58	117.67	3%	99%	1%		
Pan	368.32	421.18	52.86	1%	100%	0%		
		Total Weight of Sample	4334.21					

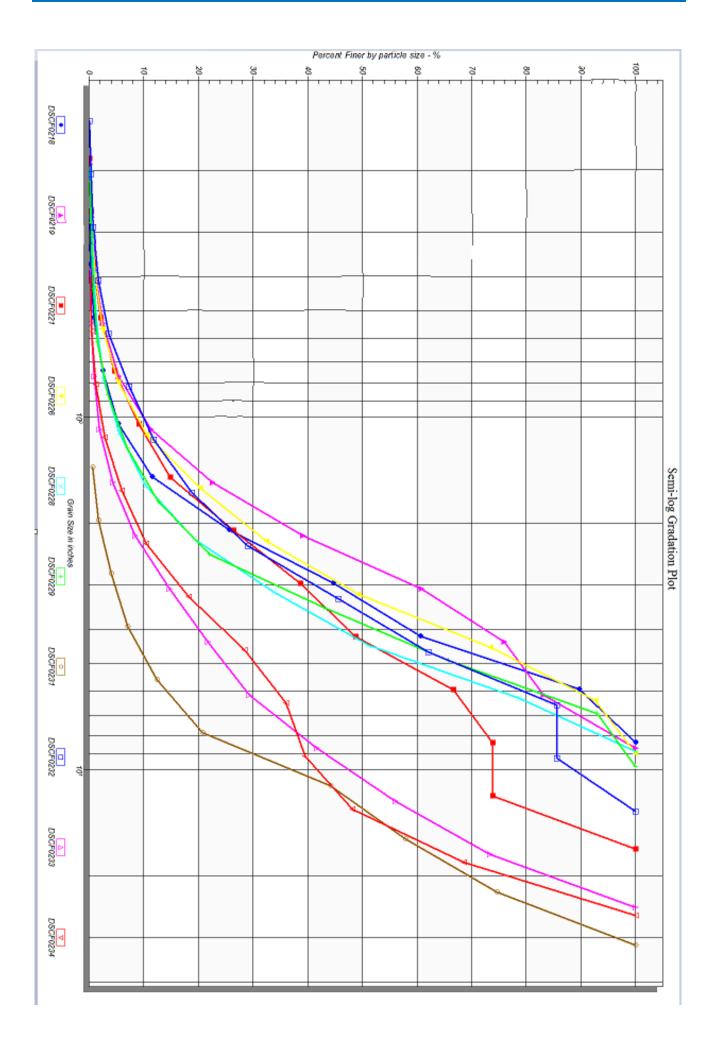

Table G.13.4.

Grain size gradation computations for the sediment sample collected from John Brown Creek in the vicinity of J-01-D

Region	Structure ID	County	Facility Carried	Mile Marker	POA Fisc	al Year	Feature Ir	ntersected	D50 max from P	OA Date
3	J-01-D	Mesa	SH 141 ML	110.5	201	.2	John Bro	wn Creek	4	8/8/2013
Sample #	A (ft)	B (ft)) C (f	t) Sha	pe Factor	Ds	(ft)	D	avg (ft)	Volume (ft ³
1	0.29	0.18	0.0	4	0.175	0	.18		0.170	0.001
2	0.84	0.48	0.4	5	0.709	0	.48		0.590	0.095
3	0.17	0.15	0.0	9	0.564	0	.15		0.137	0.001
4	0.3	0.2	0.1	7	0.694	().2		0.223	0.005
5	0.63	0.52	0.2	3	0.402	0	.52		0.460	0.039
6	0.51	0.32	0.1	1	0.272	0	.32		0.313	0.009
7	0.31	0.15	0.0	4	0.185	0	.15		0.167	0.001
8	0.79	0.61	0.2	4	0.346	0	.61		0.547	0.061
9	0.2	0.13	0.0	8	0.496	0	.13		0.137	0.001
10	0.39	0.31	0.1	8	0.518	0	.31		0.293	0.011
11	0.36	0.33	0.1	2	0.348	0	.33		0.270	
12	0.35	0.31	0.0	9	0.273 0.31		.31	0.250		0.005
13	0.22	0.15	0.0	9	0.495	0.15		0.153		0.002
14	0.84	0.63	0.3	3	0.454	0.63		0.600		0.091
15	0.49	0.41	0.2	7	0.602	0	.41		0.390	0.028
16	0.28	0.19	0.1	1	0.477	0	.19		0.193	0.003
17	0.64	0.42	0.2	4	0.463	0	.42		0.433	0.034
18	0.31	0.15	0.1	2	0.556	0	.15		0.193	0.003
19	1.6	0.89	0.4	5	0.377	0	.89		0.980	0.336
20	0.35	0.21	0.1	8	0.664	0	.21		0.247	0.007
21	0.54	0.38	0.2	9	0.640	0	.38		0.403	0.031
22	0.19	0.16	0.0	6	0.344	0	.16		0.137	0.001
23	0.19	0.09	0.0	6	0.459	0	.09		0.113	0.001
24	0.34	0.23	0.1	4	0.501 0.23		.23		0.237	0.006
25	0.58	0.34	0.1	6	0.360 0.34		0.34 0.360		0.017	
26	0.34	0.21	0.1		0.374 0.21		0.21 0.217		0.004	
27	1.2	0.68	0.5	2	0.576	0	.68		0.800	0.222
28	0.54	0.41	0.2	5	0.531	0	.41		0.400	0.029
29	0.37	0.19	0.1	3	0.490	0	.19		0.230	0.005
30	0.36	0.27	0.1	8	0.577	0	.27		0.270	0.009
31	2.69	1.42	1.2		0.614	1	.42		1.770	2.400

Pebble Count Grain Size Distribution

Structure # J-01-D	John Brown Creek at SH 141						
Sieve Size (ft)	Samples Retained	% Retained	Cumulative % Ret.	% Finer			
1.5	0	0%	0%	100%			
0.9	1	3%	3%	97%			
0.8	1	3%	6%	94%			
0.7	0	0%	6%	94%			
0.6	3	10%	16%	84%			
0.5	1	3%	19%	81%			
0.4	4	13%	32%	68%			
0.3	6	19%	52%	48%			
0.2	5	16%	68%	32%			
0.1	9	29%	97%	3%			
0.05	1	3%	100%	0%			
Total Samples	31						


Hydraulic Analysis Report

Project Data

Project Title: J-01-D Designer: Project Date: Wednesday, September 25, 2013 Project Units: U.S. Customary Units Notes:

Wolman Count Analysis: Hydraulic Toolbox GSD

Notes:

Image Gradation Input Parameters

Name: DSCF0218

Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0218.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 201 Morphologic Iterations: 1 Resolution: 34 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.065399	0	0	0.000000
0.092488	0	0	0.000000
0.130798	0	0	0.000000
0.184976	0	0	0.000000
0.261595	1	1	0.096805
0.369951	2	3	0.290416
0.523190	6	9	0.871249
0.739902	17	26	2.516941
1.046380	29	55	5.324298
1.479805	64	119	11.519845
2.092760	146	265	25.653437
2.959610	196	461	44.627299
4.185520	165	626	60.600194
5.919220	300	926	89.641820
8.371041	107	1033	100.000000

Gradation Result Parameters D5: 1.0110 in D15: 1.6307 in D50: 3.3720 in D85: 5.6421 in D100: 8.3710 in

Image Gradation Input Parameters

Name: DSCF0219 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0219.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 216 Morphologic Iterations: 1 Resolution: 38 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.048033	0	0	0.000000
0.067929	0	0	0.000000
0.096066	0	0	0.000000
0.135858	0	0	0.000000
0.192132	2	2	0.134318
0.271716	4	6	0.402955
0.384264	10	16	1.074547
0.543431	21	37	2.484889
0.768528	44	81	5.439893
1.086862	87	168	11.282740
1.537055	169	337	22.632639
2.173725	245	582	39.086635
3.074111	323	905	60.779046
4.347449	227	1132	76.024177
6.148222	107	1239	83.210208
8.694899	250	1489	100.000000

Gradation Result Parameters D5: 0.7350 in D15: 1.2343 in D50: 2.6267 in D85: 6.4197 in D100: 8.6949 in

Image Gradation Input Parameters

Name: DSCF0221 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0221.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 206 Morphologic Iterations: 1 Resolution: 32 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.065579	0	0	0.000000
0.092743	0	0	0.000000
0.131158	0	0	0.000000
0.185485	1	1	0.073801
0.262315	3	4	0.295203
0.370970	7	11	0.811808
0.524631	17	28	2.066421
0.741940	34	62	4.575646
1.049262	61	123	9.077491
1.483880	78	201	14.833948
2.098524	157	358	26.420664
2.967761	165	523	38.597786
4.197048	137	660	48.708487
5.935522	243	903	66.642066
8.394096	97	1000	73.800738
11.871044	0	1000	73.800738
16.788191	355	1355	100.000000

Gradation Result Parameters D5: 0.7709 in D15: 1.4927 in D50: 4.3222 in D85: 13.9730 in D100: 16.7882 in

Image Gradation Input Parameters

Name: DSCF0226 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0226.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 209 Morphologic Iterations: 1 Resolution: 35 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.049626	0	0	0.000000
0.070181	0	0	0.000000
0.099251	0	0	0.000000
0.140362	0	0	0.000000
0.198502	1	1	0.089686
0.280724	3	4	0.358744
0.397004	8	12	1.076233
0.561449	16	28	2.511211
0.794008	31	59	5.291480
1.122897	59	118	10.582960
1.588017	108	226	20.269058
2.245795	135	361	32.376682
3.176034	188	549	49.237668
4.491590	270	819	73.452915
6.352067	213	1032	92.556054
8.983180	83	1115	100.000000

Gradation Result Parameters D5: 0.7696 in D15: 1.3350 in D50: 3.2174 in D85: 5.6162 in D100: 8.9832 in

Image Gradation Input Parameters

Name: DSCF0228 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0228.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 193 Morphologic Iterations: 1 Resolution: 35 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.049006	0	0	0.000000
0.069305	0	0	0.000000
0.098012	0	0	0.000000
0.138610	0	0	0.000000
0.196024	1	1	0.111111
0.277219	2	3	0.333333
0.392047	4	7	0.777778
0.554439	6	13	1.444444
0.784095	11	24	2.666667
1.108878	25	49	5.44444
1.568190	44	93	10.333333
2.217755	80	173	19.222222
3.136380	131	304	33.777778
4.435510	156	460	51.111111
6.272759	248	708	78.666667
8.871021	192	900	100.000000

Gradation Result Parameters D5: 1.0569 in D15: 1.9092 in D50: 4.3522 in D85: 7.0441 in D100: 8.8710 in

Image Gradation Input Parameters

Name: DSCF0229 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0229.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 208 Morphologic Iterations: 1 Resolution: 32 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.038318	0	0	0.000000
0.054190	0	0	0.000000
0.076636	0	0	0.000000
0.108379	0	0	0.000000
0.153271	0	0	0.000000
0.216758	1	1	0.108342
0.306542	2	3	0.325027
0.433516	4	7	0.758397
0.613084	7	14	1.516793
0.867032	18	32	3.466956
1.226169	32	64	6.933911
1.734065	52	116	12.567714
2.452338	87	203	21.993499
3.468129	193	396	42.903575
4.904676	211	607	65.763814
6.936259	251	858	92.957746
9.809351	65	923	100.000000

Gradation Result Parameters D5: 1.0258 in D15: 1.9194 in D50: 3.9141 in D85: 6.3418 in D100: 9.8094 in

Image Gradation Input Parameters

Name: DSCF0231 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0231.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 191 Morphologic Iterations: 1 Resolution: 28 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.122788	0	0	0.000000
0.173648	0	0	0.000000
0.245575	0	0	0.000000
0.347296	0	0	0.000000
0.491151	0	0	0.000000
0.694592	0	0	0.000000
0.982302	0	0	0.000000
1.389184	2	2	0.668896
1.964603	3	5	1.672241
2.778368	7	12	4.013378
3.929206	9	21	7.023411
5.556737	16	37	12.374582
7.858413	25	62	20.735786
11.113474	70	132	44.147157
15.716825	41	173	57.859532
22.226947	50	223	74.581940
31.433650	76	299	100.000000

Gradation Result Parameters D5: 3.1556 in D15: 6.2795 in D50: 13.0783 in D85: 26.0005 in D100: 31.4337 in

Image Gradation Input Parameters

Name: DSCF0232 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0232.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 219 Morphologic Iterations: 1 Resolution: 35 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.051303	0	0	0.000000
0.072553	0	0	0.000000
0.102606	0	0	0.000000
0.145107	1	1	0.051020
0.205212	5	6	0.306122
0.290213	9	15	0.765306
0.410423	19	34	1.734694
0.580426	36	70	3.571429
0.820847	73	143	7.295918
1.160852	89	232	11.836735
1.641693	137	369	18.826531
2.321705	199	568	28.979592
3.283386	326	894	45.612245
4.643409	323	1217	62.091837
6.566772	461	1678	85.612245
9.286818	0	1678	85.612245
13.133544	282	1960	100.000000

Gradation Result Parameters D5: 0.6726 in D15: 1.3785 in D50: 3.6455 in D85: 6.5167 in D100: 13.1335 in

Image Gradation Input Parameters

Name: DSCF0233 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0233.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 202 Morphologic Iterations: 1 Resolution: 38 % Flood Depth: 0.9 px

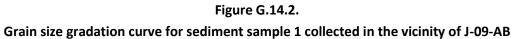
Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.067951	0	0	0.000000
0.096097	0	0	0.000000
0.135902	0	0	0.000000
0.192194	0	0	0.000000
0.271804	0	0	0.000000
0.384388	1	1	0.126904
0.543607	2	3	0.380711
0.768776	4	7	0.888325
1.087214	8	15	1.903553
1.537553	19	34	4.314721
2.174428	32	66	8.375635
3.075106	50	116	14.720812
4.348856	55	171	21.700508
6.150211	60	231	29.314721
8.697712	97	328	41.624365
12.300423	114	442	56.091371
17.395425	136	578	73.350254
24.600846	210	788	100.000000

Gradation Result Parameters D5: 1.6450 in D15: 3.1261 in D50: 10.7835 in D85: 20.5452 in D100: 24.6008 in

Image Gradation Input Parameters

Name: DSCF0234 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0234.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 197 Morphologic Iterations: 1 Resolution: 34 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.050554	0	0	0.000000
0.071494	0	0	0.000000
0.101107	0	0	0.000000
0.142987	0	0	0.000000
0.202215	0	0	0.000000
0.285975	0	0	0.000000
0.404429	2	2	0.229358
0.571949	2	4	0.458716
0.808859	7	11	1.261468
1.143899	14	25	2.866972
1.617717	27	52	5.963303
2.287797	39	91	10.435780
3.235434	68	159	18.233945
4.575595	89	248	28.440367
6.470868	66	314	36.009174
9.151190	31	345	39.564220
12.941737	75	420	48.165138
18.302380	178	598	68.577982
25.883474	274	872	100.000000


Results of the sediment size analysis for the sediment samples collected from Gunnison River channel during the site visit are tabulated and plotted below.

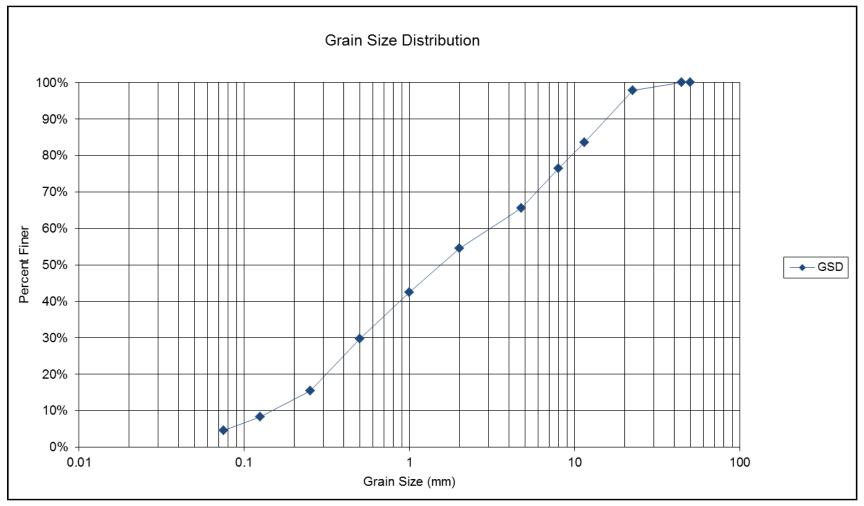


Figure G.14.1. Photo of sediment sample 1 collected at the Gunnison River near the vicinity of J-09-AB

Table G.14.1. Sediment Size Analysis Sample ID: J-09-AB Gunnison River Sample Description: 1 of 4 Performed by: AP Date: 2-14-2011

Sieve Size (mm)	% Finer	
50	100%	
44.45	100%	
22.4	98%	
11.5	84%	
8	76%	
4.75	66%	
2	55%	
1	42%	
0.5	30%	
0.25	15%	
0.125	8%	
0.075	5%	

			ID - East Abutment	Item # 0 - 4 ft.	Performed by: AP Date: 2-14-2011	
Structure # J-09-AB	Waterbody- Gunnison 18, 93	Grab Sample # 1 of 4	Fill - Gravel and sand	Sack - B1		
Sieve Size (mm)	Weight of Sieve (g)	Weight of Sieve + Soil (g)	Weight of Soil (g)	% Retained	Cumulative % Ret.	% Finer
50			0	0%	0%	100%
44.45	560.47	560.47	0	0%	0%	100%
22.4	531.12	626.03	94.91	2%	2%	98%
11.5	552.37	1187.9	635.53	14%	16%	84%
8	527.02	850.55	323.53	7%	24%	76%
4.75	506.93	988.03	481.1	11%	34%	66%
2	430.31	927.8	497.49	11%	45%	55%
1	451.76	991.47	539.71	12%	58%	42%
0.5	441.62	1011.6	569.98	13%	70%	30%
0.25	395.98	1033.6	637.62	14%	85%	15%
0.125	366.92	684.77	317.85	7%	92%	8%
0.075	305.07	467.06	161.99	4%	95%	5%
Pan	372.91	580.47	207.56	5%	100%	0%
		Total Weight of Sample	4467.27			

 Table G.14.2.

 Grain size gradation computations for sediment sample 1 collected in the vicinity of J-09-AB

Figure G.14.3.

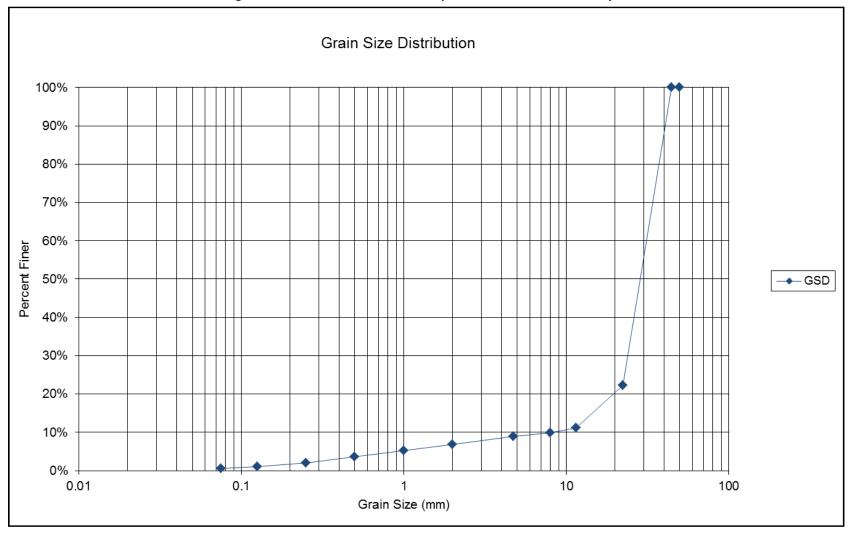

Photo of sediment sample 2 collected from the Gunnison River near the vicinity of J-09-AB

Table G.14.3. Sediment Size Analysis Sample ID: J-09-AB Gunnison River Sample Description: 2 of 4 Performed by: AP and TL Date: 2-15-2011

Sieve Size (mm)	% Finer	
50	100%	
44.45	100%	
22.4	22%	
11.5	11%	
8	10%	
4.75	9%	
2	7%	
1	5%	
0.5	4%	
0.25	2%	
0.125	1%	
0.075	1%	

Figure G.14.4. Grain size gradation curve for sediment sample 2 collected in the vicinity of J-09-AB

			ID - East Abutment	ltem # 4 - 9 ft.	Performed by: AP and TL	
Structure #	Waterbody-	Grab Sample #	Fill - Cobbles, 1 - 9"			
J-09-AB	Gunnison 18, 93	2 of 4	diam.	Sack - B1	Date: 2-15-2011	
Sieve Size	Weight of Sieve	Weight of Sieve + Soil	Weight of Soil	% Detained	Cumulative % Ret.	% Finer
(mm)	(g)	(g)	(g)	% Retained		
50			0	0%	0%	100%
44.45	560.47	1169.1	608.63	20%	20%	100%
22.4	531.12	2273.9	1742.78	58%	78%	22%
11.5	552.37	887.59	335.22	11%	89%	11%
8	527.02	568.54	41.52	1%	90%	10%
4.75	506.93	537.75	30.82	1%	91%	9%
2	430.31	493.44	63.13	2%	93%	7%
1	451.76	495.89	44.13	1%	95%	5%
0.5	441.62	494.28	52.66	2%	96%	4%
0.25	395.98	440.97	44.99	1%	98%	2%
0.125	366.92	396	29.08	1%	99%	1%
0.075	305.07	319.29	14.22	0%	99%	1%
Pan	372.91	392.51	19.6	1%	100%	0%
	·	Total Weight of Sample	3026.78			

Table G.14.4.Grain size gradation computations for sediment sample 2 collected in the vicinity of J-09-AB

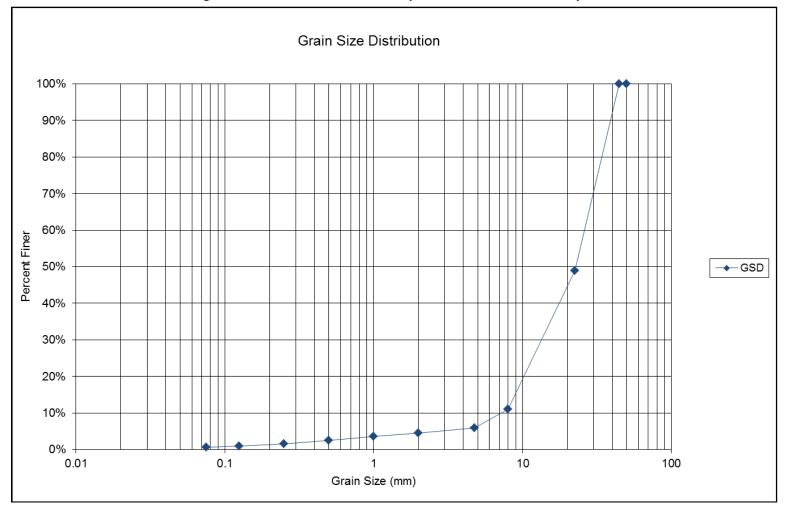

Photo of sediment sample 3 collected from the Gunnison River in the vicinity of J-09-AB

Table G.14.5. Sediment Size Analysis Sample ID: J-09-AB Gunnison River Sample Description: 3 of 4 Performed by: AP and TL Date: 2-15-2011

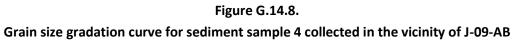
Sieve Size (mm)	% Finer		
50	100%		
44.45	100%		
22.4	49%		
8	11%		
4.75	6%		
2	5%		
1	4%		
0.5	2%		
0.25	2%		
0.125	1%		
0.075	1%		

Figure G.14.6. Grain size gradation curve for sediment sample 3 collected in the vicinity of J-09-AB

Structure # Waterbody-		Grab Sample #	ID -	ltem # 10 - 14 ft.	Performed by: AP and TL	
J-09-AB	Gunnison 18, 93	3 of 4	East Abutment	Sack - B1	Date: 2-15-2011	
Sieve Size (mm)	Weight of Sieve (g)	Weight of Sieve + Soil (g)	Weight of Soil (g)	% Retained	Cumulative % Ret.	% Finer
50			0	0%	0%	100%
44.45	560.47	1189.5	629.03	9%	9%	100%
22.4	531.12	3440.7	2909.58	42%	51%	49%
8	527.02	3156.42	2629.4	38%	89%	11%
4.75	506.93	861.8	354.87	5%	94%	6%
2	430.31	523.43	93.12	1%	95%	5%
1	451.76	518.6	66.84	1%	96%	4%
0.5	441.62	517	75.38	1%	98%	2%
0.25	395.98	459.64	63.66	1%	98%	2%
0.125	366.92	408.36	41.44	1%	99%	1%
0.075	305.07	326.51	21.44	0%	99%	1%
Pan	372.91	417.32	44.41	1%	100%	0%
		Total Weight of Sample	6929.17			

 Table G.14.6.

 Grain size gradation computations for sediment sample 3 collected near the vicinity of J-09-AB


Figure G.14.7.

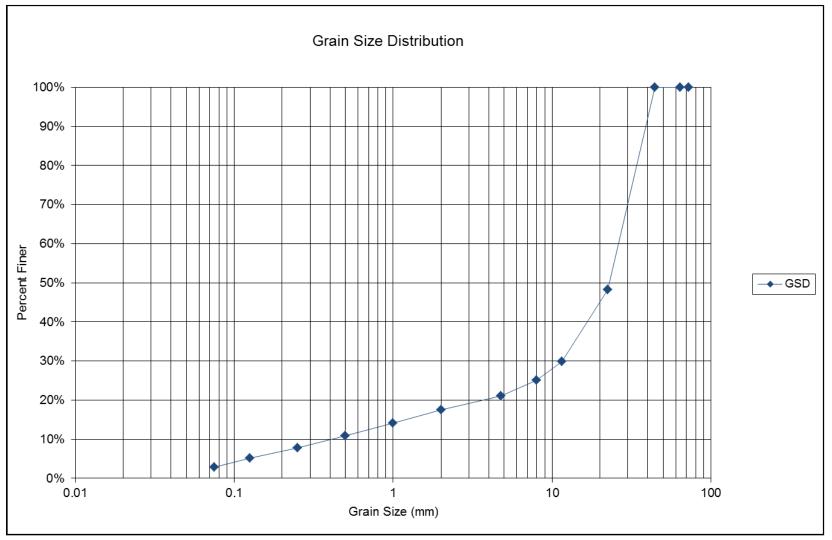
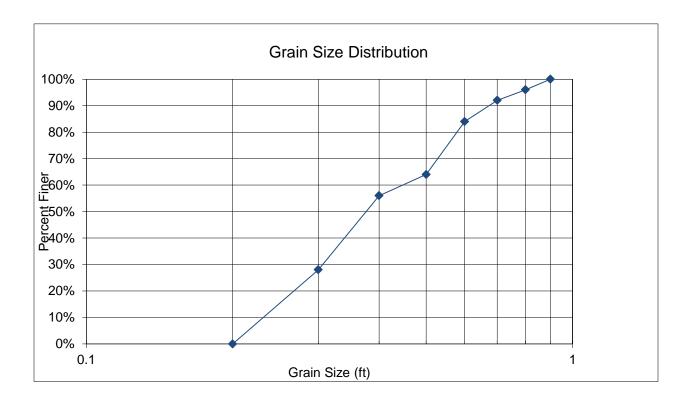

Photo of sediment sample 4 collected at the Gunnison River near the vicinity of J-09-AB

Table G.14.7. Sediment Size Analysis Sample ID: J-09-AB Gunnison River Sample Description: 4 of 4 Performed by: AP and TL Date: 2-15-2011

Sieve Size (mm)	% Finer	
72	100%	
64	100%	
44.45	100%	
22.4	48%	
11.5	30%	
8	25%	
4.75	21%	
2	18%	
1	14%	
0.5	11%	
0.25	8%	
0.125	5%	
0.075	3%	

	Waterbody-		ID - East Abutment	ltem # 15 - 18 ft.	Performed by: AP a	and TL
Structure #	Gunnison 18,	Grab Sample #	Fill - Cobbles, 1 - 5"			
J-09-AB	93	4 of 4	diam	Sack - B1	Date: 2-15-2011	
Sieve Size	Weight of Sieve	Weight of Sieve + Soil	Weight of Soil	0/ Datainad	Cumulative % Ret.	%
(mm)	(g)	(g)	(g)	% Retained		Finer
72			0	0	0	100%
64			596.21	4%	4%	100%
44.45	560.47	1169.1	2311.4	17%	21%	100%
22.4	531.12	2273.9	4233.67	31%	52%	48%
11.5	552.37	887.59	2543.2	18%	70%	30%
8	527.02	568.54	669.93	5%	75%	25%
4.75	506.93	537.75	551.36	4%	79%	21%
2	430.31	493.44	477.42	3%	82%	18%
1	451.76	495.89	467.06	3%	86%	14%
0.5	441.62	494.28	459.02	3%	89%	11%
0.25	395.98	440.97	414.18	3%	92%	8%
0.125	366.92	396	380.23	3%	95%	5%
0.075	305.07	319.29	313.13	2%	97%	3%
Pan	372.91	392.51	388.86	3%	100%	0%
		Total Weight of				•
		Sample	13805.67			


Table G.14.8.

Grain size gradation computations for sediment sample 4 collected in the vicinity of J-09-AB

Region	Structure ID	County	Facility Carried	Mile M	larker F	POA Fisc	al Year	Feature Ir	ntersected	D50 min from POA	D50 max from POA
3	J-09-AB	Gunnison	US 50 ML	155	5.6	201	1	Gunniso	on River	1.5	29
Sample #	A (ft)	B (ft)	C	(ft)	Shape I	Factor	D	s (ft)	Da	vg (ft)	Volume (ft³)
1	0.4	0.29	0.	17	0.4	199	C).29	C	.287	0.010
2	0.28	0.24	0.	22	0.8	349	C).24	C).247	0.008
3	0.56	0.44	0.	37	0.7	745	C).44	C).457	0.048
4	0.1	0.45	0.	35	1.6	550	C).45	C	0.300	0.008
5	0.69	0.38	0.	34	0.6	664	C).38	C	0.470	0.047
6	0.55	0.38	0.	24	0.5	525	C	.38	C	0.390	0.026
7	0.35	0.31	0.	22	0.6	668	C	.31	C	0.293	0.012
8	0.41	0.35	0.	25	0.6	60	C).35	C	0.337	0.019
9	0.74	0.69	0.	23	0.3	322	C	.69	C	0.553	0.061
10	0.64	0.5	0.	35	0.6	519		0.5	C).497	0.059
11	0.37	0.3	0.	22	0.6	60		0.3	C).297	0.013
12	0.65	0.53	0.	41	0.6	599	C).53	C	0.530	0.074
13	0.35	0.25	0.	11	0.3	372	C	.25	C).237	0.005
14	0.65	0.54	0.	19	0.3	321	C).54	C	0.460	0.035
15	0.99	0.7	0.	55	0.6	661		0.7	C).747	0.200
16	0.48	0.38	0.	17	0.3	898	C	.38	C	0.343	0.016
17	0.66	0.54	0.	22	0.3	869	C).54	C).473	0.041
18	0.9	0.62	0.	35	0.4	469	C	.62	C	0.623	0.102
19	0.39	0.2	0.	18	0.6	545		0.2	C).257	0.007
20	0.28	0.23	0	.1	0.3	894	C).23	C	0.203	0.003
21	0.6	0.51	0	.4	0.7	23	C).51	C	0.503	0.064
22	0.8	0.8	0.	38	0.4	75		0.8	C	0.660	0.127
23	0.43	0.34	0.	17	0.4	45	C).34	C	0.313	0.013
24	0.25	0.23	0.	15	0.6	526	C).23	C	0.210	0.005
25	0.45	0.28	0.	28	0.7	789	C).28	C).337	0.018

Pebble Count Grain Size Distribution

Structure # J-09-AB	Gunnison River at US 50					
Sieve Size (ft)	Samples Retained	% Retained	Cumulative % Ret.	% Finer		
0.9	0	0%	0%	100%		
0.8	1	4%	4%	96%		
0.7	1	4%	8%	92%		
0.6	2	8%	16%	84%		
0.5	5	20%	36%	64%		
0.4	2	8%	44%	56%		
0.3	7	28%	72%	28%		
0.2	7	28%	100%	0%		
Total Samples	25					

Two sediment samples were collected from the channel bed near Bridge K-08-D. Results of the sediment size analysis for the sediment sample collected from the channel are presented below in both tabular and graphical formats.

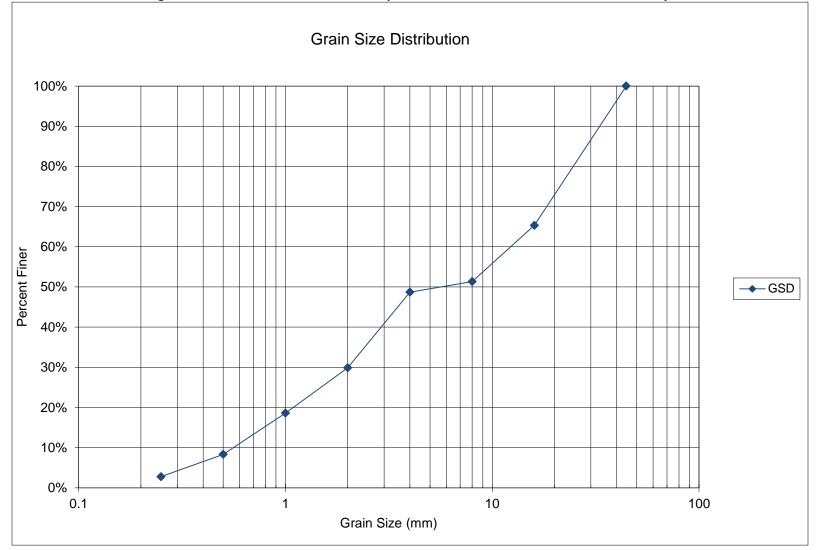
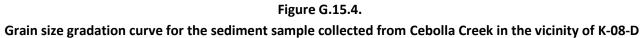

Figure G.15.1. Photo of sediment sample from the K-08-D site

Table G.15.1. Sediment sieve analysis Sample ID: K-08-D Cebolla Creek Sample Description: 1 of 2 Performed by: JE Date: 9-11-2012

Sieve Size (mm)	% Finer				
44.45	100%				
16	65%				
8	51%				
4	49%				
2	30%				
1	19%				
0.5	8%				
0.25	3%				

Grain size gradation curve for the sediment sample collected from Cebolla Creek in the vicinity of K-08-D

Structure	Waterbody -	Sample # 1 of 2	Performed by: JE Date: 9/11/2012					
# K-08-D	Cebolla Creek	Sample # 1 01 2						
Sieve Size (mm)	Weight of Sieve (g)	Weight of Sieve + Soil (g)	Weight of Soil (g)	% Retained	Cumulative % Ret.	% Finer		
44.45	0	0	0	0%	0%	100%		
16	555.5	1456.3	900.8	35%	35%	65%		
8	525.51	889.01	363.5	14%	49%	51%		
4	491.59	559.91	68.32	3%	51%	49%		
2	479.61	968.98	489.37	19%	70%	30%		
1	500.31	793.4	293.09	11%	81%	19%		
0.5	441.02	707.93	266.91	10%	92%	8%		
0.25	392.91	537.39	144.48	6%	97%	3%		
Pan	371.72	443.81	72.09	3%	100%	0%		
		Total Weight of Sample	2598.56					


Table G.15.2. Grain size gradation computations for the sediment sample collected from Cebolla Creek in the vicinity of K-08-D

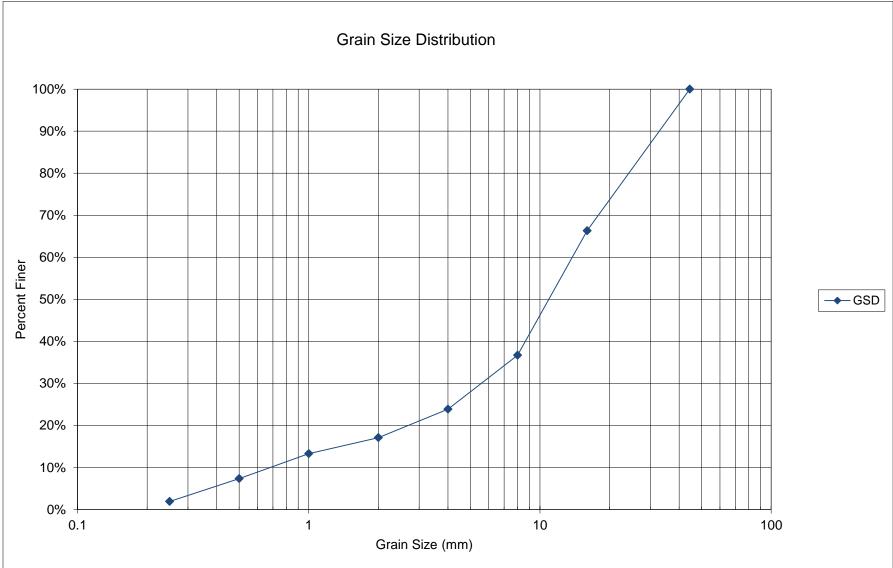


Figure G.15.3. Photo of sediment sample from the K-08-D site

Table G.15.3. Sediment sieve analysis Sample ID: K-08-D Cebolla Creek Sample Description: 2 of 2 Performed by: JE Date: 9-11-2012

Sieve Size (mm)	% Finer	
44.45	100%	
16	68%	
8	40%	
4	27%	
2	21%	
1	15%	
0.5	8%	
0.25	2%	

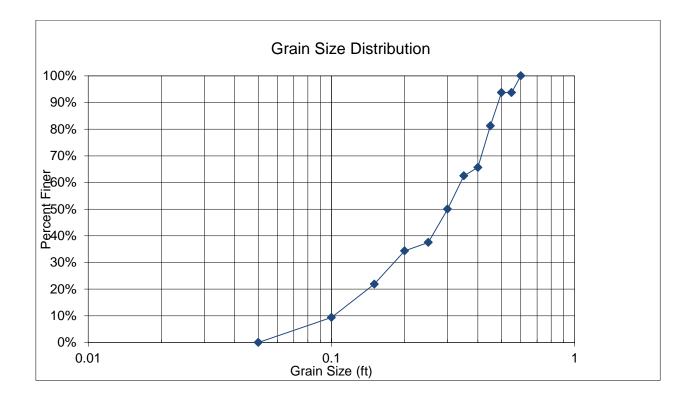
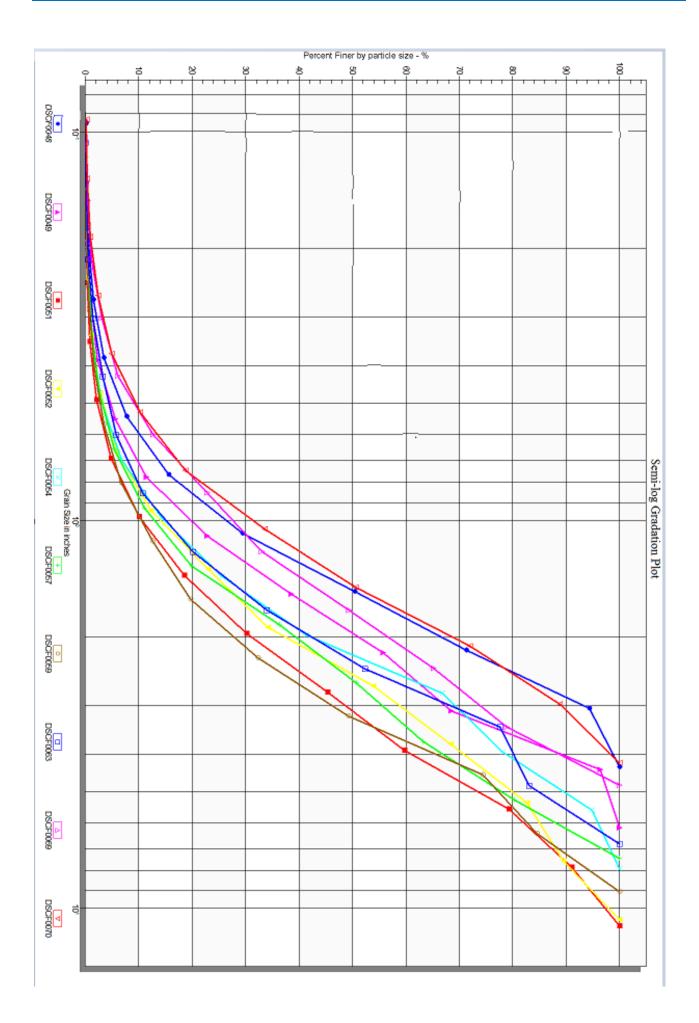

Grain size gradation computations for the sediment sample conected from Cebona Creek in the vicinity of K-08								
Structure #	Waterbody -	Sample # 2 of 2	Performed by: JE					
K-08-D	Cebolla Creek	Sample # 2 01 2	Date: 9/11/2012					
Sieve Size	Weight of Sieve (g)	Weight of Sieve + Soil	Weight of Soil	%	Cumulative %	%		
(mm)	weight of Sieve (g)	(g)	(g)	Retained	Ret.	Finer		
44.45	0	0	0	0%	0%	100%		
16	555.5	1342.1	786.6	34%	34%	66%		
8	525.51	1218.3	692.79	30%	63%	37%		
4	491.59	791	299.41	13%	76%	24%		
2	479.61	638.04	158.43	7%	83%	17%		
1	500.31	589.49	89.18	4%	87%	13%		
0.5	441.02	579.46	138.44	6%	93%	7%		
0.25	392.91	520.07	127.16	5%	98%	2%		
Pan	371.72	416.45	44.73	2%	100%	0%		
		Total Weight of Sample	2336.74					

Table G.15.4. Grain size gradation computations for the sediment sample collected from Cebolla Creek in the vicinity of K-08-D

Region	Structure ID	County	Facility	Carried	Mile Marker	POA Fiscal Yea	ar Featu	re Intersected	D50 min	from POA	D50 m	ax from PO	A Date
3	K-08-D	Gunnison	SH14	9 ML	100.4	2013	Ce	bolla Creek		6		12	8/8/2013
Sample #	A (ft)	E	3 (ft)	(C (ft)	Shape Factor	Ds (1	ft)	Dav	/g (ft)		Volum	e (ft³)
1	0.42		0.35		0.25	0.652	0.3	5	0.	340		0.0)19
2	0.53		0.55		0.16	0.296	0.5	5	0.	413		0.0)24
3	0.8		0.41		0.15	0.262	0.4	1	0.	453		0.0)26
4	0.21		0.13		0.1	0.605	0.1	3	0.	147		0.0	001
5	0.08		0.05		0.03	0.474	0.0	5	0.	053		0.0	000
6	0.46		0.3		0.24	0.646	0.3	3	0.	333		0.0)17
7	0.18		0.15		0.07	0.426	0.1	5	0.	133		0.0	001
8	0.11		0.08		0.03	0.320	0.0	8	0.	073		0.0	000
9	0.38		0.3		0.19	0.563	0.3	3	0.	290		0.0)11
10	0.17		0.16		0.09	0.546	0.1	6	0.	140		0.0	001
11	0.51		0.4		0.29	0.642	0.4	4	0.	400		0.0)31
12	0.63		0.42		0.29	0.564	0.4	2	0.	447		0.0)40
13	0.29		0.21		0.13	0.527	0.2	1	0.	210		0.0	004
14	0.75		0.33		0.27	0.543	0.3	3	0.	450		0.0)35
15	0.3		0.19		0.13	0.545	0.1	9	0.	207		0.0	004
16	0.4		0.25		0.16	0.506	0.2	5	0.	270		0.0	008
17	0.53		0.4		0.2	0.434	0.4	4	0.	377		0.0)22
18	0.28		0.18		0.08	0.356	0.1	8	0.	180		0.0	002
19	0.41		0.27		0.15	0.451	0.2	7	0.	277		0.0	009
20	0.31		0.27		0.14	0.484	0.2	7	0.	240		0.0	006
21	0.08		0.06		0.4	5.774	0.0	6	0.	180		0.0	001
22	0.71		0.55		0.5	0.800	0.5	5	0.	587		0.1	.02
23	0.2		0.11		0.08	0.539	0.1	1	0.	130		0.0	001
24	0.36		0.26		0.01	0.033	0.2	6	0.	210		0.0	000
25	0.55		0.45		0.18	0.362	0.4	5	0.	393		0.0)23
26	0.56		0.45		0.36	0.717	0.4	5	0.	457		0.0)48
27	0.43		0.43		0.3	0.698	0.4	3	0.	387		0.0)29
28	0.14		0.13		0.04	0.296	0.1	3	0.	103		0.0	000
29	0.66		0.48		0.02	0.036	0.4	8	0.	387		0.0	003
30	0.4		0.3		0.23	0.664	0.3	3	0.	310		0.0)14
31	0.14		0.13		0.05	0.371	0.1	3	0.	107		0.0	000
32	0.55		0.48		0.32	0.623	0.4	8	0.	450		0.0)44

Pebble Count Grain Size Distribution

Structure # K-08-D	Cebolla Creek at SH 149					
Sieve Size (ft)	Samples Retained	% Retained	Cumulative % Ret.	% Finer		
0.6	0	0%	0%	100%		
0.55	2	6%	6%	94%		
0.5	0	0%	6%	94%		
0.45	4	13%	19%	81%		
0.4	5	16%	34%	66%		
0.35	1	3%	38%	63%		
0.3	4	13%	50%	50%		
0.25	4	13%	63%	38%		
0.2	1	3%	66%	34%		
0.15	4	13%	78%	22%		
0.1	4	13%	91%	9%		
0.05	3	9%	100%	0%		
Pan	0	0%	100%	0%		
Total Samples	32					


Hydraulic Analysis Report

Project Data

Project Title: K-08-D Designer: Project Date: Thursday, September 26, 2013 Project Units: U.S. Customary Units Notes:

Wolman Count Analysis: Hydraulic Toolbox GSD

Notes:

Image Gradation Input Parameters

Name: DSCF0048 Gradation Type: Image Gradation Number of Images: 1

Image Path: Hydraulic Toolbox GSD_Images\DSCF0048.JPG

Scale Line Length: 24 in

Median Filter Radius: 2 px

Background Subtraction Radius: 3 px

Advanced Controls:

Automate Threshold Selection

Threshold Value: 202

Morphologic Iterations: 1

Resolution: 29 %

Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.042023	0	0	0.000000
0.059429	0	0	0.000000
0.084046	0	0	0.000000
0.118859	2	2	0.087451
0.168092	7	9	0.393529
0.237718	18	27	1.180586
0.336184	38	65	2.842151
0.475436	81	146	6.383909
0.672368	147	293	12.811544
0.950872	272	565	24.704854
1.344736	439	1004	43.900306
1.901744	568	1572	68.736336
2.689472	479	2051	89.680805
3.803487	236	2287	100.000000

Gradation Result Parameters D5: 0.4210 in D15: 0.7236 in D50: 1.4815 in D85: 2.5134 in D100: 3.8035 in

Image Gradation Input Parameters

Name: DSCF0049 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0049.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 199 Morphologic Iterations: 1 Resolution: 30 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.034124	0	0	0.000000
0.048259	0	0	0.000000
0.068248	0	0	0.000000
0.096518	0	0	0.000000
0.136497	2	2	0.099354
0.193036	5	7	0.347740
0.272994	13	20	0.993542
0.386072	26	46	2.285147
0.545988	66	112	5.563835
0.772143	117	229	11.376056
1.091975	229	458	22.752111
1.544286	317	775	38.499752
2.183951	348	1123	55.787382
3.088573	256	1379	68.504719
4.367902	561	1940	96.373572
6.177146	73	2013	100.000000

Gradation Result Parameters D5: 0.5185 in D15: 0.8740 in D50: 1.9698 in D85: 3.8458 in D100: 6.1771 in

Image Gradation Input Parameters

Name: DSCF0051 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0051.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 192 Morphologic Iterations: 1 Resolution: 30 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.059611	0	0	0.000000
0.084303	0	0	0.000000
0.119222	0	0	0.000000
0.168606	1	1	0.058824
0.238445	4	5	0.294118
0.337212	9	14	0.823529
0.476889	20	34	2.000000
0.674423	46	80	4.705882
0.953779	80	160	9.411765
1.348847	159	319	18.764706
1.907557	217	536	31.529412
2.697694	223	759	44.647059
3.815115	273	1032	60.705882
5.395387	325	1357	79.823529
7.630230	193	1550	91.176471
10.790775	150	1700	100.000000

Gradation Result Parameters D5: 0.6919 in D15: 1.1898 in D50: 3.0702 in D85: 6.4144 in D100: 10.7908 in

Image Gradation Input Parameters

Name: DSCF0052 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0052.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 195 Morphologic Iterations: 1 Resolution: 30 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.041380	0	0	0.000000
0.058520	0	0	0.000000
0.082760	0	0	0.000000
0.117040	0	0	0.000000
0.165520	2	2	0.106724
0.234080	6	8	0.426894
0.331040	12	20	1.067236
0.468161	31	51	2.721451
0.662079	66	117	6.243330
0.936322	115	232	12.379936
1.324159	175	407	21.718250
1.872643	227	634	33.831377
2.648317	372	1006	53.681964
3.745286	287	1293	68.996798
5.296635	263	1556	83.030950
7.490572	125	1681	89.701174
10.593269	193	1874	100.000000

Gradation Result Parameters D5: 0.5936 in D15: 1.0451 in D50: 2.5044 in D85: 5.9443 in D100: 10.5933 in

Image Gradation Input Parameters

Name: DSCF0054 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0054.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 182 Morphologic Iterations: 1 Resolution: 30 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)	
0.043086	0	0	0.000000	
0.060933	0	0	0.000000	
0.086172	0	0	0.000000	
0.121866	1	1	0.052247	
0.172344	3	4	0.208986	
0.243732	6	10	0.522466	
0.344688	14	24	1.253918	
0.487463	31	55	2.873563	
0.689377	76	131	6.844305	
0.974926	136	267	13.949843	
1.378754	202	469 24.503657		
1.949852	307	776 40.54336		
2.757507	454	1230 64.263323		
3.899704	211	1441 75.287356		
5.515015	376	1817	94.932079	
7.799409	97	1914	100.000000	

Gradation Result Parameters D5: 0.5956 in D15: 1.0151 in D50: 2.2718 in D85: 4.6983 in D100: 7.7994 in

Image Gradation Input Parameters

Name: DSCF0057 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0057.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 186 Morphologic Iterations: 1 Resolution: 33 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)	
0.028437	0	0	0.000000	
0.040216	0	0	0.000000	
0.056874	0	0	0.000000	
0.080432	0	0	0.000000	
0.113747	1	1	0.068634	
0.160863	2	3	0.205903	
0.227495	5	8	0.549073	
0.321726	11	19	1.304049	
0.454990	23	42	2.882636	
0.643453	40	82	5.628003	
0.909980	81	163	11.187371	
1.286906	160	323	22.168840	
1.819960	238	561	38.503775	
2.573812	272	833	57.172272	
3.639919	135	968 66.437886		
5.147623	192	1160	79.615649	
7.279839	297	1457	100.000000	

Gradation Result Parameters D5: 0.6003 in D15: 1.0408 in D50: 2.2842 in D85: 5.7108 in D100: 7.2798 in

Image Gradation Input Parameters

Name: DSCF0059 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0059.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 193 Morphologic Iterations: 1 Resolution: 33 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)	
0.030610	0	0	0.000000	
0.043288	0	0	0.000000	
0.061219	0	0	0.000000	
0.086577	0	0	0.000000	
0.122438	1	1	0.064020	
0.173154	2	3	0.192061	
0.244876	5	8	0.512164	
0.346308	12	20	1.280410	
0.489753	27	47	3.008963	
0.692615	48	95	6.081946	
0.979506	74	169	10.819462	
1.385230	118	287	18.373880	
1.959011	171	458	29.321383	
2.770460	264	722	46.222791	
3.918023	366	1088 69.654289		
5.540921	186	1274	81.562100	
7.836046	288	1562	100.000000	

Gradation Result Parameters D5: 0.6212 in D15: 1.2040 in D50: 2.9555 in D85: 5.9689 in D100: 7.8360 in

Image Gradation Input Parameters

Name: DSCF0063 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0063.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 183 Morphologic Iterations: 1 Resolution: 31 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)	
0.027888	0	0	0.000000	
0.039440	0	0	0.000000	
0.055776	0	0	0.000000	
0.078879	0	0	0.000000	
0.111552	1	1	0.075131	
0.157758	3	4	0.300526	
0.223104	6	10	0.751315	
0.315516	13	23	1.728024	
0.446208	29	52	3.906837	
0.631033	44	96	7.212622	
0.892415	88	184	13.824192	
1.262066	122	306	22.990233	
1.784831	193	499	37.490609	
2.524132	331	830 62.359128		
3.569661	225	1055 79.263711		
5.048263	0	1055	79.263711	
7.139323	276	1331	100.000000	

Gradation Result Parameters D5: 0.5073 in D15: 0.9398 in D50: 2.1567 in D85: 5.6267 in D100: 7.1393 in

Image Gradation Input Parameters

Name: DSCF0069 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0069.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 188 Morphologic Iterations: 1 Resolution: 30 % Flood Depth: 0.9 px

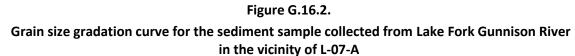
Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)	
0.025524	0	0	0.000000	
0.036097	0	0	0.000000	
0.051048	0	0	0.000000	
0.072193	0	0	0.000000	
0.102097	2	2	0.124766	
0.144387	4	6	0.374298	
0.204194	11	17	1.060512	
0.288774	26	43	2.682470	
0.408388	50	93	5.801622	
0.577547	98	191	11.915159	
0.816775	150	341 21.272614		
1.155095	174	515 32.12726		
1.633551	272	787	49.095446	
2.310190	210	997 62.195883		
3.267102	298	1295	80.786026	
4.620380	308	1603	100.000000	

Gradation Result Parameters D5: 0.3776 in D15: 0.6564 in D50: 1.6803 in D85: 3.5639 in D100: 4.6204 in

Image Gradation Input Parameters

Name: DSCF0070 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0070.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 178 Morphologic Iterations: 1 Resolution: 31 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)	
0.033206	0	0	0.000000	
0.046961	0	0	0.000000	
0.066413	0	0	0.000000	
0.093921	2	2	0.110193	
0.132825	4	6	0.330579	
0.187843	11	17	0.936639	
0.265650	25	42	2.314050	
0.375686	47	89 4.903581		
0.531300	102	191	10.523416	
0.751372	166	357	19.669421	
1.062600	275	632 34.820937		
1.502744	291	923	50.853994	
2.125201	394	1317 72.561983		
3.005488	223	1540	84.848485	
4.250401	275	1815	100.000000	


Two sediment samples were collected from the channel bed near Bridge L-07-A. Results of the sediment size analysis for the sediment sample collected from the channel are presented below in both tabular and graphical formats.

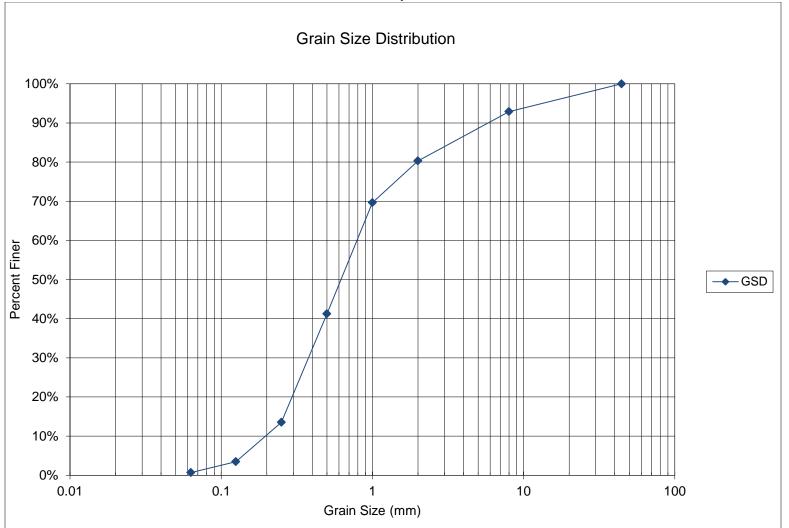


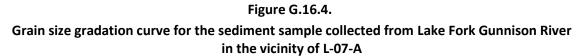
Figure G.16.1. Photo of sediment sample from the L-07-A site

Table G.16.1. Sediment sieve analysis Sample ID: L-07-A Lake Fork Gunnison River Sample Description: 1 of 2 Performed by: JE Date: 9-11-2012

Date: 5-11-2012		
Sieve Size (mm)	% Finer	
44.45	100%	
8	93%	
2	80%	
1	70%	
0.5	41%	
0.25	14%	
0.125	3%	
0.063	1%	

in the vicinity of L-07-A						
Structure	Waterbody - Lake	Sample # 1 of 2	Performed by: JE			
# L-07-A	Fork Gunnison River	Date: 9/11/2012			1/2012	
Sieve Size	Weight of Sieve (g)	Weight of Sieve + Soil	Weight of Soil	%	Cumulative %	%
(mm)	weight of Sieve (g)	(g)	(g)	Retained	Ret.	Finer
44.45	0	0	0	0%	0%	100%
8	525.51	627.1	101.59	7%	7%	93%
2	479.61	659.86	180.25	13%	20%	80%
1	500.31	653.16	152.85	11%	30%	70%
0.5	441.02	847.43	406.41	28%	59%	41%
0.25	392.91	789.71	396.8	28%	86%	14%
0.125	377.3	521.39	144.09	10%	97%	3%
0.063	359.61	399.39	39.78	3%	99%	1%
Pan	371.72	381.58	9.86	1%	100%	0%
		Total Weight of Sample	1431.63			

Table G.16.2.


Grain size gradation computations for the sediment sample collected from Lake Fork Gunnison River

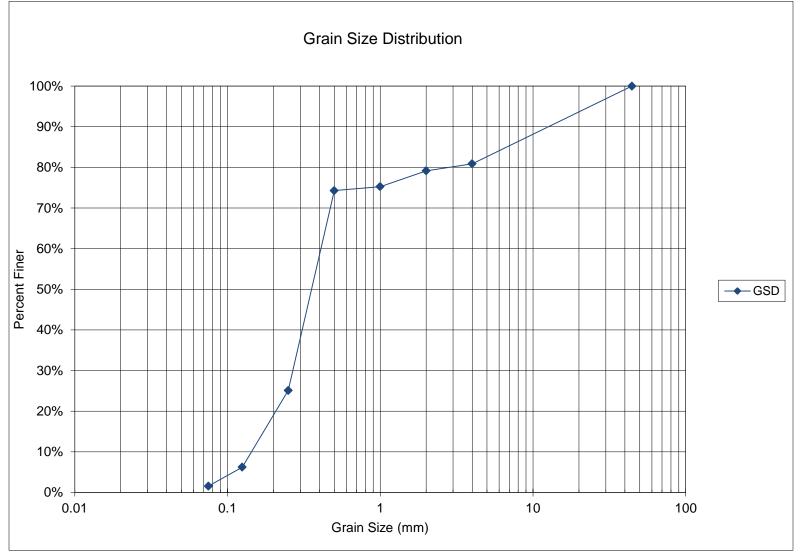


Figure G.16.3. Photo of sediment sample from the L-07-A site

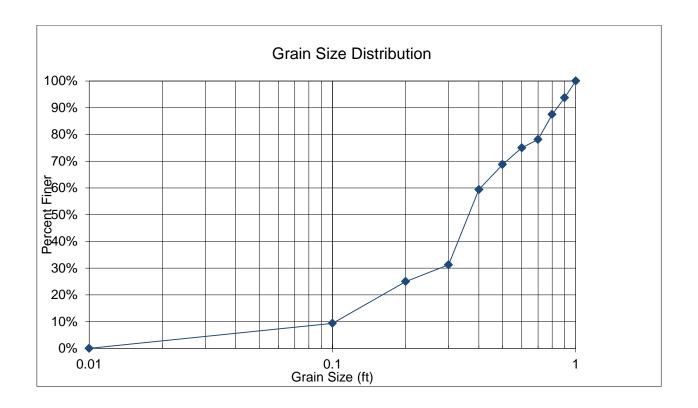
Table G.16.3. Sediment sieve analysis Sample ID: L-07-A Lake Fork Gunnison River Sample Description: 2 of 2 Performed by: JE Date: 9-11-2012

Sieve Size (mm)	% Finer
44.45	100%
4	81%
2	79%
1	75%
0.5	74%
0.25	25%
0.125	6%
0.075	2%

Prepared by Hydrau-Tech, Inc.

G-383

	in the vicinity of L-07-A								
Structure #	Waterbody - Lake	Sample # 2 of 2	Performed by: JE						
L-07-A	Fork Gunnison River	5ample # 2 01 2		Date: 9/1	1/2012				
Sieve Size (mm)	Weight of Sieve (g)	Weight of Sieve + Soil (g)	Weight of Soil (g)	% Retained	Cumulative % Ret.	% Finer			
44.45	0	0	0	0%	0%	100%			
4	491.59	829.33	337.74	19%	19%	81%			
2	479.61	510.21	30.6	2%	21%	79%			
1	500.31	569.18	68.87	4%	25%	75%			
0.5	441.02	458.18	17.16	1%	26%	74%			
0.25	392.91	1262.2	869.29	49%	75%	25%			
0.125	377.3	710.84	333.54	19%	94%	6%			
0.075	321.91	404.41	82.5	5%	98%	2%			
Pan	371.72	399.11	27.39	2%	100%	0%			
		Total Weight of Sample	1767.09	Total Weight of Sample 1767.09					

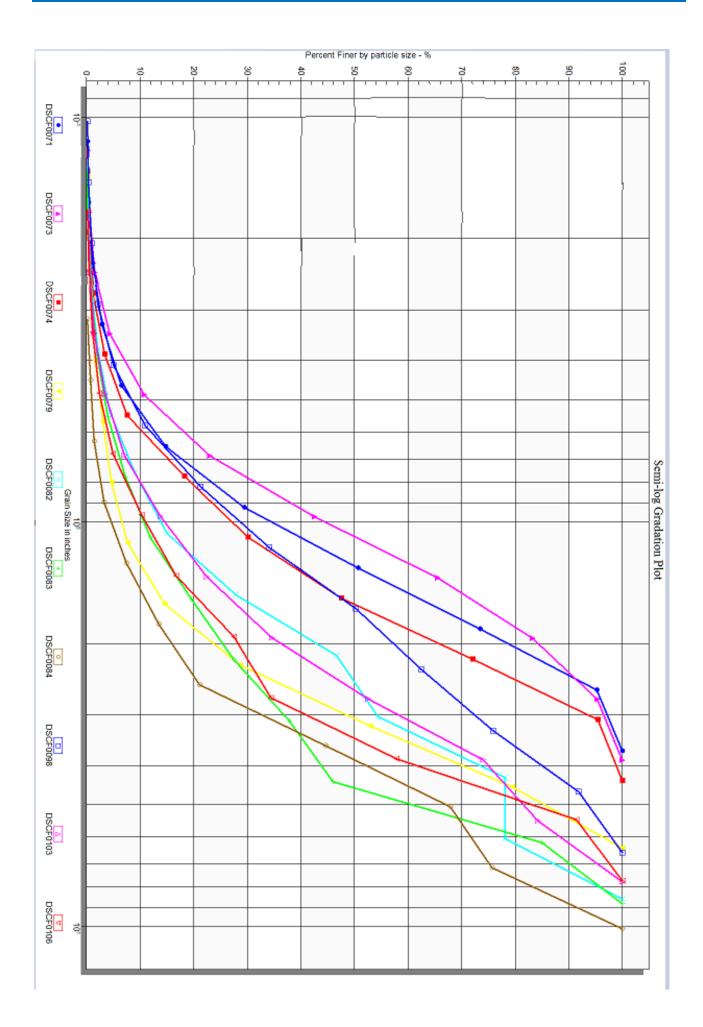

Table G.16.4.

Grain size gradation computations for the sediment sample collected from Lake Fork Gunnison River

Region	Structure ID	Co	unty	Facility C	arried	Mile Marker	POA Fiscal Yes	ar	Feature Intersect	ed	D50 min from POA	D50 m	ax from PO	A Date
3	L-07-A	Gun	inison	SH 149	9 ML	86.7	2013		Lake Fork Gunnison	River	0.35		0.6	8/8/2013
Sample #	A (ft)		B (1	ft)	(C(ft)	Shape Factor		Ds (ft)		Davg (ft)		Volum	ne (ft³)
1	0.3		0.0	15		0.01	0.149		0.015		0.108		0.0	000
2	0.18		0.1	4		0.07	0.441		0.14		0.130		0.0	001
3	0.6		0.	4		0.37	0.755		0.4		0.457		0.0	046
4	0.1		0.0)7		0.05	0.598		0.07		0.073		0.0	000
5	0.4		0.2	23		0.2	0.659		0.23		0.277		0.0	010
6	0.27		0.2	21		0.13	0.546		0.21		0.203		0.0	004
7	0.48		0.3	35		0.3	0.732		0.35		0.377		0.0	026
8	0.45		0.3	37		0.2	0.490		0.37		0.340		0.0)17
9	0.48		0.3	31		0.15	0.389		0.31		0.313		0.0)12
10	0.75		0.5	52		0.45	0.721		0.52		0.573		0.0	092
11	0.48		0.3	39		0.2	0.462		0.39		0.357		0.0	020
12	0.95		0.	9		0.45	0.487		0.9		0.767		0.2	201
13	0.68		0.3	37		0.26	0.518		0.37		0.437		0.0	034
14	0.46		0.3	32		0.15	0.391		0.32		0.310		0.0	012
15	0.85		0.7	75		0.4	0.501		0.75		0.667		0.1	134
16	1.2		0.	9		0.7	0.674		0.9		0.933		0.3	396
17	0.71		0.4	15		0.15	0.265		0.45		0.437		0.0	025
18	1.3		0.	8		0.4	0.392		0.8		0.833		0.2	218
19	1		0.4	4		0.32	0.506		0.4		0.573		0.0	067
20	0.16		0.1	11		0.08	0.603		0.11		0.117		0.0	001
21	0.38		0.	3		0.18	0.533		0.3		0.287		0.0	011
22	0.58		0.3	35		0.19	0.422		0.35		0.373		0.0	020
23	1.1		0.	6		0.5	0.615		0.6		0.733		0.1	173
24	0.46		0.3	38		0.34	0.813		0.38		0.393		0.0	031
25	0.38		0.1	8		0.1	0.382		0.18		0.220		0.0	004
26	0.9		0.7	75		0.4	0.487		0.75		0.683		0.1	141
27	0.66		0.5	55		0.15	0.249		0.55		0.453		0.0)29
28	0.14		0.	1		0.08	0.676		0.1		0.107		0.0	001
29	0.24		0.1	15		0.08	0.422		0.15		0.157		0.0	002
30	0.8		0.	8		0.35	0.438		0.8		0.650		0.1	117
31	0.45		0.	4		0.35	0.825		0.4		0.400		0.0	033
32	1		0.	7		0.7	0.837		0.7		0.800		0.1	257

Pebble Count Grain Size Distribution

Structure # L-07-A	Lake Fork Gunnison River at SH 149				
Sieve Size (ft)	Samples Retained	% Retained	Cumulative % Ret.	% Finer	
1	0	0%	0%	100%	
0.9	2	6%	6%	94%	
0.8	2	6%	13%	88%	
0.7	3	9%	22%	78%	
0.6	1	3%	25%	75%	
0.5	2	6%	31%	69%	
0.4	3	9%	41%	59%	
0.3	9	28%	69%	31%	
0.2	2	6%	75%	25%	
0.1	5	16%	91%	9%	
0.01	3	9%	100%	0%	
Total Samples	32				


Hydraulic Analysis Report

Project Data

Project Title: L-07-A Designer: Project Date: Thursday, September 26, 2013 Project Units: U.S. Customary Units Notes:

Wolman Count Analysis: Rock/Sediment Gradation Analysis

Notes:

Image Gradation Input Parameters

Name: DSCF0071 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0071.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 183 Morphologic Iterations: 1 Resolution: 31 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.028797	0	0	0.000000
0.040725	0	0	0.000000
0.057594	0	0	0.000000
0.081450	0	0	0.000000
0.115187	2	2	0.125156
0.162899	4	6	0.375469
0.230374	12	18	1.126408
0.325799	28	46	2.878598
0.460749	58	104	6.508135
0.651597	131	235	14.705882
0.921498	236	471	29.474343
1.303195	338	809	50.625782
1.842995	365	1174	73.466834
2.606389	347	1521	95.181477
3.685991	77	1598	100.000000

Gradation Result Parameters D5: 0.4047 in D15: 0.6570 in D50: 1.2919 in D85: 2.2485 in D100: 3.6860 in

Image Gradation Input Parameters

Name: DSCF0073 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0073.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 182 Morphologic Iterations: 1 Resolution: 30 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.021481	0	0	0.000000
0.030379	0	0	0.000000
0.042963	0	0	0.000000
0.060758	0	0	0.000000
0.085925	0	0	0.000000
0.121517	2	2	0.164609
0.171851	5	7	0.576132
0.243034	11	18	1.481481
0.343702	35	53	4.362140
0.486068	78	131	10.781893
0.687404	149	280	23.045267
0.972136	237	517	42.551440
1.374807	279	796	65.514403
1.944271	215	1011	83.209877
2.749615	147	1158	95.308642
3.888543	57	1215	100.000000

Gradation Result Parameters D5: 0.3578 in D15: 0.5553 in D50: 1.1028 in D85: 2.0634 in D100: 3.8885 in

Image Gradation Input Parameters

Name: DSCF0074 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0074.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 172 Morphologic Iterations: 1 Resolution: 29 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.024126	0	0	0.000000
0.034119	0	0	0.000000
0.048252	0	0	0.000000
0.068238	0	0	0.000000
0.096504	0	0	0.000000
0.136477	1	1	0.103413
0.193007	3	4	0.413650
0.272953	8	12	1.240951
0.386014	20	32	3.309204
0.545907	41	73	7.549121
0.772028	103	176	18.200620
1.091813	115	291	30.093071
1.544057	169	460	47.569804
2.183626	237	697	72.078594
3.088114	226	923	95.449845
4.367252	44	967	100.000000

Gradation Result Parameters D5: 0.4498 in D15: 0.7041 in D50: 1.6075 in D85: 2.6837 in D100: 4.3673 in

Image Gradation Input Parameters

Name: DSCF0079 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0079.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 186 Morphologic Iterations: 1 Resolution: 31 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.035315	0	0	0.000000
0.049942	0	0	0.000000
0.070629	0	0	0.000000
0.099885	0	0	0.000000
0.141258	1	1	0.101010
0.199770	3	4	0.404040
0.282517	5	9	0.909091
0.399539	7	16	1.616162
0.565034	14	30	3.030303
0.799078	16	46	4.646465
1.130067	30	76	7.676768
1.598156	68	144	14.545455
2.260134	140	284	28.686869
3.196313	240	524	52.929293
4.520269	263	787	79.494949
6.392625	203	990	100.000000

Gradation Result Parameters D5: 0.8377 in D15: 1.6194 in D50: 3.0832 in D85: 5.0229 in D100: 6.3926 in

Image Gradation Input Parameters

Name: DSCF0082 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0082.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 185 Morphologic Iterations: 1 Resolution: 32 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.033450	0	0	0.000000
0.047305	0	0	0.000000
0.066899	0	0	0.000000
0.094610	0	0	0.000000
0.133799	1	1	0.111982
0.189220	2	3	0.335946
0.267598	5	8	0.895857
0.378441	11	19	2.127660
0.535196	20	39	4.367301
0.756881	41	80	8.958567
1.070392	54	134	15.005599
1.513762	114	248	27.771557
2.140783	169	417	46.696529
3.027524	68	485	54.311310
4.281566	212	697	78.051512
6.055049	0	697	78.051512
8.563132	196	893	100.000000

Gradation Result Parameters D5: 0.5657 in D15: 1.0701 in D50: 2.5255 in D85: 6.8491 in D100: 8.5631 in

Image Gradation Input Parameters

Name: DSCF0083 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0083.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 188 Morphologic Iterations: 1 Resolution: 33 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.034291	0	0	0.000000
0.048495	0	0	0.000000
0.068583	0	0	0.000000
0.096991	0	0	0.000000
0.137166	1	1	0.096246
0.193982	2	3	0.288739
0.274332	6	9	0.866218
0.387963	12	21	2.021174
0.548663	20	41	3.946102
0.775927	34	75	7.218479
1.097326	49	124	11.934552
1.551854	79	203	19.538017
2.194652	83	286	27.526468
3.103707	107	393	37.824832
4.389305	85	478	46.005775
6.207415	405	883	84.985563
8.778610	156	1039	100.000000

Gradation Result Parameters D5: 0.6219 in D15: 1.2806 in D50: 4.5756 in D85: 6.2099 in D100: 8.7786 in

Image Gradation Input Parameters

Name: DSCF0084 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0098.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 176 Morphologic Iterations: 1 Resolution: 31 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.039564	0	0	0.000000
0.055951	0	0	0.000000
0.079127	0	0	0.000000
0.111903	0	0	0.000000
0.158254	0	0	0.000000
0.223805	0	0	0.000000
0.316508	1	1	0.181488
0.447610	3	4	0.725953
0.633017	4	8	1.451906
0.895221	10	18	3.266788
1.266033	23	41	7.441016
1.790441	33	74	13.430127
2.532066	42	116	21.052632
3.580882	130	246	44.646098
5.064133	128	374	67.876588
7.161765	43	417	75.680581
10.128265	134	551	100.000000

Gradation Result Parameters D5: 1.0492 in D15: 1.9432 in D50: 3.9227 in D85: 8.2986 in D100: 10.1283 in

Image Gradation Input Parameters

Name: DSCF0098 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0098.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 194 Morphologic Iterations: 1 Resolution: 38 % Flood Depth: 0.9 px

Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.025632	0	0	0.000000
0.036249	0	0	0.000000
0.051263	0	0	0.000000
0.072497	0	0	0.000000
0.102527	2	2	0.101420
0.144995	4	6	0.304260
0.205053	12	18	0.912779
0.289989	24	42	2.129817
0.410106	56	98	4.969574
0.579978	118	216	10.953347
0.820213	204	420	21.298174
1.159956	252	672	34.077079
1.640426	319	991	50.253550
2.319913	241	1232	62.474645
3.280852	264	1496	75.862069
4.639825	314	1810	91.784990
6.561704	162	1972	100.000000

Gradation Result Parameters D5: 0.4110 in D15: 0.6740 in D50: 1.6329 in D85: 4.0607 in D100: 6.5617 in

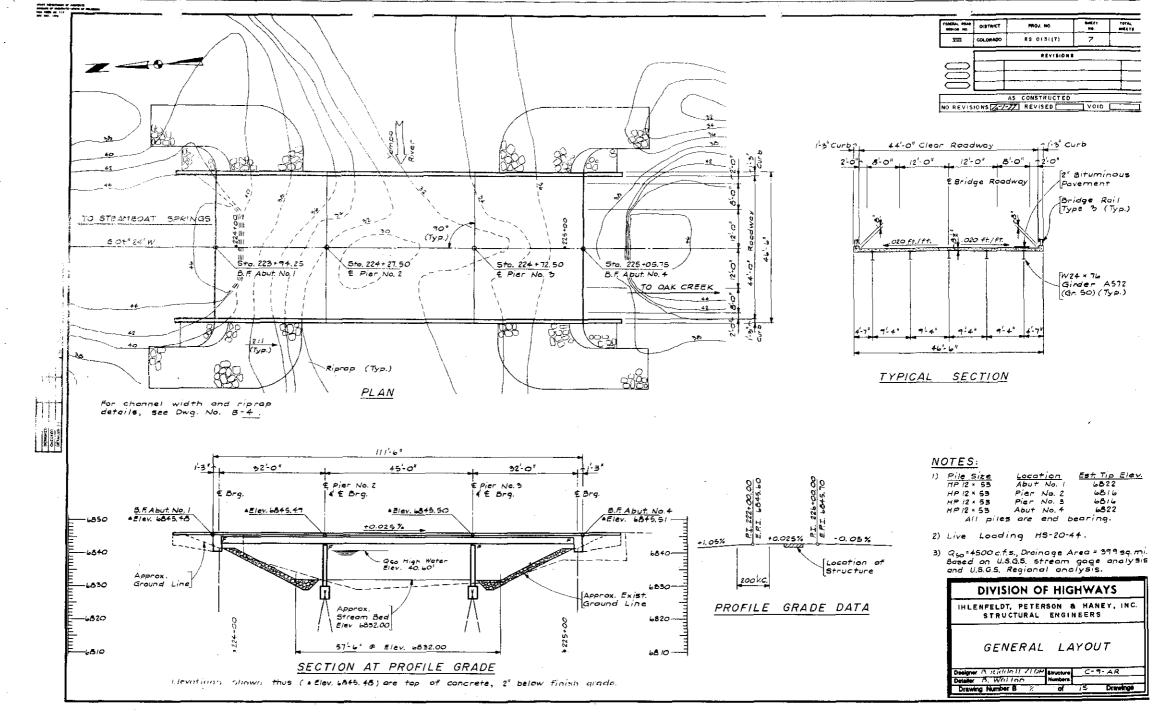
Image Gradation Input Parameters

Name: DSCF0103 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0103.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 178 Morphologic Iterations: 1 Resolution: 32 % Flood Depth: 0.9 px

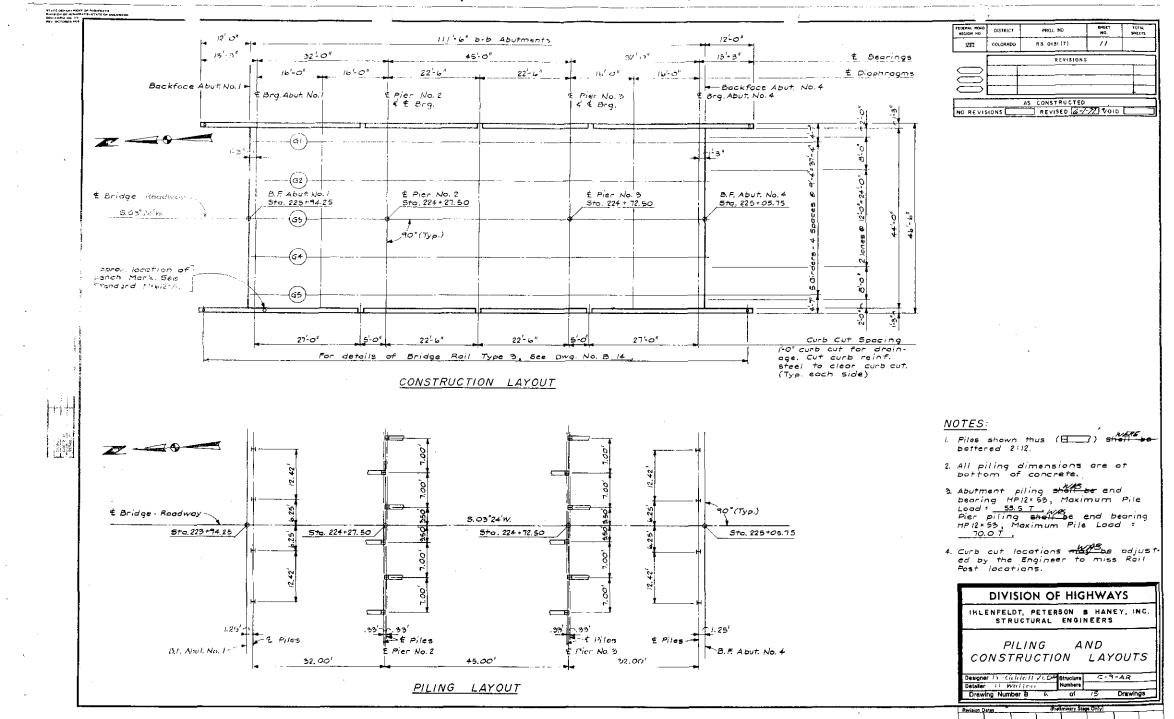
Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.030284	0	0	0.000000
0.042828	0	0	0.000000
0.060568	0	0	0.000000
0.085656	0	0	0.000000
0.121136	0	0	0.000000
0.171313	2	2	0.253165
0.242273	2	4	0.506329
0.342625	7	11	1.392405
0.484545	16	27	3.417722
0.685250	29	56	7.088608
0.969090	53	109	13.797468
1.370500	68	177	22.405063
1.938180	96	273	34.556962
2.741001	142	415	52.531646
3.876360	170	585	74.050633
5.482001	80	665	84.177215
7.752721	125	790	100.000000

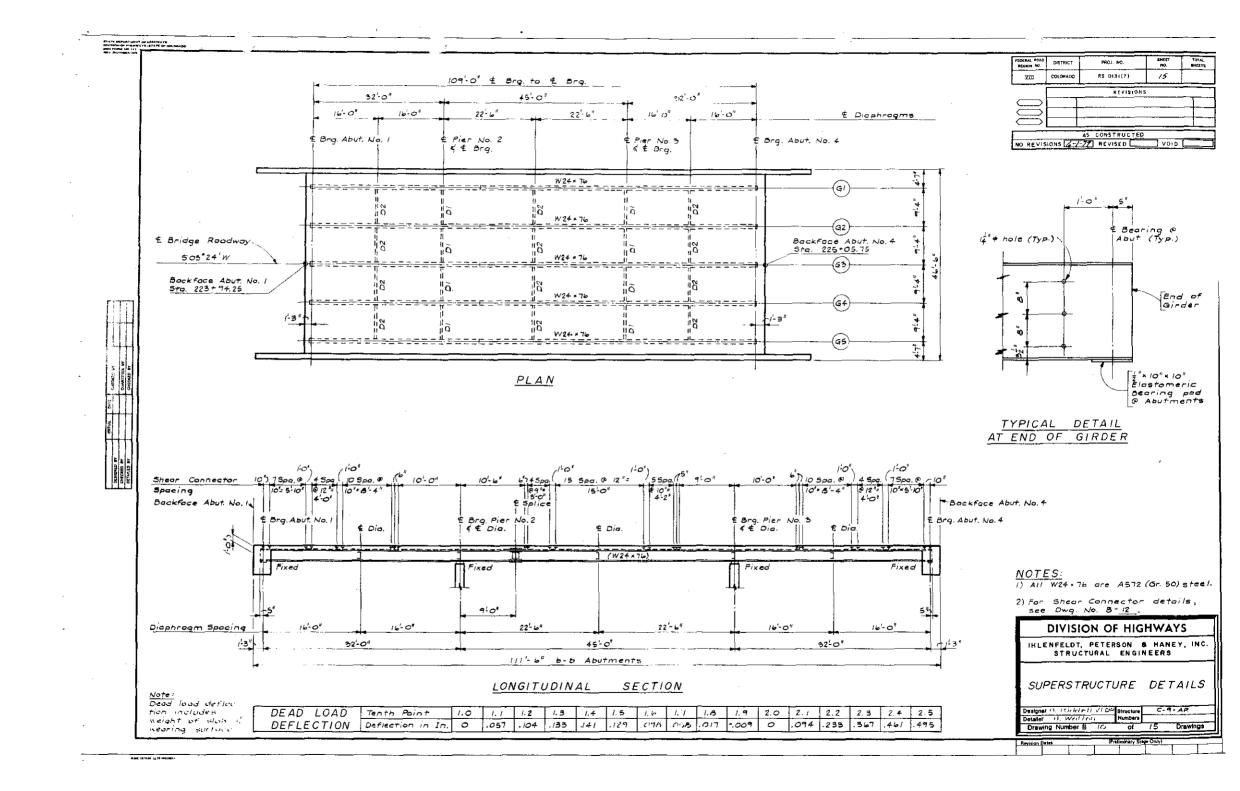
Gradation Result Parameters D5: 0.5711 in D15: 1.0252 in D50: 2.6279 in D85: 5.6001 in D100: 7.7527 in

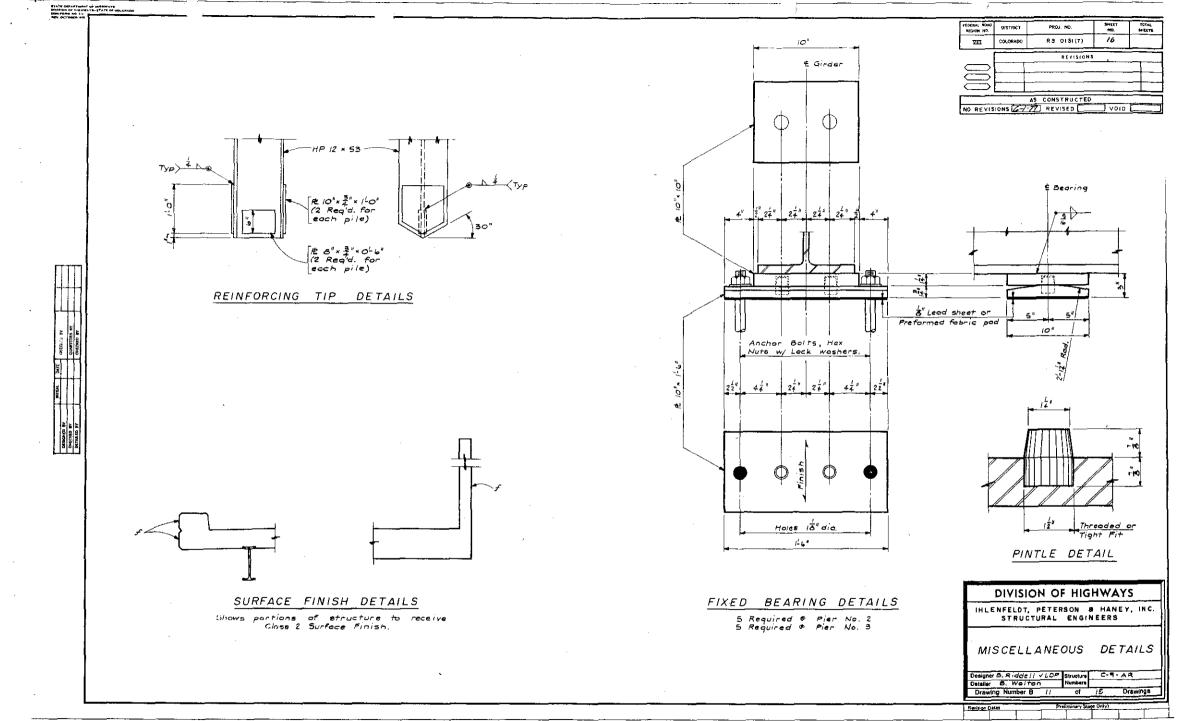
Image Gradation Input Parameters

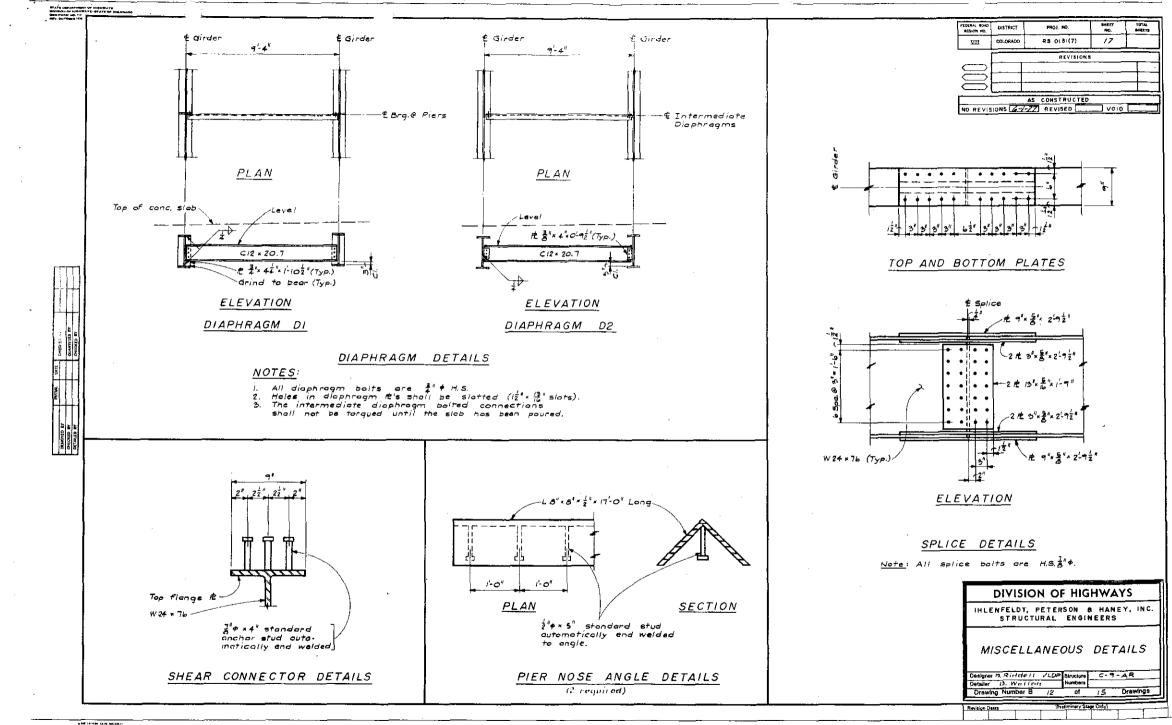

Name: DSCF0106 Gradation Type: Image Gradation Number of Images: 1 Image Path: Hydraulic Toolbox GSD_Images\DSCF0106.JPG Scale Line Length: 24 in Median Filter Radius: 2 px Background Subtraction Radius: 3 px Advanced Controls: Automate Threshold Selection Threshold Value: 177 Morphologic Iterations: 1 Resolution: 31 % Flood Depth: 0.9 px

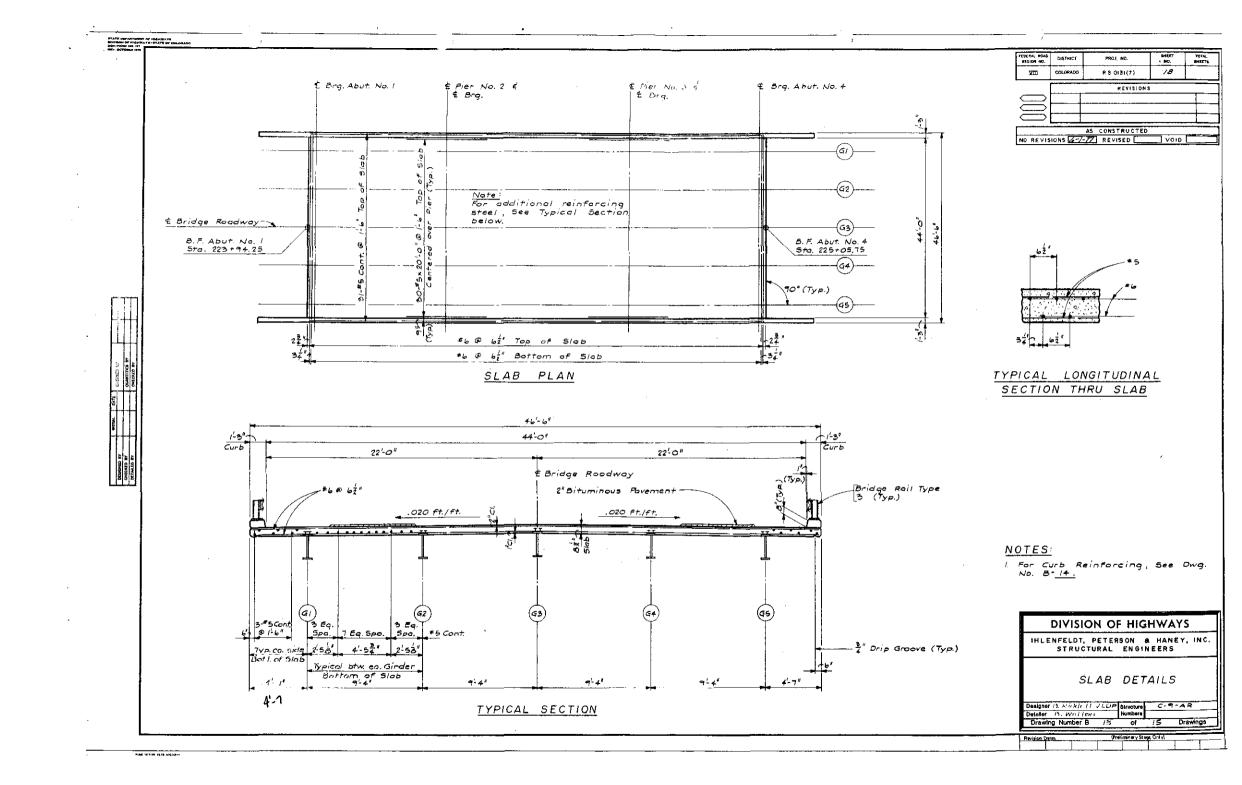
Particle Size in	Particle count	Cumulative Particle count	Cumulative Percent Finer (%)
0.030082	0	0	0.000000
0.042543	0	0	0.000000
0.060164	0	0	0.000000
0.085085	0	0	0.000000
0.120329	0	0	0.000000
0.170171	2	2	0.193798
0.240658	3	5	0.484496
0.340341	7	12	1.162791
0.481315	13	25	2.422481
0.680683	26	51	4.941860
0.962631	55	106	10.271318
1.361365	66	172	16.666667
1.925261	112	284	27.519380
2.722731	71	355	34.399225
3.850523	242	597	57.848837
5.445462	346	943	91.375969
7.701046	89	1032	100.000000

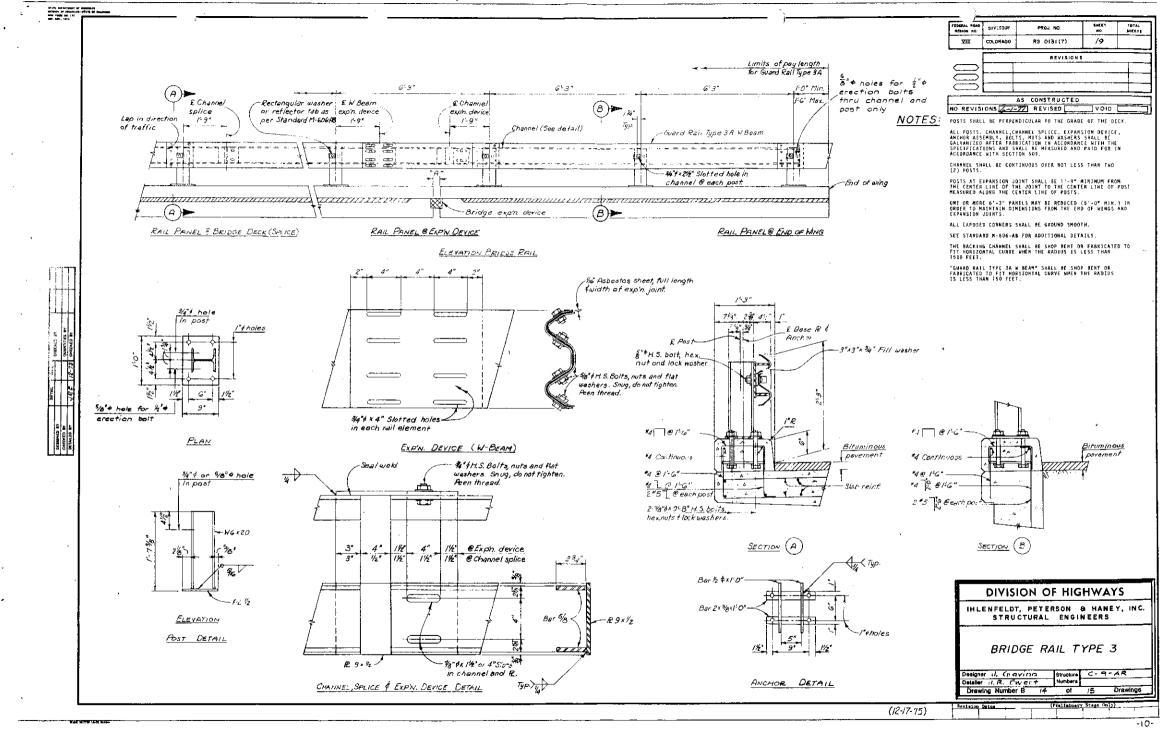

APPENDIX E – EXISTING BRIDGE PLANS & SUBSURFACE INFORMATION


Rated using	R RATING SUM	MARY	State highway #	C-09-AR 131 FIS BID #130
Asphalt thickness: Colorado legal	loads	(n)	Structure type Parallel structure #	CICK
Structural member	INTERIOR GIRDER G01	DECK SLAB		
r	Metric tons (Tons)			
inventory	28 (31)	31 (35)	()	(
Operating	47 (52)	53 (59)	()	(
Type 3 truck		()	()	(
Type 3S2 truck	()	()	()	(
Type 3-2 truck	()	()	()	* (
Permit truck	104 (115)		()	(
Type 3 Truc Interstate 21.8 metric Colorado 24.5 metric O	ic tons (24 tons) ic tons (27 tons)	Type 3S2 Truck Interstate 34.5 metric tons (38 tons Colorado 38.6 metric tons (42.5 ton 000 000 ric tons Tons	s) (s) (s) (s) (s) (s) (s) (s) (s) (s) ((39 tons)
Comments Color Code: WHIT	Е			
	E			
	Έ 			
	Έ			

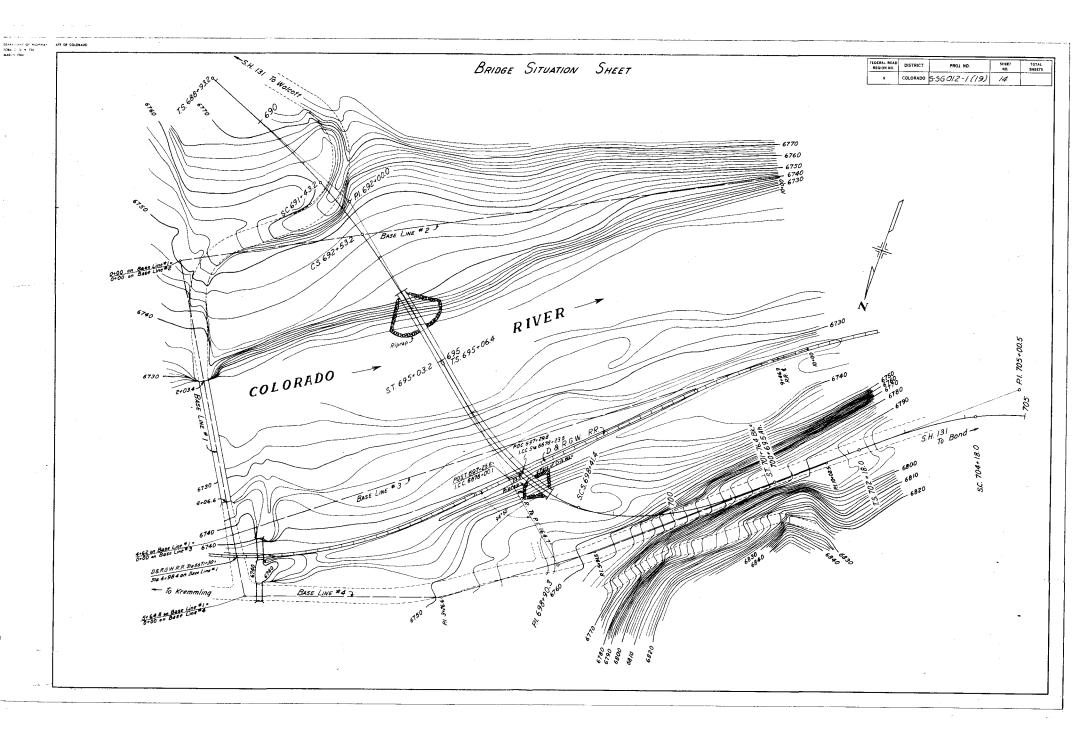

	194WAT4													REGERAL ROAD DISTRICT	PROJ. NO.	анеет NO.
	GENERAL N	OTES								0 A T A .					R9 DL31(7)	6
	D All work shell Stendord Spec	ificotia	- one according to the ons of the Division of	9)All concrete c unless otherwi	chamfers ise noted	s shell b d.	e 🛓 inch			<u>DATA:</u> A.A. 5. H. T.	0. H5-20-	- 4 4		8	A E V I S I O	N 5
	to the Project.	.	olorado, applicable s marked with the _{nin}	10)Expansion joint A.A.S.H.T.O. Speci	t materi fication	01 = = = = = = = = = = = = = = = = = = =	meet the and shell	Dec	nd load :		s 25 ibs. , ous paven	per 59. ft. f nent.	io <i>r</i>		AS CONSTRUCTE	
	symbol f as si	shown or	n Dwg. No. B-11 small	included in the II)All structural s Be A.A.S.H.T.O. S	steel not	otherwisi	s noted d	6).						INDEX OF		
	accordance with When different	th the i condit	of footings ^{WZK} in best available data. ions ^{www} e encountered,	12)All structural s Shall be pointe	steel not ed in acc	otherwis cordonce	e notedy with Sec	VAS						Dwg. No. 8-1	General In Summery e	formeti of Queni
	the dridge Engine in redesig		ill inspect and deter- necessory.	tion 509 for 13)All bolts shell				DE	SIGN L	DATA:	YR.OF C	Bonsta=19	76	Dwg. No. B-2	General Lo	you t
	4) When excovering inches in depth	y for fi	potings, the rinal six be done by hand labor	strength, Unles	ss otherv	wise noted	<i>.</i>					except as n		-	Engineering	
	metrods		not-be formed but	H)No welding of c on the flanges specifically co	of stee	I girders	unless	Rei Sti	inforcing eel:	#5 bars Élarger		,000 psi e ,000 psi i rse deck s	Fy=40 or slab. = 60 FSU		Bridge Hyd Elevations	
- (1977) - 19	shert -be placed	agains	st undisturbed rock.	15) Grode 60 reinf	Forcina s	steel requ	ired for			≇4 bors	—fs = 20	,000 psi	·-		Piling and Layouts	Constru
	structure backf	Fill, Se	e Stondard M-206-AB.	#5 bars and la 60 may be fu	urnished			ste	uctural Pel:	A572	F∋ ≠27,0	00 ibs.per s 00 ibs.per s	q. in. q. in.	Dwg. No. 8-7	Abutment	Details
			o for common bar sizes;	B)Abbreviations : E.F. = Each Face		Drowin	<u>Reference</u> g Number	_		Grade 50	-			Dwg. No. B-B	Wingwall D	etoi/s
- 1	Splice Length	-0" 1-2"	1-8"2-3" 3-0" 3-10 4-10 6-0"	N.F.ª Near Face F.F.ª Far Face		<u> </u>	<u>n or Deta</u> Fication	<u>.1</u> Cor	ncrefe:		FC = 1,20 N= 10 FL = 300	00 ibs. per s	q. m.	Dwg. No. 8-9	Pier No.2 an Details	d No.3
	i) Location of al s hall be appro		struction joints y the Engineer.	17)Concrete dec. Verse fiber	k shall broom	receive finish	a tren:	5+			1 6 - 300	0100		Dwg.No. 8-10	Superstruct	ture Dei
世界														Dwg. No. B-11	Miscellone	ous Det
	1									BOOK	[/	1		•	Miscellaneo	
		Item	·	SUMMARY		Super-	ES Abut.	Pier		Abut.		ł			Slob Detail	
í 11	l l	No.	Description	/	Unit	structure	No. 1	No. 2	No. 3	No. 4	Total			Own No B-14	Bridge Rail	Туре З
En-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t		r /			· ·			··	1	+~~~		1		-		
	[202	Removal of Bridge		Each						1			-	Structure M Standard	lumber
Aller (Concert Marces	[202	Removal of Bridge Structure Excavation		Cu.Yd.		25		70	25	1			-		lumber ,
K SARAN. MICROFTO (N. SARAN. ZE PANUSS)		202		53 2)			25 20				1			-		Jumber ,
Means Brank Brank Brank Streng		202	Structure Excavation		Cu.Yd.	58		70 45	70	25	1			Dwg. No. 8-15	Stondard	,
Manaka Manaka Manaka Manaka Manaka		202 206 206 403	Structure Excavation Structure Backfill (Clas	+ (Gr E) (M - A)	Cu.Yd. Cu.Yd.	58		70	70	25	/ /90 /30	Paye 25'		Dwg. No. 8-15 BRIDGE 3 Simple Si	Stendard <u>DESCRIPT</u> Dens (32'0', 4	<u>10N</u> 5:0", 32:0
Hadden Hadden Superior Handen	Ø	202 206 206 403 502	Structure Excavotion Structure Backfill (Clos Hot Bituminous Povement	+ (Gr E) (M - A)	Cu.Yd. Cu.Yd. Ten	58	20	70 45	70	25	/ /90 /30	Paye 25		Dwg. No. 8-15 BRIDGE 3 Simple Sp Concrete St	Stenderd DESCRIPT Dens (32'0", 4 ob and I-be	<u>10N</u> 5:0", 32:0
Kakato Kakato Succes Antonio	C	202 206 206 403 502 502	Structure Excavotion Structure Backfill (Clos Hot Bituminous Povemen Steel Piling (HP 12×53)	+ (Gr E) (M - A)	Cu.Yd. Cu.Yd. Ten Lin. Ft.	58	20. -B O BI./	70 45 70 59,	70 45 -70-52	25 20 8 & 2 83	/ /90 /30 58 0 300 287			Dwg. No. 8-15 BRIDGE 3 Simple Si Concrete Si Over Yamp 44-0" Road	Stendard DESCRIPT Dens (32 ¹ 0", 4 ob and I-be o River way curb to	<u>I ON</u> 5 ⁻ 0", 32-с ют Brid сигь, 90'
Kakasa Kakasa anoros Anoros Anoros Anoros	C	202 206 206 403 502 502	Structure Excavotion Structure Backfill (Clas Hat Bituminous Povemen Steel Piling (HP 12×53) Reinforcing Tip	+ (Gr E) (M - A)	Cu.Yd. Cu.Yd. Ten Lin. Et. Each	58	20 - 60 81./ -4	70 45 70 59,	70 45 -70-52	25 20 8 20 8 4	/ /90 /90 58 6 200 287 20			Dwg. No. 8-15 BRIDGE 3 Simple Si Corete Si Over Yamp 44'0" Road 1-3" Curbs	Stendard <u>DESCRIPT</u> Dens (32 ¹⁰ , 4 ob and I be River way curb to with Bridge	<u>ION</u> 5:0", 32:с ат Brid сигь, 90 Rail Ту
Kiako, Kiako, Junto , Junto ,	C C Q	202 206 206 403 502 502 506 509	Structure Excavotion Structure Backfill (Clas Hot Bituminous Povemen Steel Piling (HP 12×53) Reinforcing Tip Riprop	+ (Gr E) (M - A)	Cu.yd. Cu.yd. Ton Lin. Ft. Each Cu.yd.		20 - 60 81./ -4	70 45 70 58,	70 45 -70-53. 6	25 20 8 20 8 4	1 190 130 58 9 300 287 20 540 576		·	Dwg. No. 8-15 BRIDGE 3 Simple Si Concrete Si Over Yamp 44-0" Road 1-3" Curbs Sta 223+74. South of	Standard <u>DESCRIPT</u> Dens (32 ¹ 0 ⁴ , 4 ob and I-be o River way curb to with Bridge 25 to 225+ Steamboot	10N 5:0", 32-6 iam Brid curb, 90' Rail Ty 05.75 Springs
Manual Constant	C C I	202 206 206 206 403 502 502 504 504 504	Structure Excavotion Structure Backfill (Clai Hat Bituminous Povemen Steel Piling (HP 12×53) Reinfording Tip Riprop Structural Steel	+ (Gr E) (H - A)	CU.Yd. CU.Yd. Ten Lin.Ft. Egah Cu.Yd. Lb.	48,600	20 - 60 81./ -4	70 45 70 58,	70 45 -70-53. 6	25 20 8 20 8 4	1 190 130 58 9 200 287 20 50, 840 5/6 50, 840			Dwg. No. 8-15 BRIDGE 3 Simple Si Concrete Si Over Yamp 44-0" Road 1-3" Curbs Sta 223+74. South of	Standard <u>DESCRIPT</u> ans (32 ¹⁰ , 4 ab and 1:be e River way curb to with Bridge 25 to 225+	10N 5:0", 32-6 iam Brid curb, 90' Rail Ty 05.75 Springs
Manalo Ma	() C T	202 206 206 206 403 502 502 502 504 504 507 507 507	Structure Excavotion Structure Backfill (Class Hot Bituminous Povement Steel Piling (HP 12×53) Reinforcing Tip Riprop Structural Steel Structural Steel Concrete Class A (Brid	+ (Gr E) (H - A) nized) /ge)	Cu. Yd. Cu. Yd. Ten Lin. Ft. Each Cu. Yd. Lb. Lb. Cu. Yd.	48,600 14,050	20 80 gil 4 270	70 45 70 58, 6 1,/30	70 45 -70-59. 6 1,130	25 20 8 	1 190 130 58 300 287 20 540 5/6 50,860 14,050 1/9.6			Dwg. No. 8-15 BRIDGE 3 Simple Si Concrete Si Over Yamp 44-0" Road 1-3" Curbs Sta 223+74. South of	Standard <u>DESCRIPT</u> Dens (32 ¹ 0 ⁴ , 4 ob and I-be o River way curb to with Bridge 25 to 225+ Steamboot	10N 5:0", 32-6 iam Brid curb, 90' Rail Ty 05.75 Springs
Michael Control Contro	C T	202 206 206 403 502 502 502 502 502 502 502 503 503 503 503 503 503 503 503	Structure Excavotion Structure Backfill (Class Hot Bituminous Povement Steel Piling (HP 12×53) Reinfording Tip Riprop Structural Steel Structural Steel Structural Steel (Galva) Concrete Class D (Brid	+ (Gr E) (H - A) nized) /ge)	Cu. Yd. Cu. Yd. Ton Lin. Ft. Each Cu. Yd. Lb. Lb. Cu. Yd. Cu. Yd.	18,600 14,050 14,050	20 -60 8.1 4 2.70 	70 45 70 59, 6 1,/3 0 47,7	70 45 6 1,130 47.7	25 20 8 4. 210 12.1	1 1 190 130 58 9 9 9 9 9 9 9 9 9 9 9 9 9			Dwg. No. 8-15 BRIDGE 3 Simple Sy Concrete Si Over Yamp 44-0" Road 1-3" Curbs Sta 223+94. South of Sect. 16	Stenderd DESCRIPT op and I:be or River way curb to with Bridge 25 to 225+ Steamboot S T. 5 N., R.84	<u>10N</u> 5'0", 32'd som Brid curb, 90' Roil Ty 05.75 Springs
Kitaku, Natari Sana Sana Sana Sana Sana Sana Sana San	C Q Q	202 204 204 206 403 502 502 502 502 502 502 503 503 503 503 503 503 503 503 503 503	Structure Excavotion Structure Backfill (Class Hat Bituminous Povement Steel Piling (HP 12+53) Reinfording Tip Riprop Structural Steel Structural Steel (Galva) Concrete Class A (Brid Concrete Class D (Brid Reinfording Steel	+ (Gr E) (H - A) nized) /ge)	Cu. Yd. Cu. Yd. Ton Lin. Ft. Each Cu. Yd. Lb. Cu. Yd. Cu. Yd. Cu. Yd. Cu. Yd.	18, 100 14, 050 1/45.2 41, 450	20 -60 8.1 4 2.70 	70 45 70 59, 6 1,/3 0 47,7	70 45 -70-59. 6 1,130	25 20 8 4. 210 12.1	1 190 130 58 9 900287 20 5405/6 50,840 14,050 119.6 165.2 49,990		Row Prov	Dwg. No. 8-15 BRIDGE 3 Simple Si Coare te Si Over Yamp 44-0" Road 1-3" Curbs Sta 223+94. South of Sect. 16, Sect. 16,	Standard <u>DESCRIPT</u> pans (32 ¹ 0 ⁴ , 4 ob and I-be o River way ourb to with Bridge 25 to 225+ 5teamboot 5teatboot 5teatboo	10N 5:0", 32: Iom Brid curb, 90 Rail Ty 05.75 Springs W. GHWAYS
Hadden	C Q Q	202 204 204 206 403 502 502 502 502 502 502 503 503 503 503 503 503 503 503 503 503	Structure Excavotion Structure Backfill (Class Hot Bituminous Povement Steel Piling (HP 12×53) Reinfording Tip Riprop Structural Steel Structural Steel Structural Steel (Galva) Concrete Class D (Brid	+ (Gr E) (H - A) nized) /ge)	Cu. Yd. Cu. Yd. Ton Lin. Ft. Each Cu. Yd. Lb. Lb. Cu. Yd. Cu. Yd.	18, 100 14, 050 1/45.2 41, 450	20 -60 8.1 4 2.70 	70 45 70 59, 6 1,/3 0 47,7	70 45 6 1,130 47.7	25 20 8 4. 210 12.1	1 1 190 130 58 9 9 9 9 9 9 9 9 9 9 9 9 9		flour Ptier	Dwg. No. 8-15 BRIDGE 3 Simple Sy Concrete Si Over Yamp 44-0" Road 1-3" Curbs Sta 223+94. South of 1 Sect. 16 DIVIS IHLENFELC	Stenderd DESCRIPT op and I:be or River way curb to with Bridge 25 to 225+ Steamboot S T. 5 N., R.84	10N 5'0", 32'd bom Brid curb, 90' Roil Ty 05.75 5prings W: GHWAYS 8 HANEY,
Kiako	C I	202 206 206 403 502 502 502 502 502 504 507 607 607 607 607 607	Structure Excavotion Structure Backfill (Class Hat Bituminous Pavement Steel Piling (HP 12×53) Reinforcing Tip Riprop Structural Steel Structural Steel Structural Steel (Galva) Concrete Class D (Brid Reinforcing Steel Guard Rail Type 3A	+ (Gr E) (H - A) nited) (ge) gge)	Cu. Yd. Cu. Yd. Ton Lin. Ft. Each Cu. Yd. Lb. Lb. Cu. Yd. Cu. Yd. Cu. Yd. Lin. Ft.	18,600 14,050 165.2 41,450 275	20 -60 8.1 4 2.70 	70 45 70 59, 6 1,/3 0 47,7	70 45 6 1,130 47.7	25 20 8 4. 210 12.1	1 190 130 58 9 900287 20 5405/6 50,840 14,050 119.6 165.2 49,990		flow Plain	Dwg. No. 8-15 BRIDGE 3 Simple Si Concrete Si Over Yamp 44-0" Road 1-3" Curbs Sto 223+94. South of Sect. 16 DIVIS IHLENFELD STRI	Stondard DESCRIPT ob and I-be or River way curb to with Bridge 25 to 225+ Steamboat S T. 5 N., R.84 SION OF HIG DT, PETERSON	10N 5:0", 32 curb, 90 Rail Ty 05.75 5prings W. GHWAYS GHWAYS HANEY INEERS
Mindan Mi	C	202 204 206 206 403 502 502 502 502 502 502 502 502	Structure Excavotion Structure Backfill (Class Hat Bituminous Povement Steel Piling (HP 12+53) Reinfording Tip Riprop Structural Steel Structural Steel (Galva) Concrete Class A (Brid Concrete Class D (Brid Reinfording Steel	+ (Gr E) (H - A) nited) (ge) gge)	Cu. Yd. Cu. Yd. Ton Lin. Ft. Each Cu. Yd. Lb. Lb. Cu. Yd. Cu. Yd. Cu. Yd. Lin. Ft.	18,600 14,050 165.2 41,450 275	20 -60 8.1 4 2.70 	70 45 70 59, 6 1,/3 0 47,7	70 45 6 1,130 47.7	25 20 8 4. 210 12.1	1 190 130 58 9 900287 20 5405/6 50,840 14,050 119.6 165.2 49,990		from Party	Dwg. No. 8-15 BRIDGE 3 Simple Si Concrete Si Over Yamp 44-0" Road 1-3" Curbs Sta 223+94. South of Sect. 16 IHLENFELC STRI GENER	Standard DESCRIPT Dans (32 ¹⁰ , 4 ob and 1-be e River woy curb to with Bridge 25 to 225+ Steamboot 5.5 N., R.84 SION OF HI DT, PETERSON UCTURAL ENG	10N 5:0", 32 m Brid curb, 90 Rail Ty 05.75 5prings W. GHWAYS 6 HANEY INEERS RMATIC
Kitako Supero A	C	202 204 204 403 502 504 502 504 504 504 504 504 504 504 504 504 504	Structure Excavation Structure Backfill (Class Hot Bituminous Povement Steel Piling (HP 12×53) Reinforcing Tip Riprop Structural Steel Structural Steel Concrete Class A (Brid Concrete Class D (Brid Reinforcing Steel Guard Rail Type 3A P5 10×51 may be used	+ (Gr E) (H - A) nized) Hge) Hge) d in lieu of H	CU.Yd. CU.Yd. Ton Lin.Ft. Each CU.Yd. Lb. CU.Yd. CU.Yd. Lb. Lin.Ft. (P /2 × 53)	18,600 14,050 165.2 1,65.2 1,65.2 1,65.2 275 275 3.	20 -60 8.1 4 2.70 	70 45 70 59, 6 1,/3 0 47,7	70 45 6 1,130 47.7	25 20 8 4. 210 12.1	1 190 130 58 9 900287 20 5405/6 50,840 14,050 119.6 165.2 49,990		flue Par	Dwg. No. 8-15 BRIDGE 3 Simple Si Concrete Si Over Yamp 44-0" Road 1-3" Curbs Sta 223+74. South of Sect. 16 , DIVIS IHLENFELC STRI GENER SUMMAI Designer B. Ric Designer B. Ric	Standard DESCRIPT Dens (32'0', 4 ob and 1-be o River way curb to with Bridge 25 to 225+ 5teamboat 5T. 5 N., R.84 SION OF HIG DIT, PETERSON UCTURAL ENG AL INFOR RY OF Q Hadell JLDP Structure Internet	ION 5:0", 32 form Brid curb, 90 Rail Ty 05.75 5prings W: GHWAYS B HANEY INEERS RMATIC UANTIT
Maket Market Antonio	C	202 204 204 403 502 504 502 504 504 504 504 504 504 504 504 504 504	Structure Excavation Structure Backfill (Class Hat Bituminous Pavement Steel Piling (HP 12×53) Reinforcing Tip Riprop Structural Steel Structural Steel Structural Steel (Galvan Concrete Class D (Brid Concrete Class D (Brid Concrete Class D (Brid Reinforcing Steel Guard Rail Type 3A Store Size.	+ (Gr E) (H - A) nized) Hge) Hge) d in lieu of H	CU.Yd. CU.Yd. Ton Lin.Ft. Each CU.Yd. Lb. CU.Yd. CU.Yd. Lb. Lin.Ft. (P /2 × 53)	18,600 14,050 165.2 1,65.2 1,65.2 1,65.2 275 275 3.	20 -60 8.1 4 2.70 	70 45 70 59, 6 1,/3 0 47,7	70 45 6 1,130 47.7	25 20 8 4. 210 12.1	1 190 130 58 9 900287 20 5405/6 50,840 14,050 119.6 165.2 49,990		Abou Heard	Dwg. No. 8-15 BRIDGE 3 Simple Si Concrete Si Over Yamp 44-0" Road 1-3" Curbs Sto 223+94. South of 1 Sect. 16 IHLENFELD STRI GENER SUMMAI Dealgoner B. Rid	Standard DESCRIPT Dens (32'0', 4 ob and 1-be o River way curb to with Bridge 25 to 225+ 5teamboat 5T. 5 N., R.84 SION OF HIG DIT, PETERSON UCTURAL ENG AL INFOR RY OF Q Hadell JLDP Structure Internet	10N 5:0", 32' curb, 90' Rail Ty. 05.75 5prings W. GHWAYS MANEY. INEERS RMATIC UANTIT

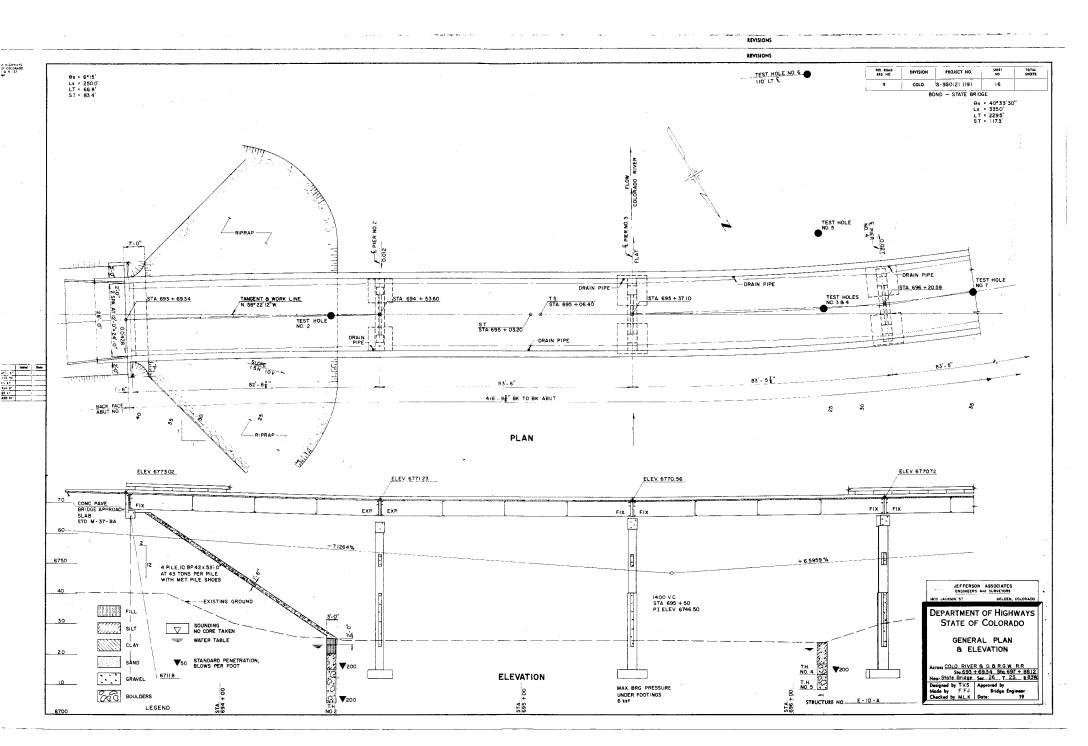

______.

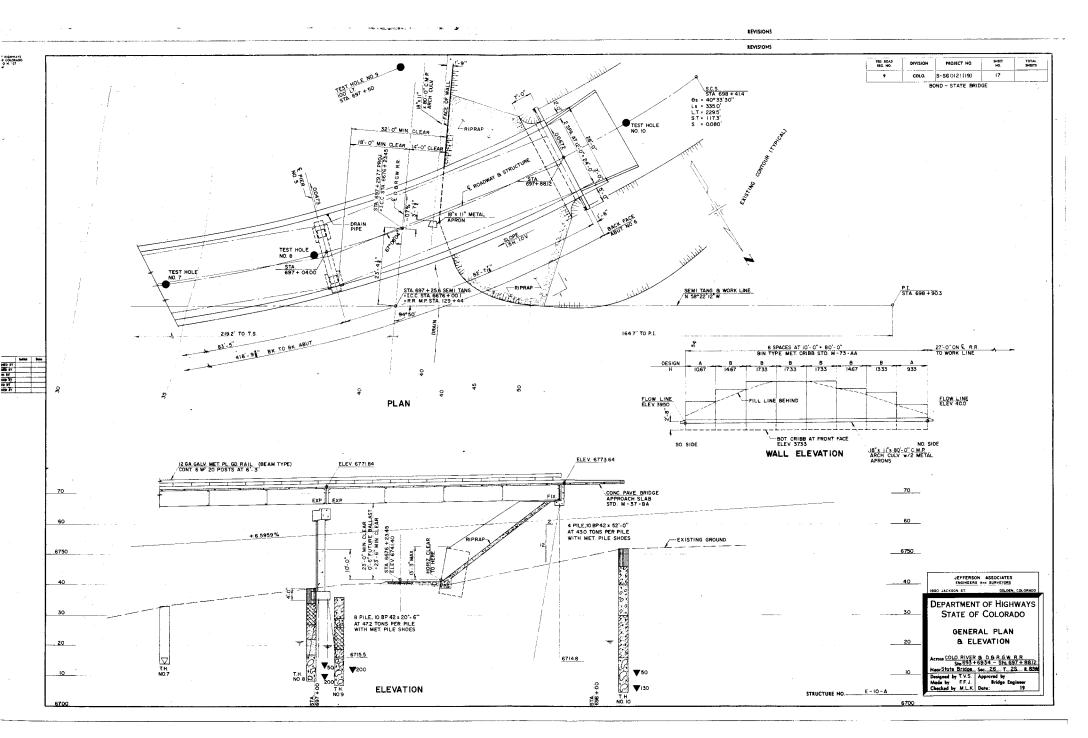


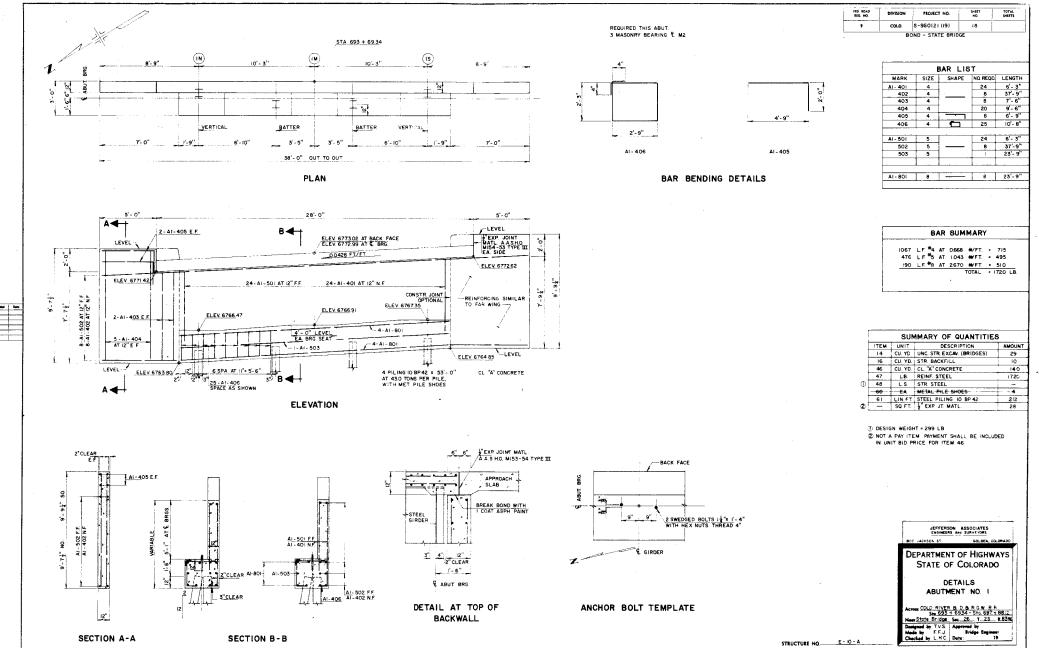


Net 10710 13-75 MCHar-





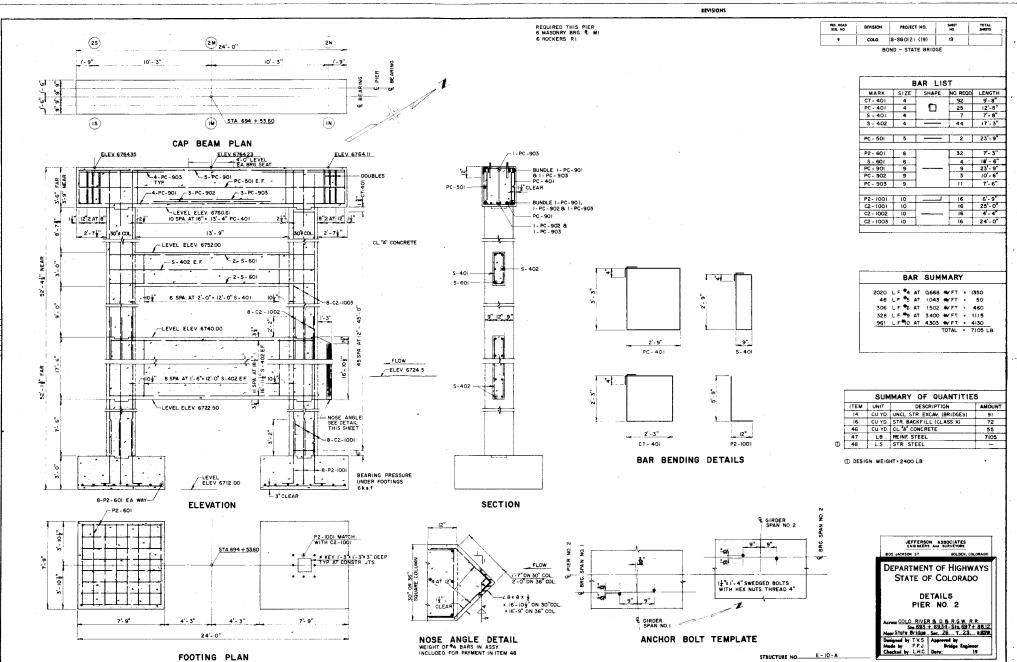

.


-

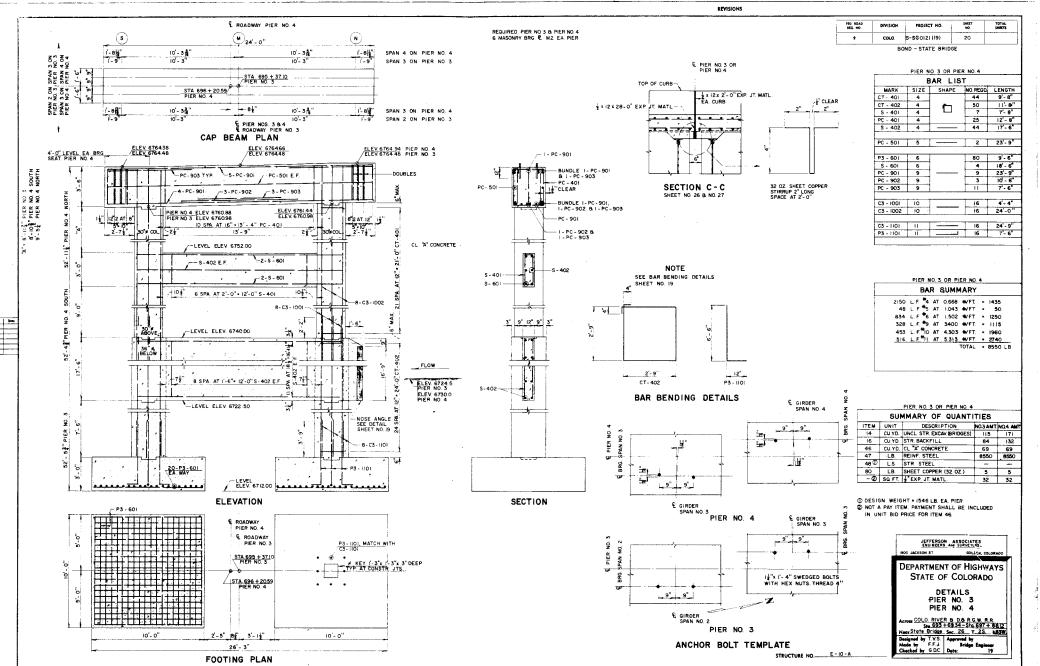
-.

JF HIGHWATS OF COLORADO 2 O.H. 137

SHED BY XED BY WH BY XED PT

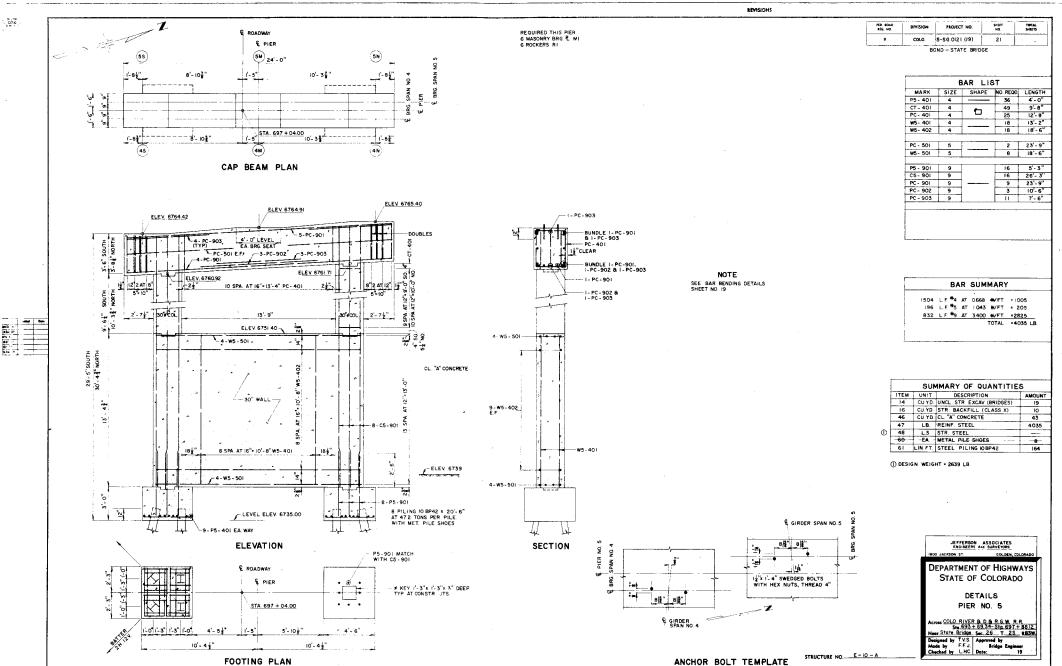

TO BY

TED 17

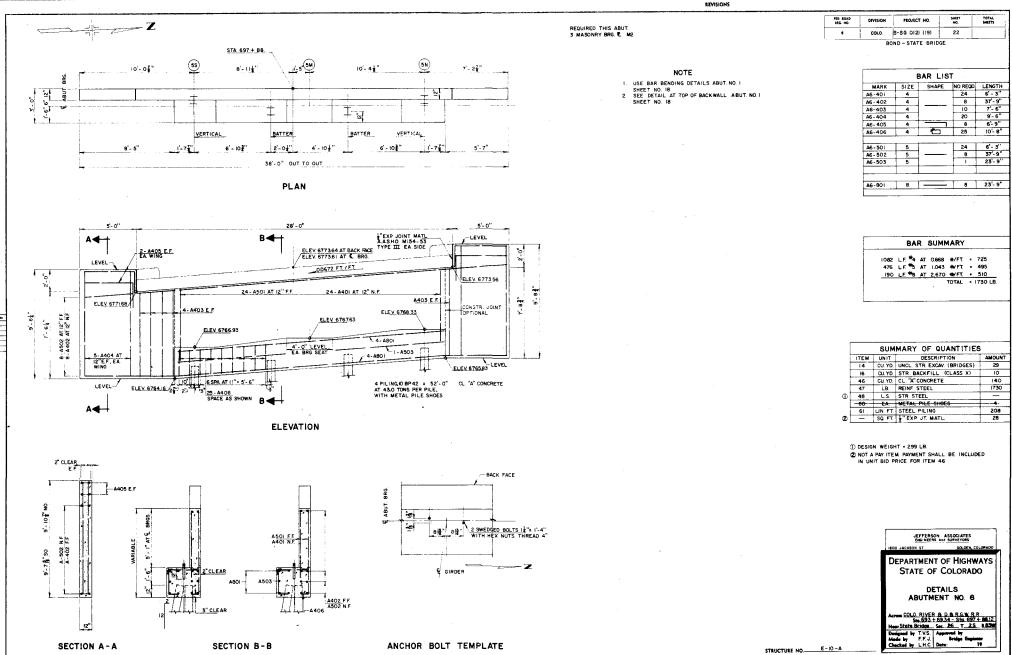

.

REVISIONS

·····

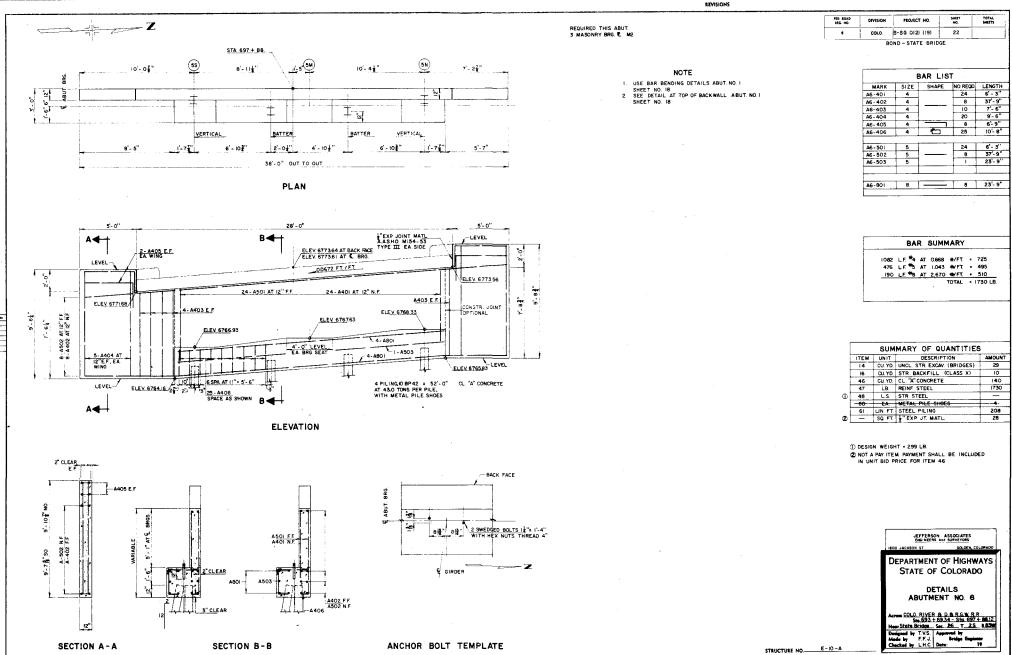

AYS

NF ALL HYMATS OF CL LUBADO 1 QL P 1.7 44


ante sy atte sy atte sy atte sy atte sy

ceto.

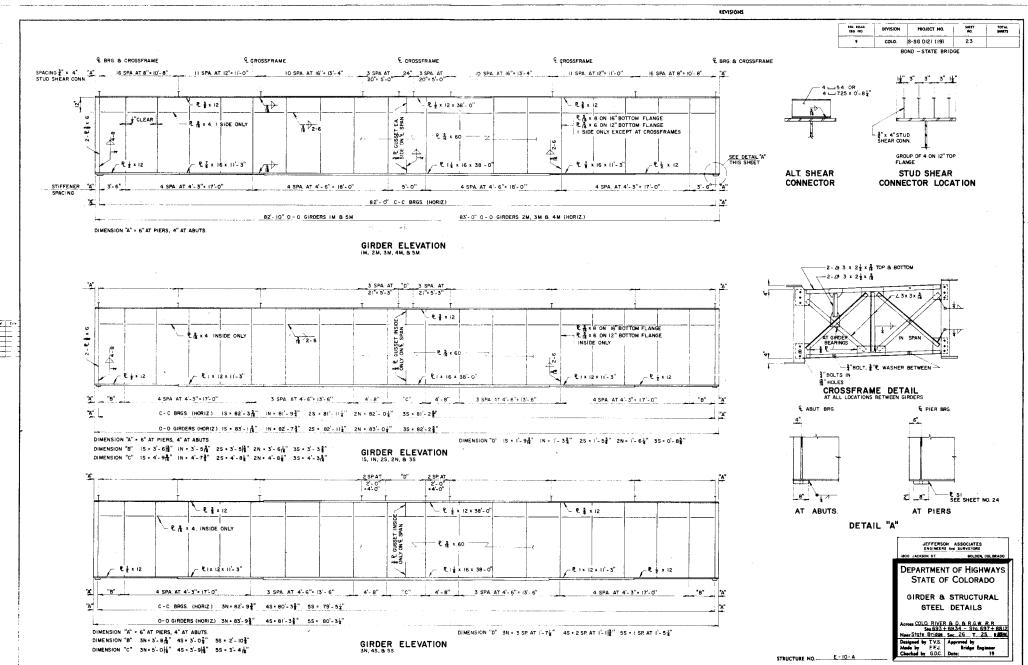
RÉVISIONS



r

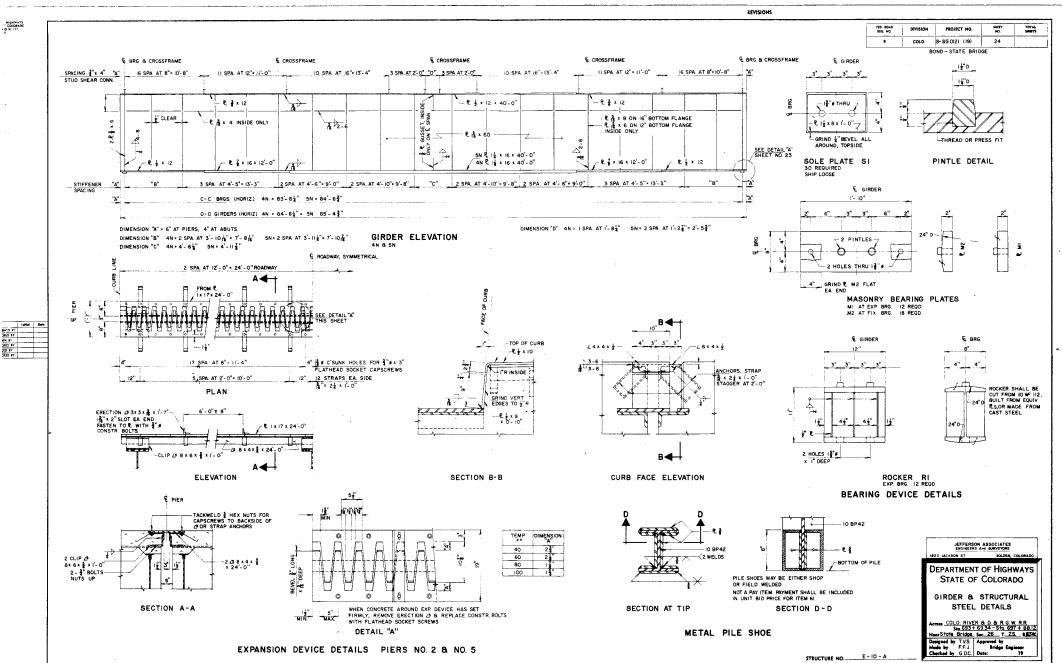
LED BY CD BY CD BY CD BY CD BY CD BY

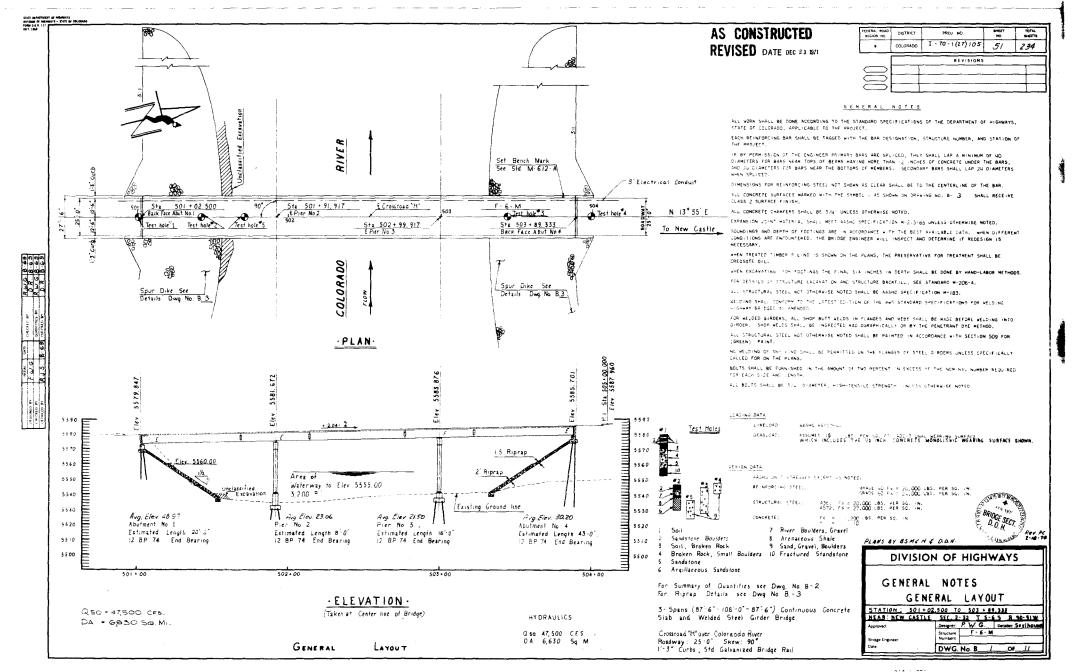
NIGHWATS SF COLOBADO L O. H. 137


RÉVISIONS

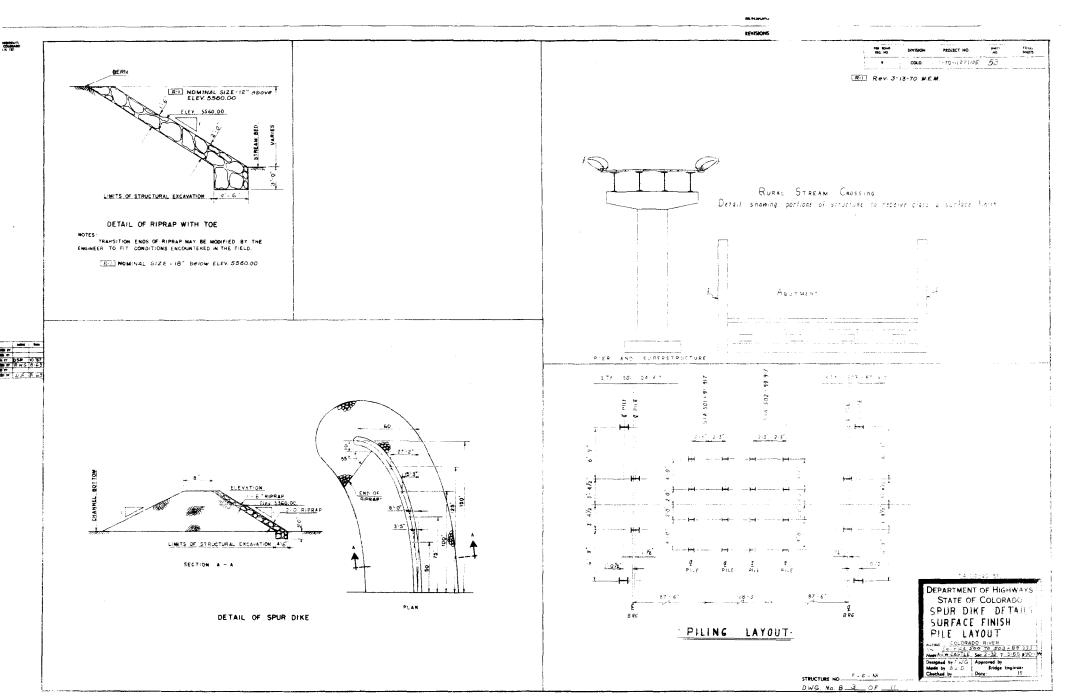
r

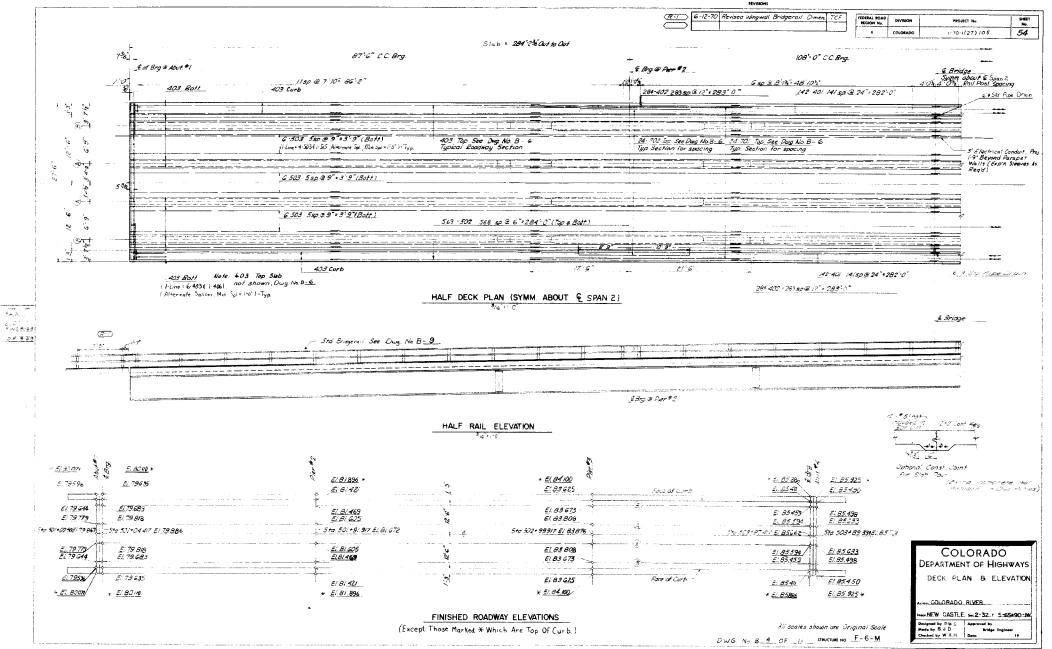
LED BY CD BY CD BY CD BY CD BY CD BY

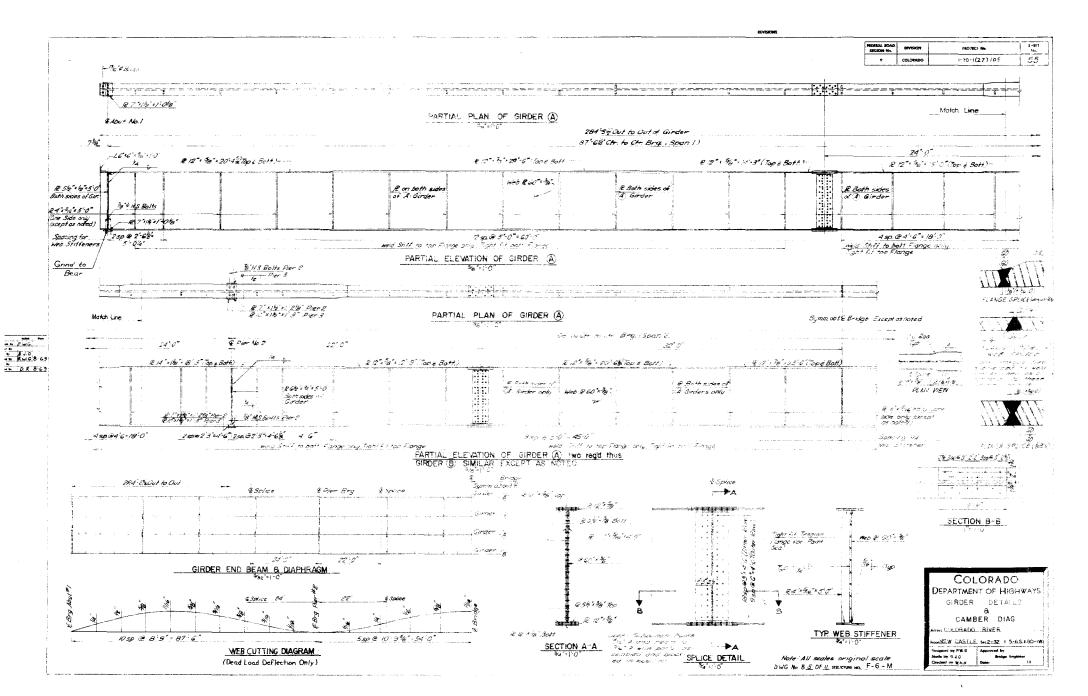

NIGHWATS SF COLOBADO L O. H. 137

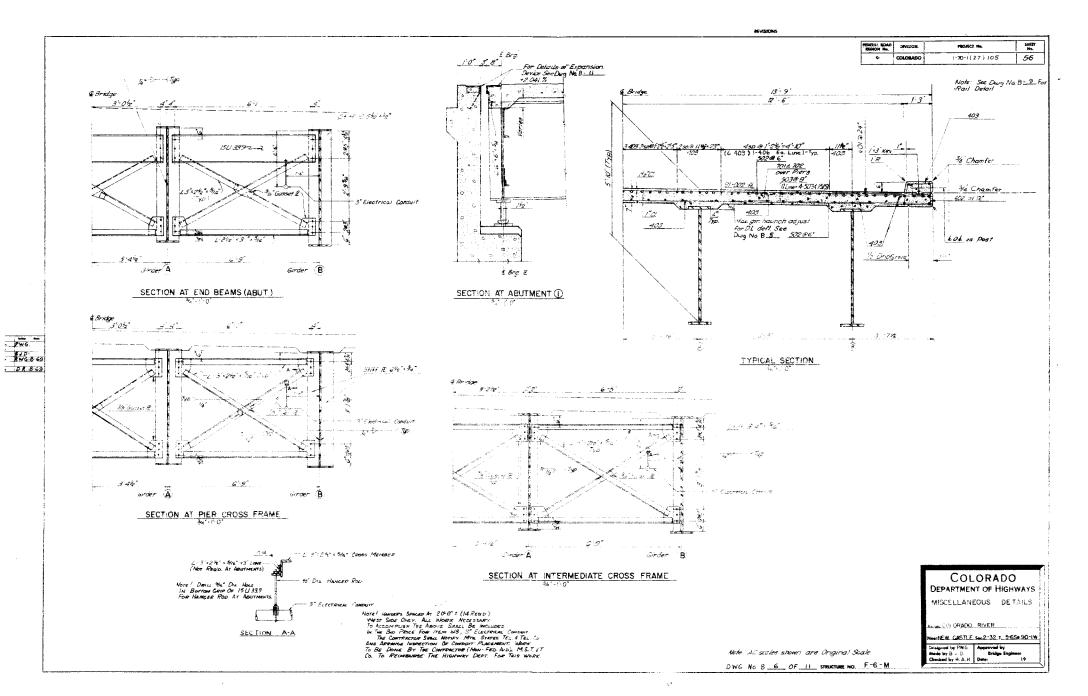


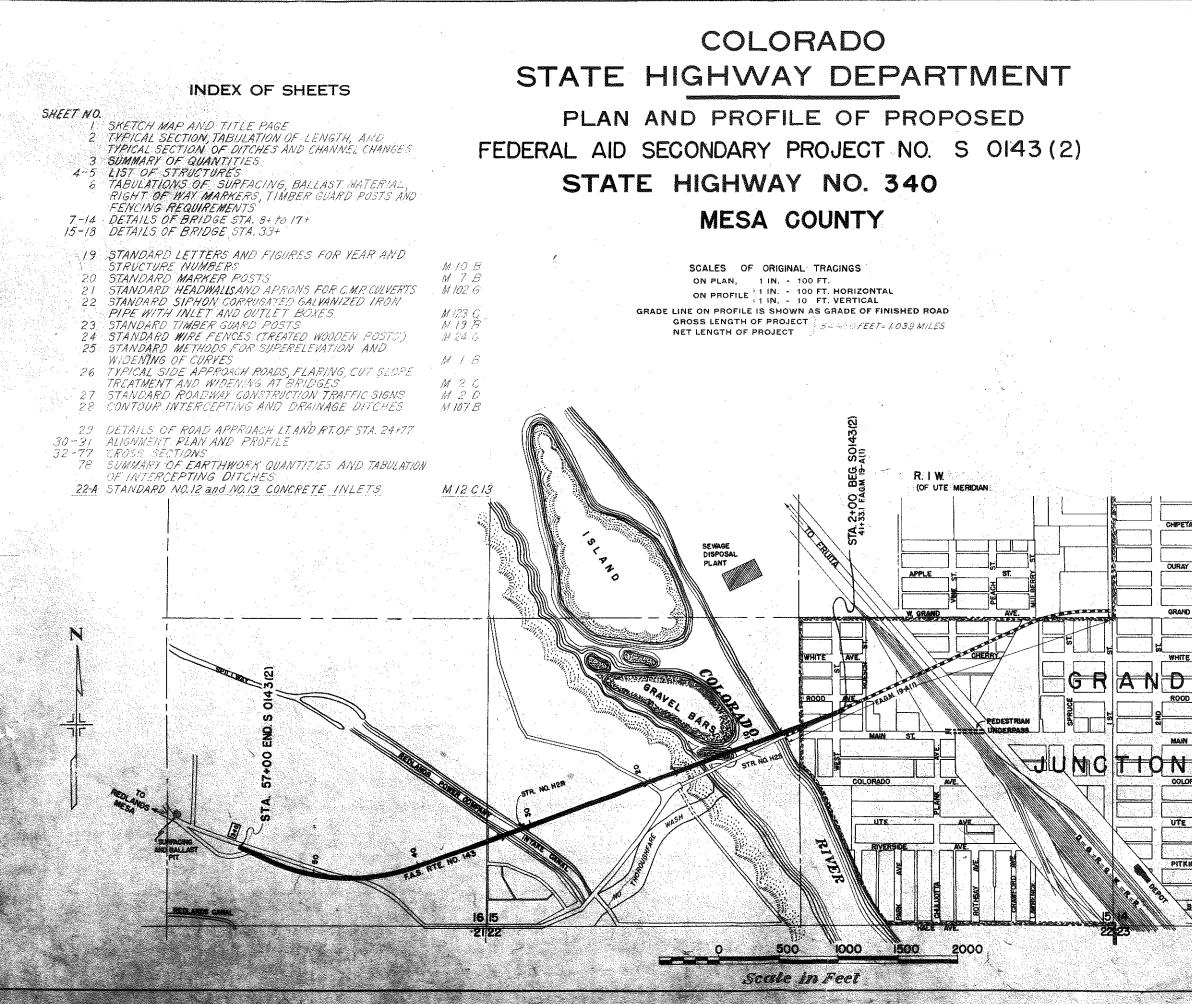
i Lánaí

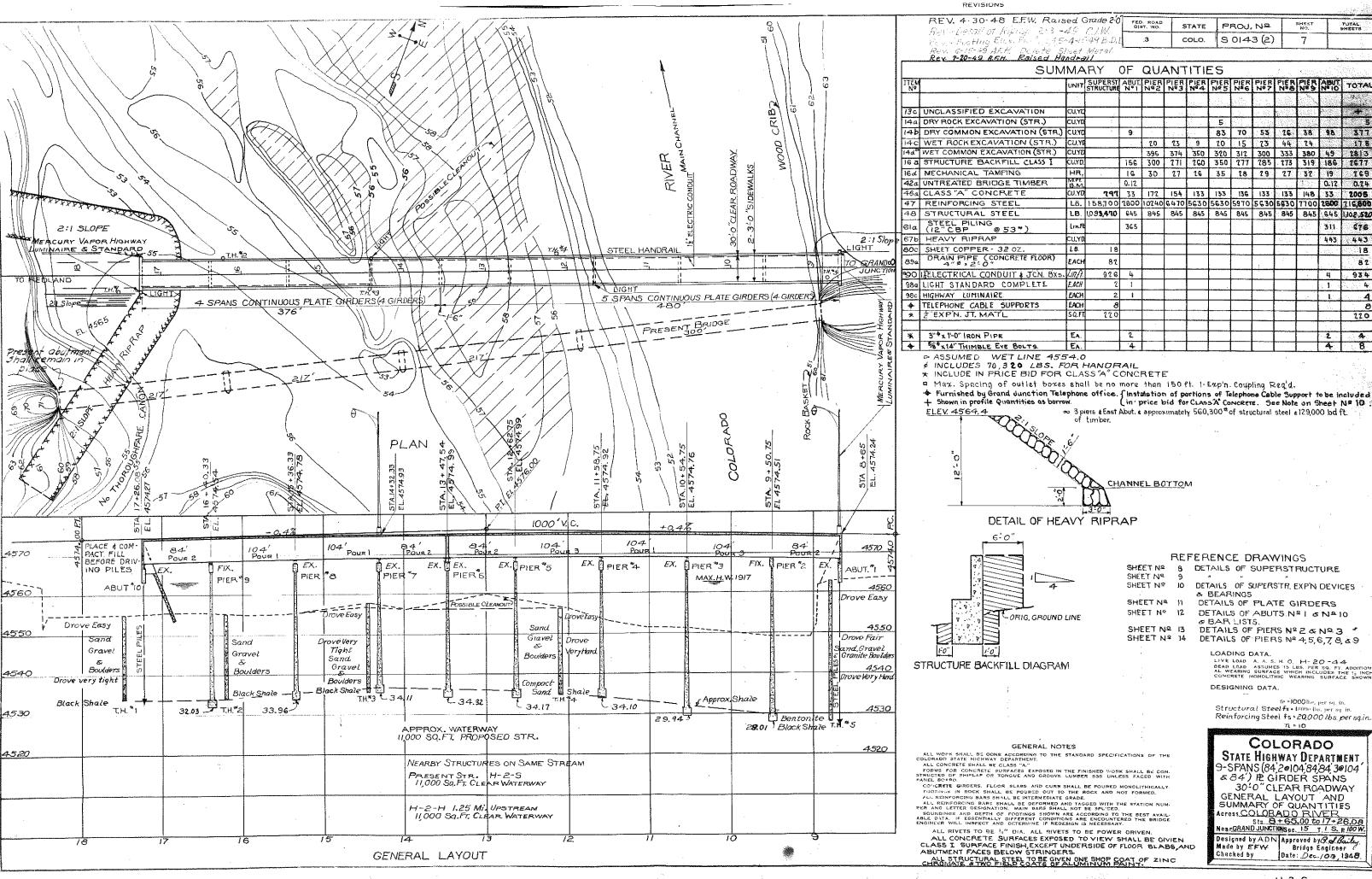

SF HIGHWAYS OF COLDIADC 2 O.H 137

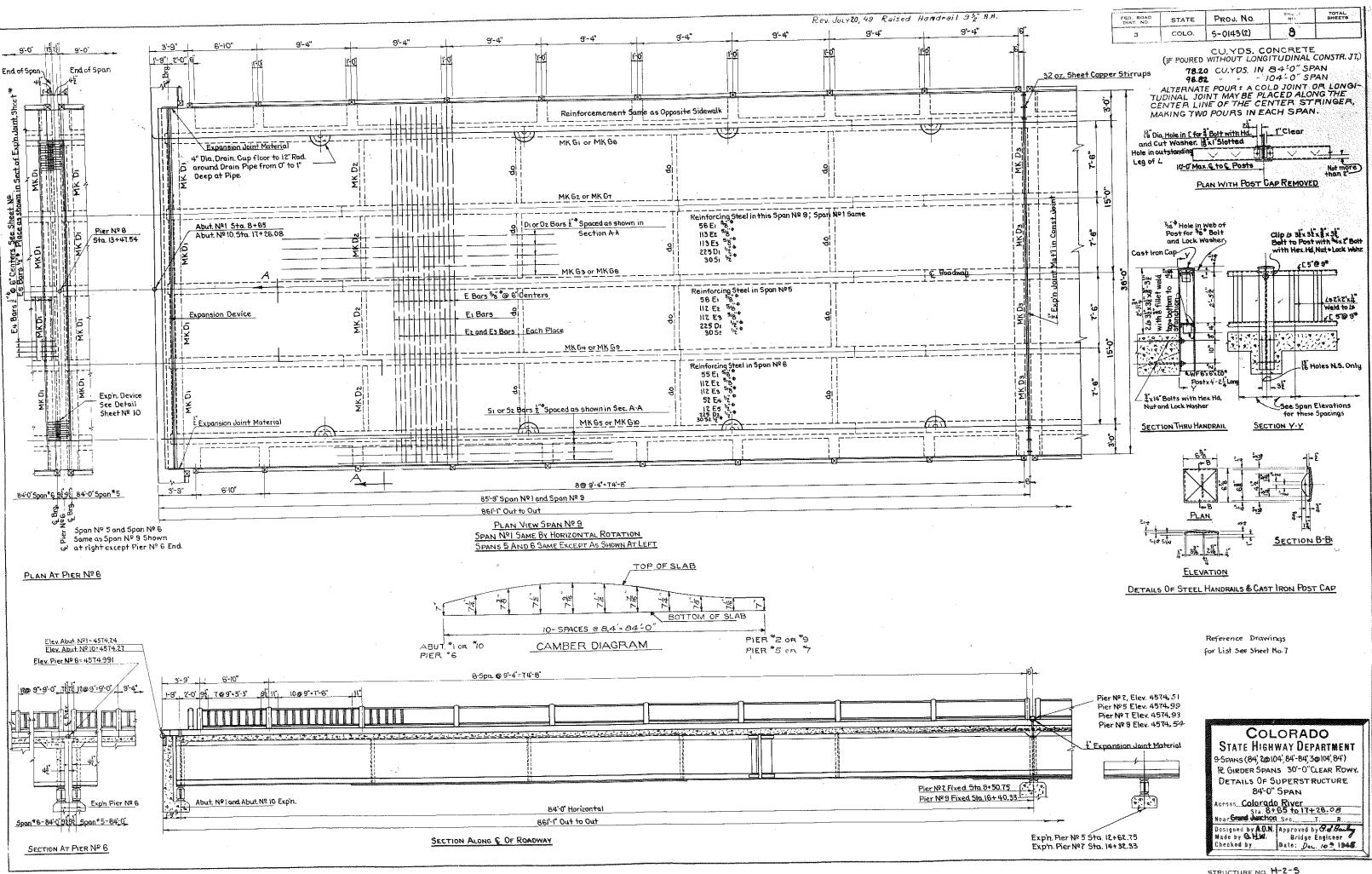

GHED 4Y P CRED 9Y WN 2Y CRED 9Y CRED 9Y CRED 9Y CRED 9Y CRED 9Y

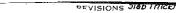


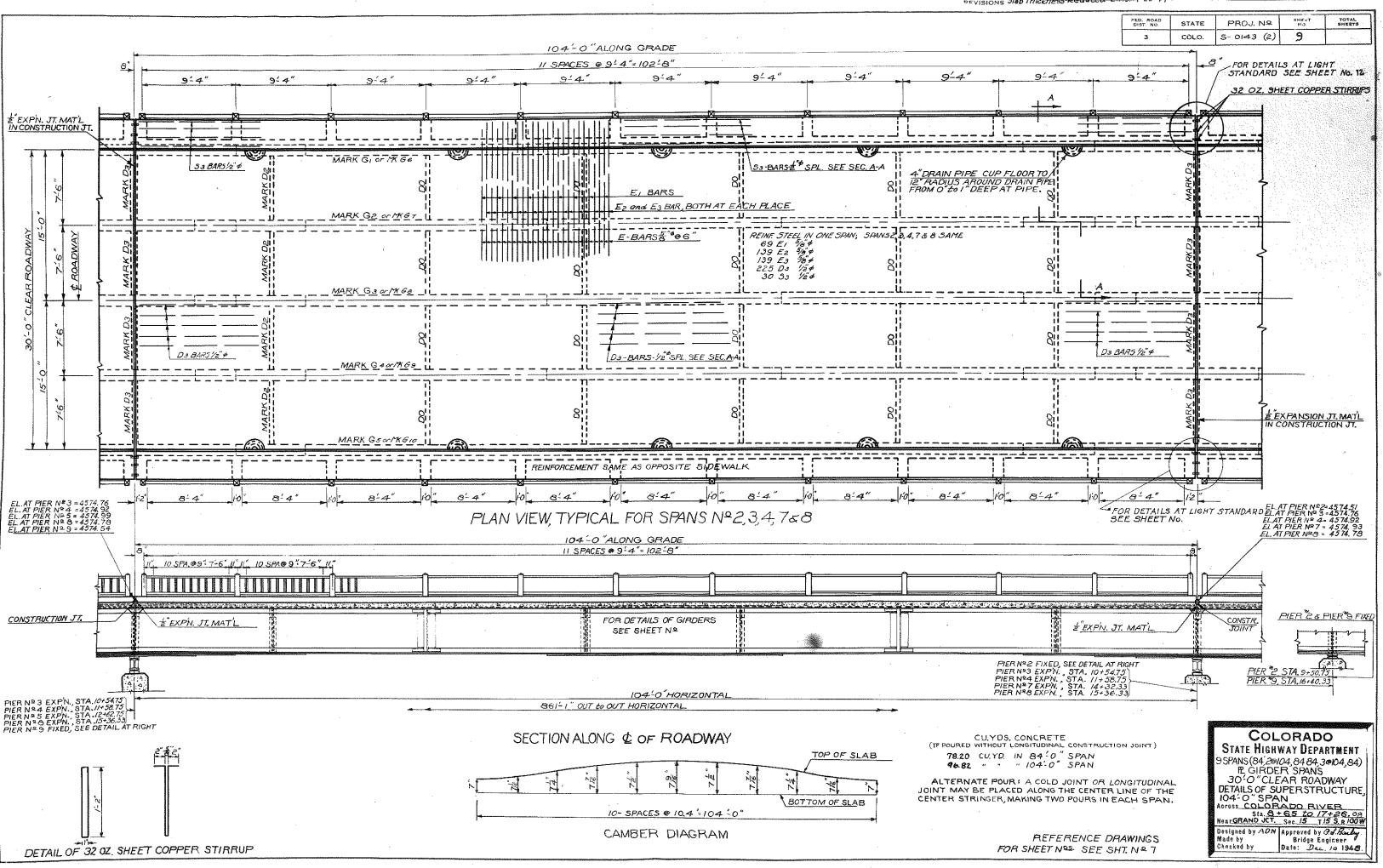



	and an		AS CONSTRUCTED REVISED DATE DEC 23 637	ТОСКА КОЛО DISTRICT PROJ. NO. НО. НО. НО. НОТА 12000 NO DISTRICT PROJ. NO. НО. НО. НОТА 9 COLGRADO 170-1(27) 10.5 52 234
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Bar LIST Speckstructure MAR NC LENSTHUCTURE 400 284 419 41 401 284 419 41 402 284 419 41 403 284 419 41 403 284 419 41 403 284 410 31 404 76 51 51 403 2846 410 31 404 76 51 51 502 1138 2712 51 503 72 62 51 503 72 62 51 503 72 62 51 704 48 19 51 705 18 42 51 704 48 19 51 705 48 19 51 704 48 19 51 705 48	EENDING DIASRAM (DIMENSIONS OUT TO OUT OF EAR)	
Image: State in the state i	14.000000000000000000000000000000000000	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 1

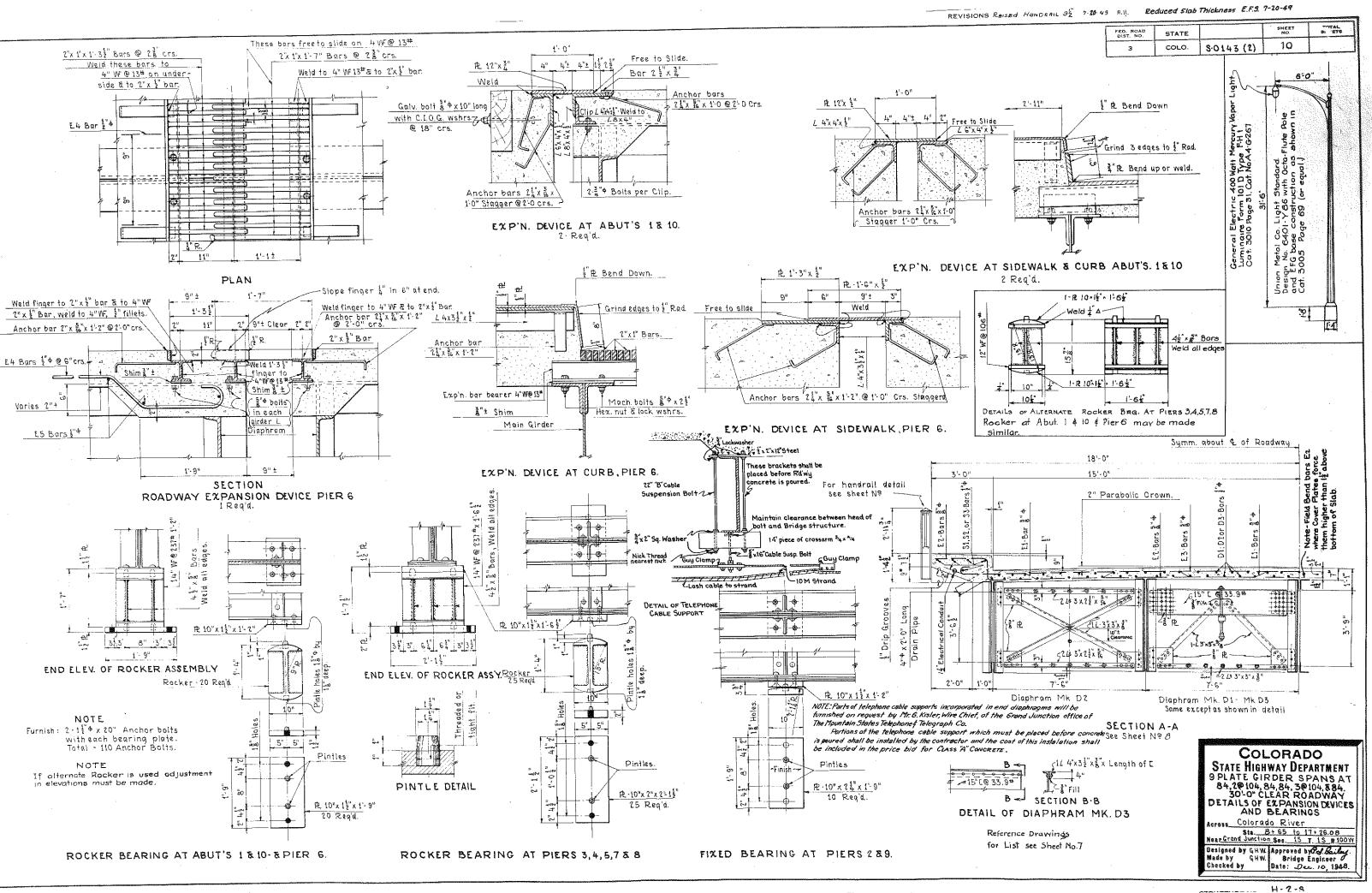


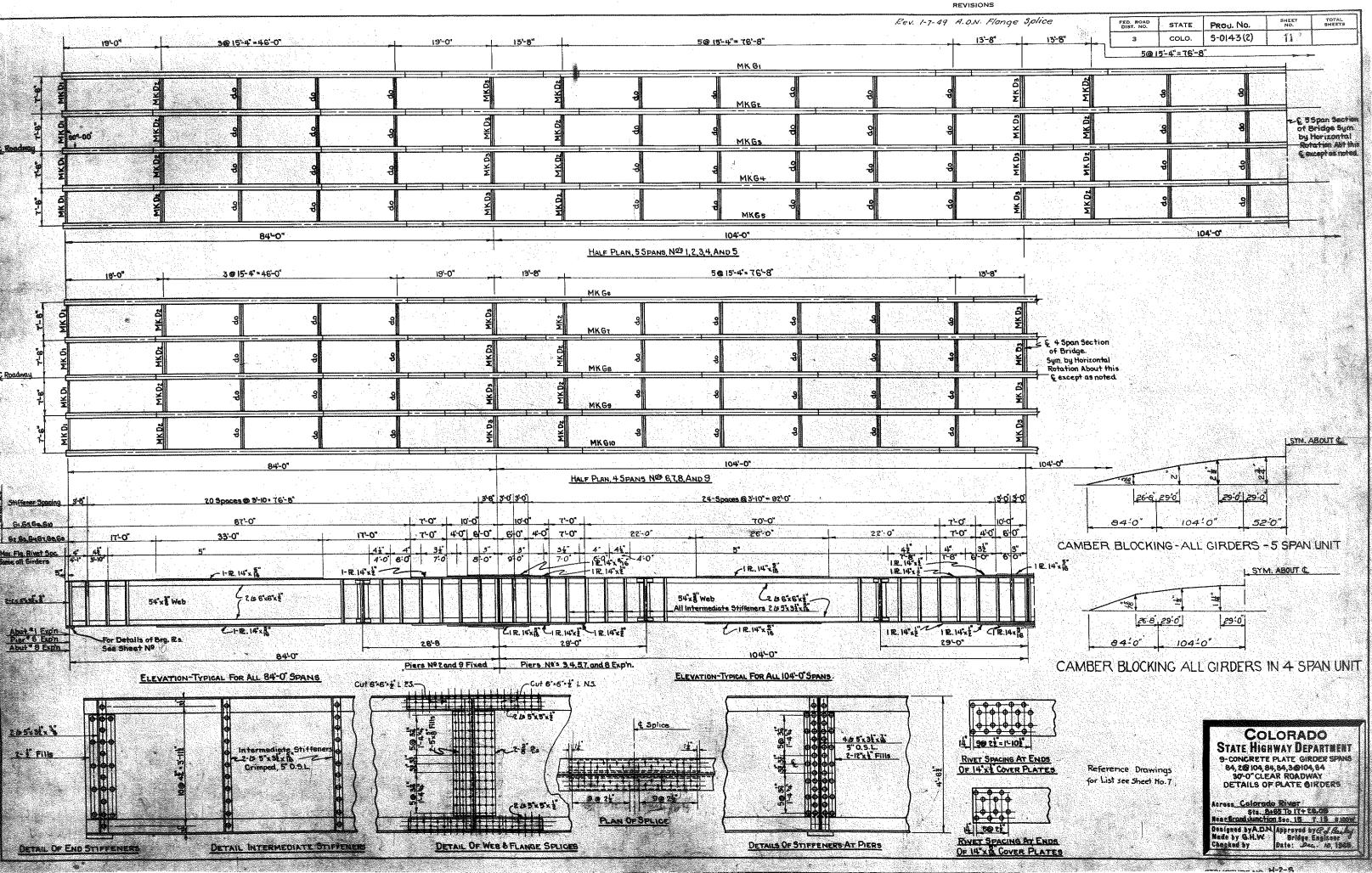

SHEET NO TOTAL SHEETS FED. ROAD DIV. NO. STATE PROJ. NO 9 COLO. S 0143(2) Rev. - Index of Sheets - 2-3-49 CJW. the ... CONVENTIONAL SIGNS CENTER LINE OF SURVEY RIGHT OF WAY LINE SECTION LINE ONE QUARTER SECTION LINE CITY LIMITS BARBED WIRE FENCE COMBINATION WIRE FENCE BOARD FENCE WATER PIPE LINE SEWER PIPE LINE TELEPH. & TELEG. LINE POWER LINE RAILROADS NOTE : It is recommended that bidders on this Project go over the plan details with one of the following field representatives of this Department Geo. N. Miles - District Engineer-Grand Junction, Colo. Homer Gray - Construction Engineer-Grand Junction, Colo. RECOMMENDED FOR APPROV spraul 12-29-48 Man a. Weeting TIS. STATE HIGHWAY ENGINEER DATE (OF UTE BASE LINE) RECOMMENDED FOR APPROV PUBLIC ROADS ADMINISTRAT COLORA PITKIN

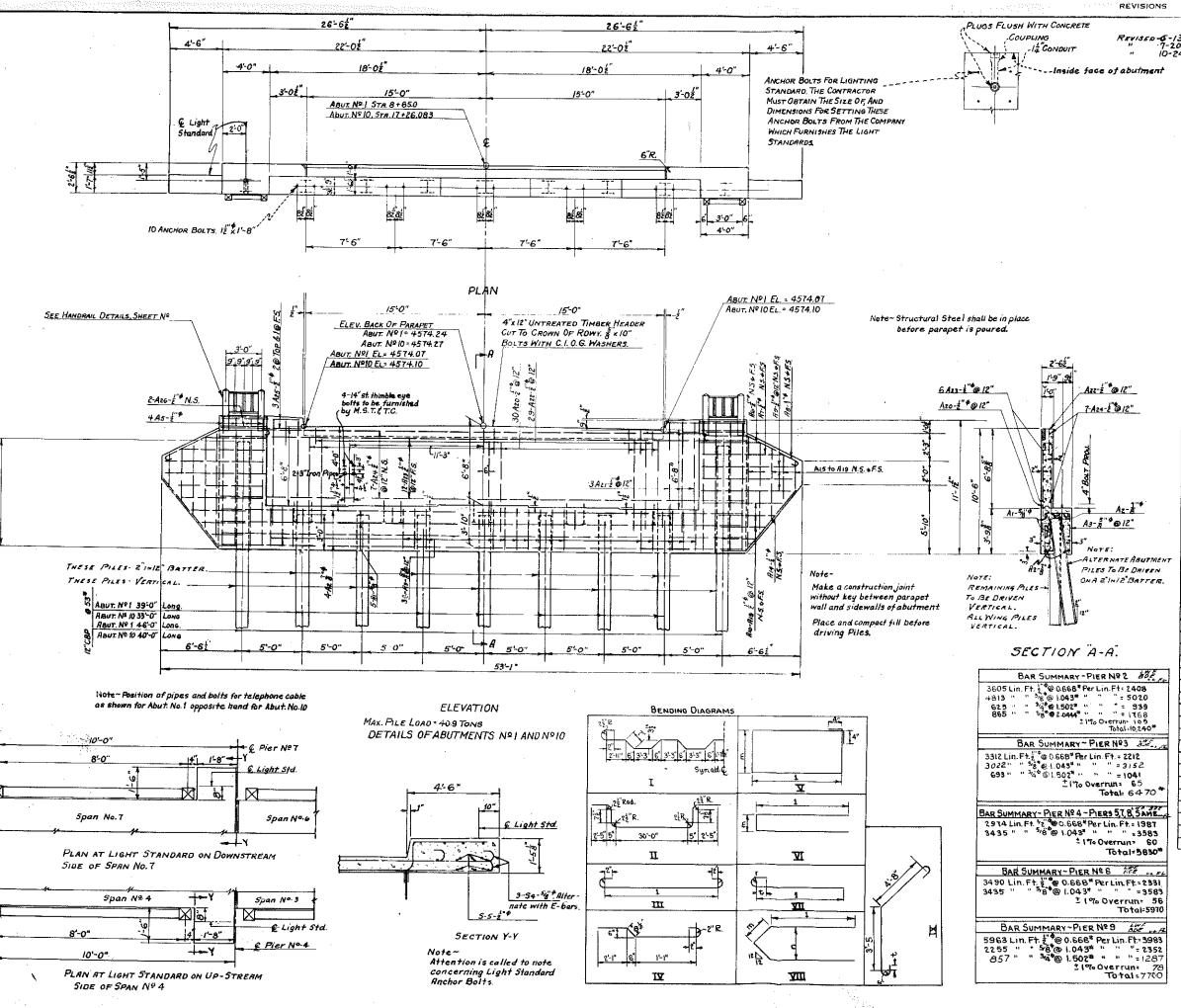

FW. Rais				ROAD	9	TATE	P	ROJ.	NQ		SHEST NO.	T	TUTAL
y. 2+3 - No. 1 + 4€	49	11.7.90 * ao 5-5		3		OLO.			3 (2)		7	<u>-</u>	
		149 B.D.: Marine 1	·			.010.	13	0124	5 (2)		1		
Pciste Si Paised Ha	ndra	nierar. Úl										, v	. 4 A I
SUM	MA	RY	OF	QU	ANT	ITI	ΞS			1 de la	NACES -		
	UNIT	SUPERST	ABUT.	PIER	PIER	PIER Nº4	PIER Nº 5	PIER	PIER Nº7	PIER	PIER	ABUT.	TOTA
			····	<u> </u>									1.02F
TION	CU,YE						<u></u>						4
STR.)	CU,YD	t t					5						5
ION (STR.)	CU,YO		9:	· · ·			83	70	53	26	38	88	317
V (STR.)	CU,YI			20	23	9	20	15	23	44	24		178
ON (STR.)	CUYD			395	374	350	320	312	300	333	380	49	2813
CLASS I	CU.YD.		156	300	271	260	350	277	785	173	319	186	2677
	HR,		16	30	27	26	. 35	28	29	27	32	19	169
MBER	M.H. В.M.		0.12				•				15.000	0.12	0.74
E	CU.YD	797	33	172	154	133	133	136	133	133	148	33	2005
	L8.	158,700	1600	10240	6470	5630	5630	5970	5630	5630	7700	2800	216,800
	LB.	1,0.9 3,470	645	845	845	845	845	845	845	845	845	645	1,102,52
)	Lin.Ft		365									311	\$76
	CU.YD									-		443	443
-	LB.	18											18
E FLOOR)	EACH	87											82
JCN. BXS.	Lin.H.	926	4									4	934
PLETE	EACH	2	1	1								. 1	4
	EACH	2	1	[1	4
RTS	EACH	8											8
	SQ.FT.	220											220
	EA.		2	[2	- A (
LT9.	EA.		4									4	8


of timber.

			1
	F	REF	ERENCE DRAWINGS
	SHEET Nº SHEET Nº	8 9	DETAILS OF SUPERSTRUCTURE
4	SHEET Nº	õ	DETAILS OF SUPERSTR EXP'N DEVICES
	SHEET NA	51	DETAILS OF PLATE GIRDERS
	SHEET Nº	12	DETAILS OF ABUTS Nº 1 & Nº 10
UND LINE			& BAR LISTS.
	SHEET Nº	13	
	SHEET Nº	14	DETAILS OF PIERS Nº 4, 5, 6, 7 8, 4.9
			LOADING DATA.
RAM			DEAD LOAD A. A. S. H. O. H. 20-44 DEAD LOAD ASSUMES 15 LBS, PER SO. FT. ADDITION ALWEARING SURFACE WHICH INCLUDES THE 1'S INCH
	 Z 		CONCRETE MONOLITHIC WEARING SURFACE SHOWN.
			DESIGNING DATA.
			fr = 1000 lbs, per sq. in.
			Structural Steelfs • D000 (hs. per sq in.
			Reinforcing Steel fs + 20,000 lbs. per sq.in.
			n = 10
	٠.		
NOTES			COLORADO
THE STANDARD SPECIFI	CATIONS OF THE		STATE HIGHWAY DEPARTMENT
ED IN THE FINISHED WORK	SUNT BS CON		9-SPANS (84,20104,84,84, 30104
COVE LUMBER S35 UNLE	SS FACED WITH		\$84) & GIRDER SPANS
CURR SHALL BE POURED :			30'0" CLEAR ROADWAY
UT TO THE ROCK AND N DIATE GRADE.	OT FORMED,		GENERAL LAYOUT AND
MED AND TAGGED WITH TH SHALL NOT BE SPLICED.	TE STATION NUM		SUMMARY OF QUANTITIES
OWN ARE ACCORDING TO	THE BEST AVAIL		Across COLOBADO RIVER
REDESIGN IS NECESSARY	·.		Sta 8+65.00 to 17+26.08 NearGRAND JUNCTIONS 86, 15 T / S. R 100 W.
RIVETS TO BE POWER			a second s
PT UNDERSIDE OF	FLOOR BLABS	LIN	Designed by ADN Approved by G. S. Bailur, Made by EFW Bridge Engineer
NGERS.			Checked by Date: Dec. /07, 1948
GIVEN ONE SHOP GO	CAT OF ZINC	;	

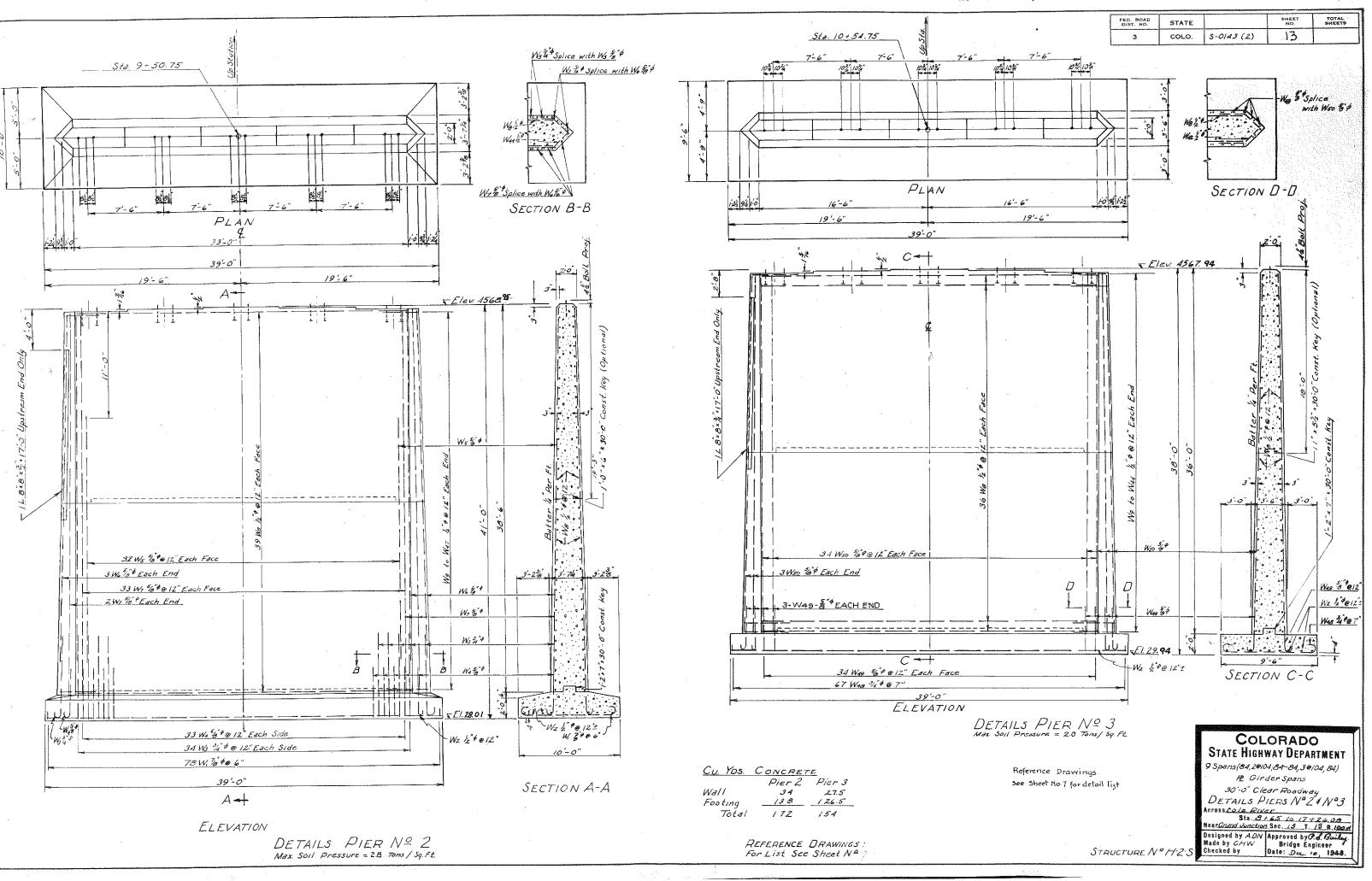

STRUCTURE NO. H-2-5





CTDESCTUDE NA H-2-5

.

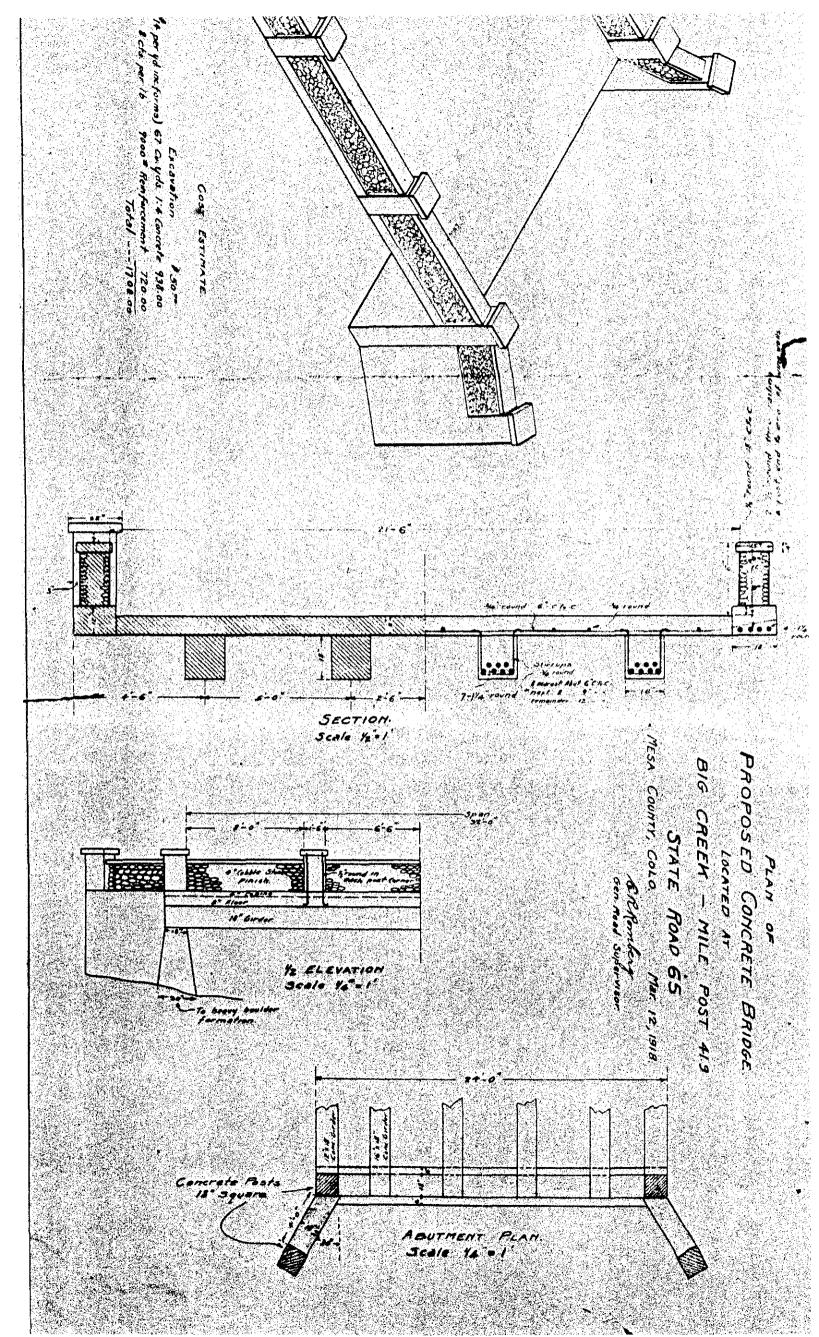

-40	7 10/	B 54	1 Piling		FED. DIST	ROAD NO	s	STATE	F	ROJ. I	٧º	= H N	EET.		TOTAL SHEETS
-49	EES.	Raise	d Seaf			3	-	:01.0.	4	-0143	(2)	12	2		
-49/	L.W.F.	Move	d Light				L			017.		1.		<u> </u>	
1	5td. o	ut 8'	· -											~	BDE B. F
	BA	R LIST	T~ SUPE	RSTR	JCTL	JRE 80	ε	BA	RLIS	TS~-	~ ABUTN	TENT	s Nº	1 AN	D Nº 10
MARX	SIZE	No.	LENGTH	TYPE		TOTAL		MARI	s Sizi	NQ Dec	LENGTH	Type	DIME	HISION	
	ł	REOD			11	LENG			5/8		43'-8"		1.	m	LENGTE 218
Ē١	5/8*	568	34'-11"	I		19833		AI	78		39'-0"	Str.	ł	<u> </u>	312
E٤	5/8°¢		37'-5"	π	1	4284		Az	V8		and the second se		3'-1"	2'-0	390
Es	5/84	1145	34'- 3"	Π	32-7	38217	_	<u>A3</u>	5/8		10'-10"	Ξ.		+	
E4	1/2**	52	4-62	IV.	1	231	_	<u>A4</u>			<u>"7'-2"</u>	<u> </u>	+-3	<u> </u>	- 36-
E5	1/2*	12	6'-6"	Str.		78		A 5	42		25'-10	X	10'7	2-0	207
Di	42.4	675	29'-5"	Str.	<u> </u>	1985		As	4 1		5'-0'	Str			20
D٢	1/2*	225	29'-1"	Str.	 	6544	_	AT			6-8 "		Din	Chim.+	27
D3	1/2 ^{**}	1125	36'-0"	Str.		4050	<u> </u>	As	1.4		10'-9"		4"	0 in t 3'5	43
Sı	1/2.4	60	29-5	Str.		176		Ae	42	12	7'-6"	Str			90
52		60	29'-6"	Str.		177	0	A10			5'-0" "9"				
Ss	1/2*	150	36-0	Str.		540	ю	to	1/2	4ea	+0	Str			62
S 4	784	12	6'-0"	Δц		7	2	Ais			2-9	L			
S5	1/2"4	12	('-4 ''	Str		I	6	A14	1/2	4	9 `-0`'	Str. F	cid R	end	36
								A15	-		2'-6"				
BAI			FOR SU					to	1/2	4ea		Str.			120
	ĩ6,I	67 Lin	. Ft 5 0	9.668 /	Lin.	Ft=508	BÓ	Aie			9'-6"				
	101,9	65 "	<u>~~</u> 8_€	01.0437		"=106-3 ∖≈ 15'	50	Ato		30	16'-4"	ДŢ	7-10	0-8	490
			÷	1-16 OV6 To	arun	=15880	ŏ	AU	420	6	19'-6"	M	9-5	0-8	117
								A22	1 1 14	29	2'-0"	Str.			58
BAF	R SUM	MARY	ABUT.N	-ABU	τ.Νº	IO SAME	ASI	A23	1.00	6	40'-6"	Str.			243
	43 L 312	in Ft	1 0 2.0	STVLin.	.Ft.=	115		A24	1.04	7	37'-0"	Sie			259
	608	* 6	1"*@2.6 76*@?(%(@1)	2		634		Aus	6.14	6	6'-8"	Str.			40
	183	41 H	₩2 ₽ @		<u>ب</u> ۲۰۲۵ ت	1191		AL	-	-	3'-8"	Str			15
				I	1.10	2600		H	<u> </u>	1					
								Ab	ove L	ists fo	r One At	out me	nt		
			E	BAR LI	STS	For	PIEI	RS 2,	3, 4, 5	,6,7,8	AND 9			G	4W FL
IARK	SIZE	LENGTH	TYPE			TENSIO				1	NUME	ER RE	D'D Den	. D	S Dice
	7,8"*	11'-t"	m		8-9	m n	125	5 F	TB	TERS	ER4 PIEK	TEKO	I ICK	1 1 1 1 1	NO IE IERO
Wi	10	11	m –		0.3	↓↓	13.2	- ⁻	10	_				+ -	

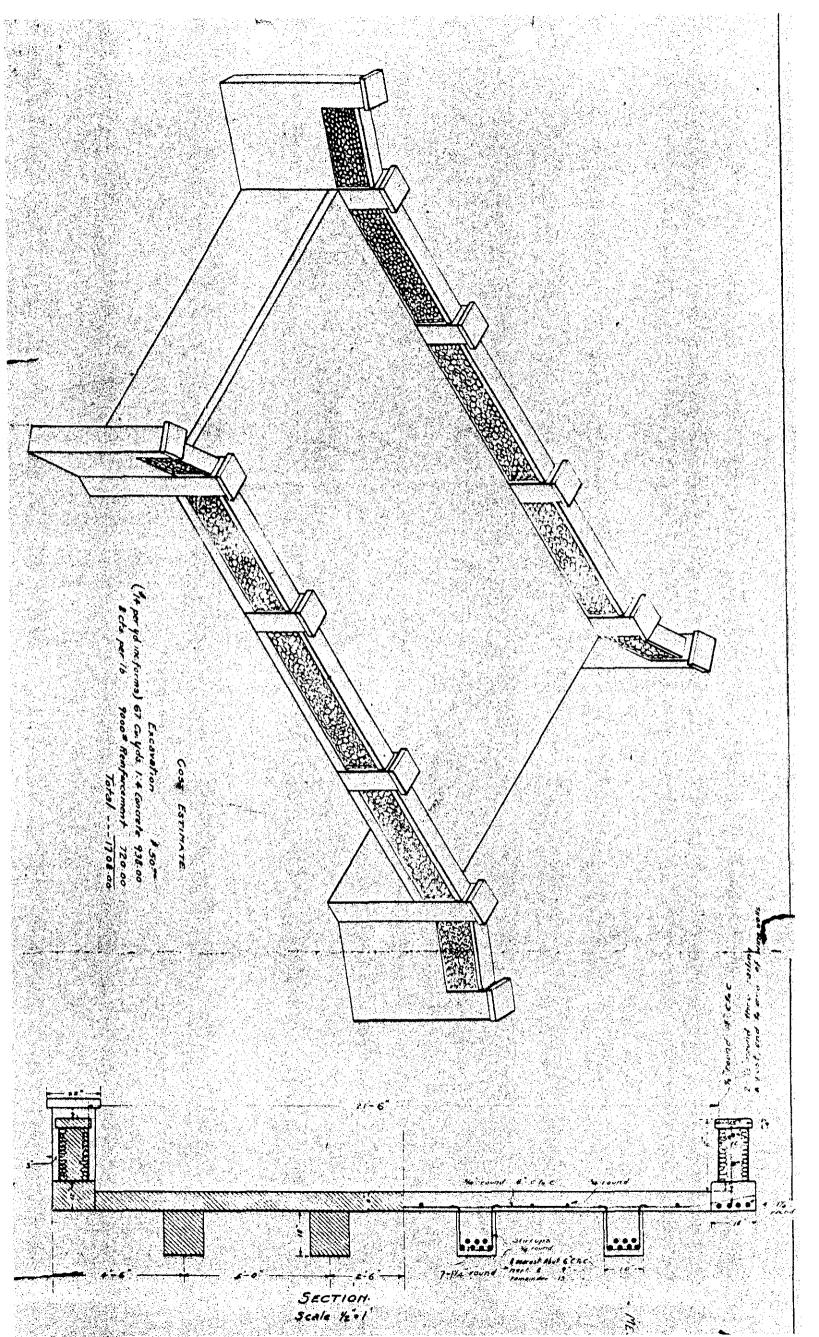
	r	<u> </u>	F	[[Di	MEN	SION	15		T T			NUMB	ER REG	D.		
MARK		LENGTH	iYPE		٢Ť	Im	In	١٢	t	PIER 2	PIER3	PIER4	PIERS	PIERO	PIERT	PIER8	PIER9
Wi	7,8"\$	11'-1"	m		8-9	1		32	3	78							
W2	12.0	38-6	Str.		<u> </u>	T	Τ	Γ		10	9	9	9	9	9	9	9
W3	3/4	8-11	VII.		7-11	1		3"	22	70							
W4	5∕8 ♥	5'-6"	νn		4`-8			22		70							~
Ws	5/8 4	24-2	Str.		-		1			64	1						64
W6	5/0 •	34-10	Str.							6							
Wτ	5/8°	38-2	Str							70	I						
WB	¥2"•	33-0	Str			İ		1		78	72	64	64	70	64	64	70
We	¥₂ ♦	7'~!"			2-6	1-05	1'-6'	1	<u> </u>	2	2	2	2		2	2	2
Wio	420	7~13	V/I		2'-6	1-0	1-67			2	2	2	2		2	2	2
Wu		7-25				1-1	ί'-τ `										
To	¥2. P	by to	vm		2-6	÷۲	by 2 to			2 FA	2FA	2 FA	2 EA	2 EA.	2 E.A.	2 EA,	2 FA.
W40		9-0 ¹ 2					7-91			•		- ·	"				
W41	42*	9'-r'	ΥΠ	•	2'-6	2.0	240			2	2						2
W42	٧ ₂ *	9-13	YIII.		2-6	2-0	2-10-			2	2						2
W43	1,2°¢	9'-2¥	ŶШ		26	2 14	2'-11"			2	2						Ζ
W44	42.●	9-31	YIE		2-6	2-1	Z-112			2	2			'			
W45	1/20	9'-4"	Σ				3'-đ			2							
W46	1/2"*	9'-41	VIII		2'-6	7 25	3 ¹ -02			2							
W43	٧2°	9-55	VΠ			72]				2							1
W48	340	10'-4"	Ш		84	<u> </u>		3"	2 2		67						
W49	5,8*	5'-2"	M		4'-4'			22	2"		74	74	74	74	74	74	
W50	5.50	35-8	Str.								74						
WSI	5 _{/8} *		ш	·	τŚ			22	٤*			78	78	78	18	78	
W52	580	31-8	Stc									74	74	74	74	74	
W53	42 4	9-2"	Y		28	٦								34			
W 54	3,4 \$		π		8 ľ			3"	21								85
W55	5∕8₽	7-4			6.6			22	2"								τO
W 58	1/2 *	4 5		······································	35			2"	2"								70
WST	5/8"*	32-6	-														8
W 58	1/2*	34-8	****						\neg								70
W59	1/2 9	8 8			2'-6*	\$H0¥	2'-T'							4			
da							لنبتها				i						

		ORADO
		WAY DEPARTMENT
	9-SPANS (84,2@)	104,84-84,3@104,84)
	PLATE GIRD	ER SPRNS
	30'-0"CLEAR	ROADWAY
	DETAILS OF A	BUTMENTS NºI € Nº10
	ACTOSS COLORADO	RIVER
1. I.	Sta 8+0	65 To 17+26.08
	Near GRANDUUNCTIO	NSec. 15 T. 1 5 R. 1001
	Designed by A.D.N.	Approved by G. Bailey.
	Made by G.H.W.	Bridge Engineer 🥤
	Checked by	Date: Dec. 19 1948.

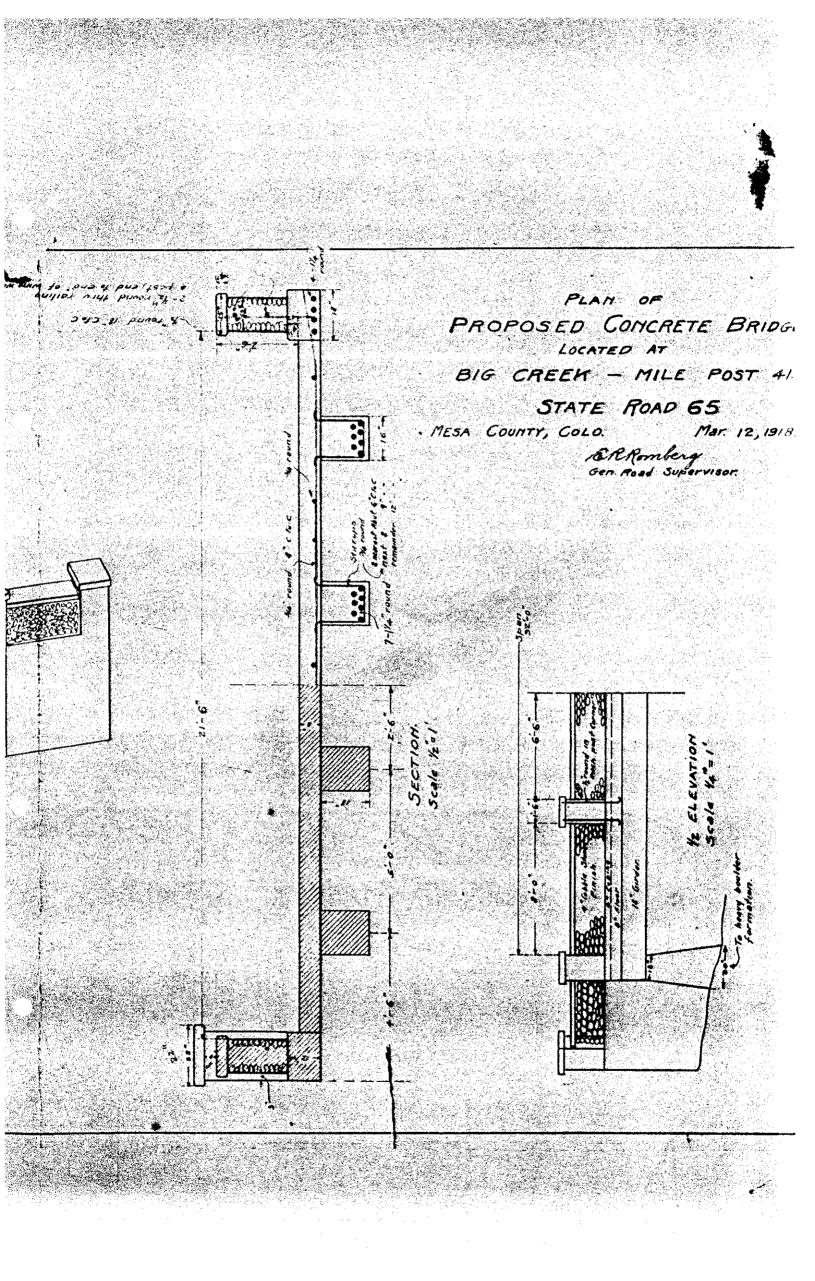
STRUCTURE NO. H-2-5

Reference Drawings for List see Sheet No.7





REVISIONS Raised Elev & E.F.S 1-LO-49


	MENT OF TRANSPORT		Structure#	H-04-G
LOAD FACTOR	R RATING SUM	MARY	State highway #	330
Rated using Asphalt thickness:	216 mm 8.5	iri.)		BID# 1144
🖾 Colorado legal			Structure type	CIC
Interstate legal	loads.		Parallel structure #	NONE
Structural member	DECK SLAB **	INTERIOR GIRDER GIRDERS C THRU E	INTERIOR GIRDER GIRDER B	EXTERIOR GI GIRDER A
	Metrictons (Tons)			
Inventory	28 (31)	27 (30)	25 (27)	126 (1
Operating	47 (52)	45 (50)	42 (46)	210 (2
Type 3 truck	()	()	()	(
Type 3S2 truck	()	()	()	(
Type 3-2 truck	()	()	()	(
Permit truck		107 (118)	103 (113)	386 (4
Type 3 Truc Interstate 21.8 metric Colorado 24.5 metric Colorado 24.5 metric	c tors (24 tons) c tors (27 tons)	Type 3S2 Truck transate 34.5 metric tons (38 tons Colorado 38.6 metric tons (42.5 ton 000 000	Type 3-2 Interstate 35.4 metric tons 38.6 metric tons O Metric tons	(39 tons)
Comments Modified Tandem:	Interio	55 (61) r Girder B; Rated for	62 (69) * 8.5" HBP	201 (221)
**Assumed Slab re Control Member: Load Capacity: Girder: Interior Gir	46 To der Rated for 8.5" H		n de la companya de la companya de la companya de la companya de la companya de la companya de la companya de Esta de la companya d	
Control Member: Load Capacity:	그는 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 가 있다. 이 것 같아요. 이 있다. 이 것 같아요. 이 있다.	BP		
Control Member: Load Capacity: Girder: Interior Gir	der Rated for 8.5" H	BP		
Control Member: Load Capacity: Girder: Interior Gir Color Code:	der Rated for 8.5" H	βP		Date

Stores,

South 35'0' OUT TO OUT 31'-10" CLEAR 1º Concrete Handrail 8. No" Concrete Floor 74 15" I Beam New Pier under entire Bridge 4'6" centers chold chon Section ί. 12. I Beams encased the concrete. 18" Footer 30" Kinde & 18" thick \$ 31 Ű. Pier embeded in gravel approximatly 34 No scour in this stream. 7 4 & of New Brad 32'0" + ɗ ORIG. 5 equally Spaced " * 2" Reinforcing Steel Details of Bridge Widening across used to tie old & New Floer 24 Big Creek on 5P-8-330-503, them MEDIZ" X 34' I BEAM 30 Molina - Plateau City 2012" × 34' I Beam Sec Vew Section Booms (130 12" x 34" I Beam REFATEdok 13 TABIZ" X 24! I BEAM CARDEN has H-8 I. Beanis -35' Long W. Ca36 DI2+ XZO I Beam sto H-4-17 No when Near CLEAR 8-5%" Reinforcing Steel running lengthwise. 246 375 6-5% Reinforcing Steel running crosswise Chick General Upon which is a mot of 1/4" x 4" Stee! Mesh. SCOUR = 3 12 10" Concrete Floor to match old section. Chull Jub strene. e. H-4-G

GENERAL NOTES

ALL WORK SHALL BE CONE ACCORDING TO THE STANDARD SPECIFICATIONS OF THE DIVISION OF HIGHWAYS, STATE OF COLORADO, APPLICABLE TO THE PROJECT.

ALL CONCRETE SURFACES MARKED WITH THE SYMBOL ${\cal F}$ as shown on drawing no. B /4 Shall receive a class 2 surface finish.

ALL CONCRETE CHAMFERS SHALL BE 3/4 INCH UNLESS OTHERWISE NOTED. EXPANSION JOINT MATERIAL SHALL MEET A.A.S.H.O. SPECIFICATION M 213-65 AND SPALL BE INCLUDED IN THE PAYMENT FOR ITEM NO. 601.

SOUNDINGS AND DEPTH OF FOOTINGS ARE IN ACCORDANCE WITH THE BEST AVAILABLE DATA. WHEN DIFFERENT CONDITIONS ARE ENCOUNTERED, THE BRIDGE ENSINEER WILL INSPECT AND DETERMINE IF REDESIGN IS NECESSARY.

WHEN EXCAVATING FOR FOOTINGS, THE FINAL SIX INCHES IN DEPTH SHALL BE DONE BY HAND LABOR METHODS.

FOOTINGS IN ROCK SHALL NOT BE FORMED BUT SHALL BE PLACED AGAINST UNDISTURBED ROCK.

FOR DETAILS OF STRUCTURE EXCAVATION AND STRUCTURE BACKFILL, SEE STANDARD M-206-AA.

ALL STRUCTURAL STEEL NOT OTHERWISE NOTED SHALL BE A.A.S.H.O. SPECIFICATION M-183.

ALL STRUCTURAL STEEL NOT OTHERWISE NOTED SHALL BE PAINTED IN ACCORDANCE WITH SECTION 509 FOR (ALUMINUM) PAINT.

ALL BOLTS SHALL BE 3/4" DIAMETER, HIGH STRENGTH, UNLESS OTHERWISE NOTED. NO WELDING OF ANY KIND SHALL BE PERMITTED ON THE FLANGES OF STEEL GIRDERS UNLESS SPECIFICALLY CALLED FOR IN THE PLANS.

USE GRADE 60 FOR ALL REINFORCING STEEL, EXCEPT TIES AND STIRRUPS. ALL TIES AND STIRRUPS ARE GRADE 40.

THE FOLLOWING TABLE SHOWS THE MINIMUM LAP FOR COMMON BAR SIZES.

	BAR SIZ	E NUMBER	4	5	6	7	8	Э.	10	11
	SPLICE	GRADE 40	1'.0"	1'-3"	1'-6"	11-9"	2'2"	2'-8"	3'~5"	4'-3"
	LENGTH	GRADE 60	1'-6"	1'-11"	2'-3"	2'-8"	3'-0"	3'-5"	4'-2"	5'-0"

E. F. N. F. F. F. = EACH FACE = NEAR FACE = FAR FACE

DESIGNED CHECKED

CROSS REFERENCE DRAWING NUMBER

SECTION OR DETAIL IDENTIFICATION

Concrete Deck Shall Recieve a Transverse Fiber Broom Finish Location of all construction joints shall be approved by the engineer.

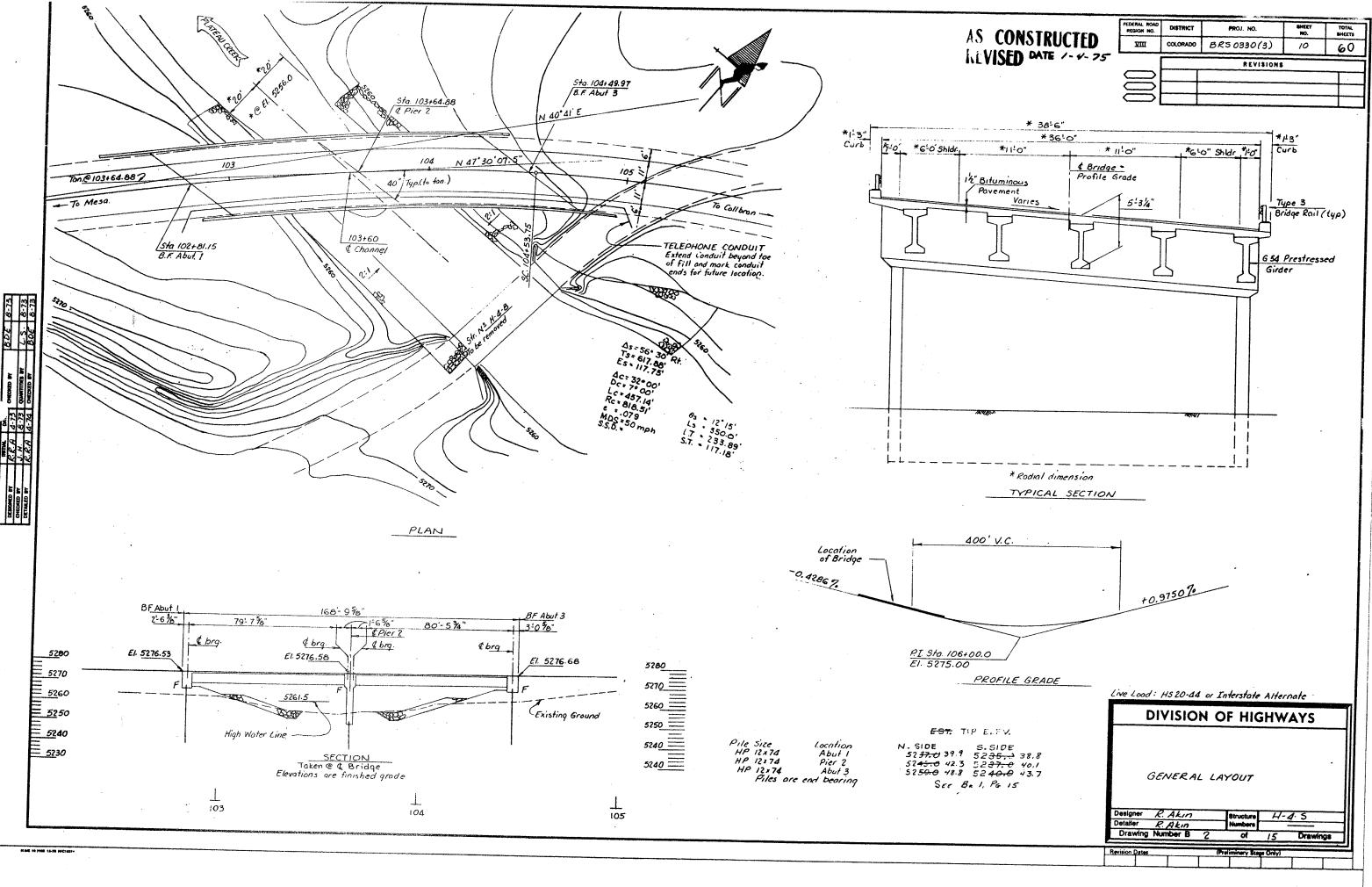
с Г	SUM	MARY OF QUANTITIES REFERENCE	<i>B k I</i> ,	PG. 17				
I	TEM	DESCHIPTION	UNIT	Super- structure		Pier 2	Abut. 3	Tota
E	202	Removal of Bridge	Ea.			ļ	ļ	
		Haul	Ton MI	57	t	1	1	5
i i	206	Structure Excavation	Cu. d.		254	65	_64	56
i a	206	Structure Backfill (Class 2)	Cu. id		52	38	54	144
- 6	03	Hot Bituminous Pavement (Grading E)	Ton	53				53
ㅂ	.03	J ,	101					
2	111	Asphalt Cement (AC-5)	Ton	3.08-3-				3,08-3
H					161'			and the second second second second second second second second second second second second second second second
L ⁴	202	Steel Piling (HP 12x74) Steel Piling (HP 12x74) Cutore	Lin. Ft			92		37
	502	STEEL PILING (HP12874) CUTOFF	Lin. Fr		12		12	41
니	202	Reinforcing Tips	Ea.		.5	8.	5.	18
1	06	Heavy Riprap	Cy. Yd		2845 540		578.5 738	126
	1							
15	09	Structural Steel	16.			453		45.
5	09	Structural Steel (Galvanized)	ТЬ.	12,785				12,78
1	50/	Concrete Class A (Bridge)	Cu rá		22.5	106.5	26.0	155
		5/	للالك					
E	501	Concrete Class D (Bridge)	Cu.Yd	168.0	39.0	40.3	41.7	-28
Fe	502	Reinforcing Steel	<i>1b.</i>	44 386	6,461	6964	6,262	69,0
6	506	Guard Rail Type 3A	Lin Ft	414			([']	41
기교	513	Place Conduit	Lın, Fl	428				428
6	18	Prestressed Conc. Unit (I Section) 80' to 85'0	Ear	10	~			
ωE		Steel Masonry Plates	Ea.		5	10	5	20
ΨE		Vicer Musonry Plates	<u> </u>		Ĵ	10		
F								
-								
E								
L								
L								

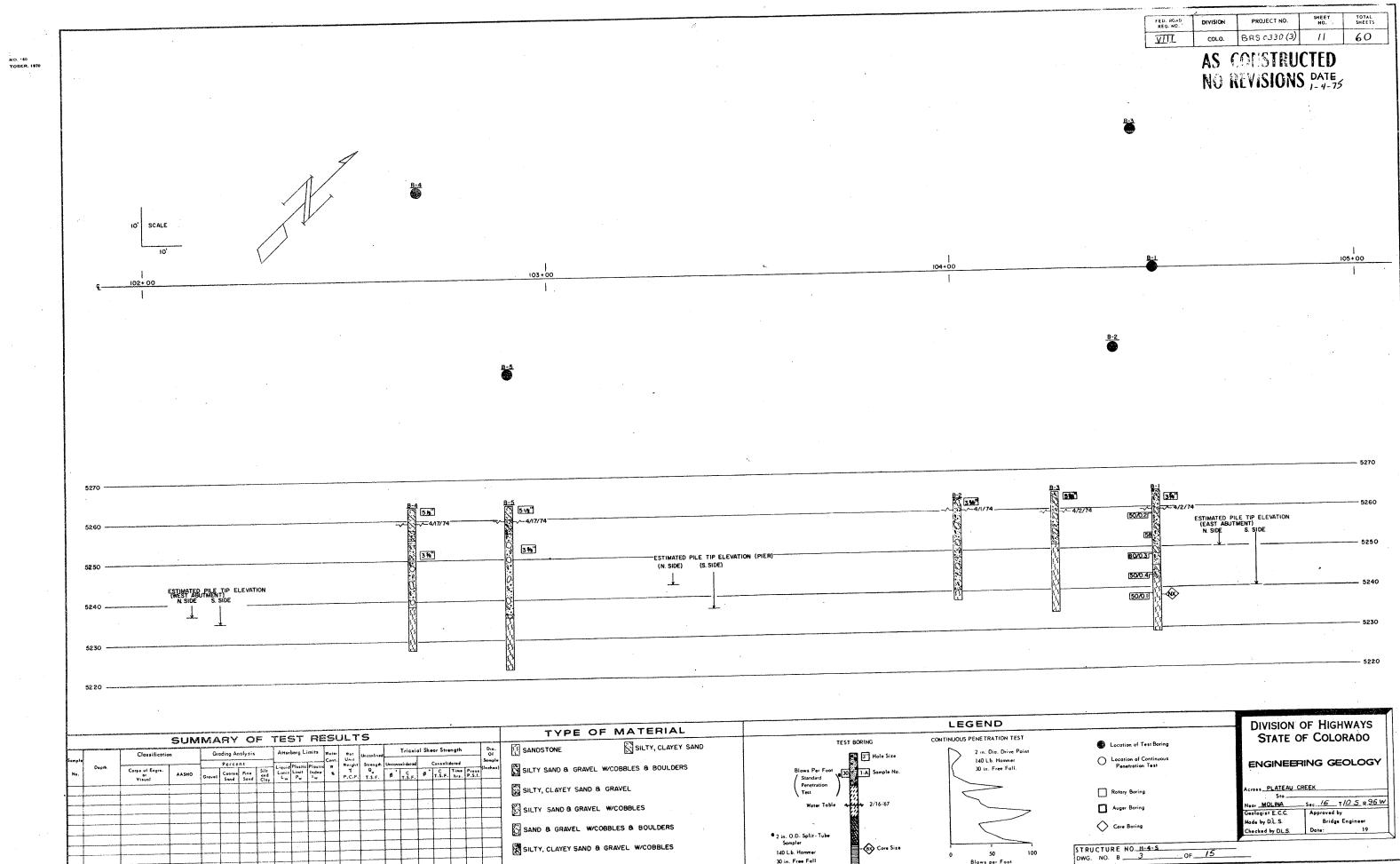
1) To be Included in the Bid Price for Item 618 Prestressed Concrete Units

LOADING DATA LIVELOAD: A.A.S.H.J. HS 20-44 OR INTERSTATE ALTERNATE DEADLOAD: ASSUMES 25 LBS. PER SQ. FT. FOR BITUMINOUS PAVEMENT DESIGN DATA A.A.S.H.O. UNIT STRESSES, EXCEPT AS NOTED. Fs = 24,000 LBS. PER SQ. IN. EXCEPT Fs = 20,000 LBS. PER SQ. IN. IN TRANSVERSE DECK SLAB, STIRRUPS AND TIES. REINFORCING STEEL

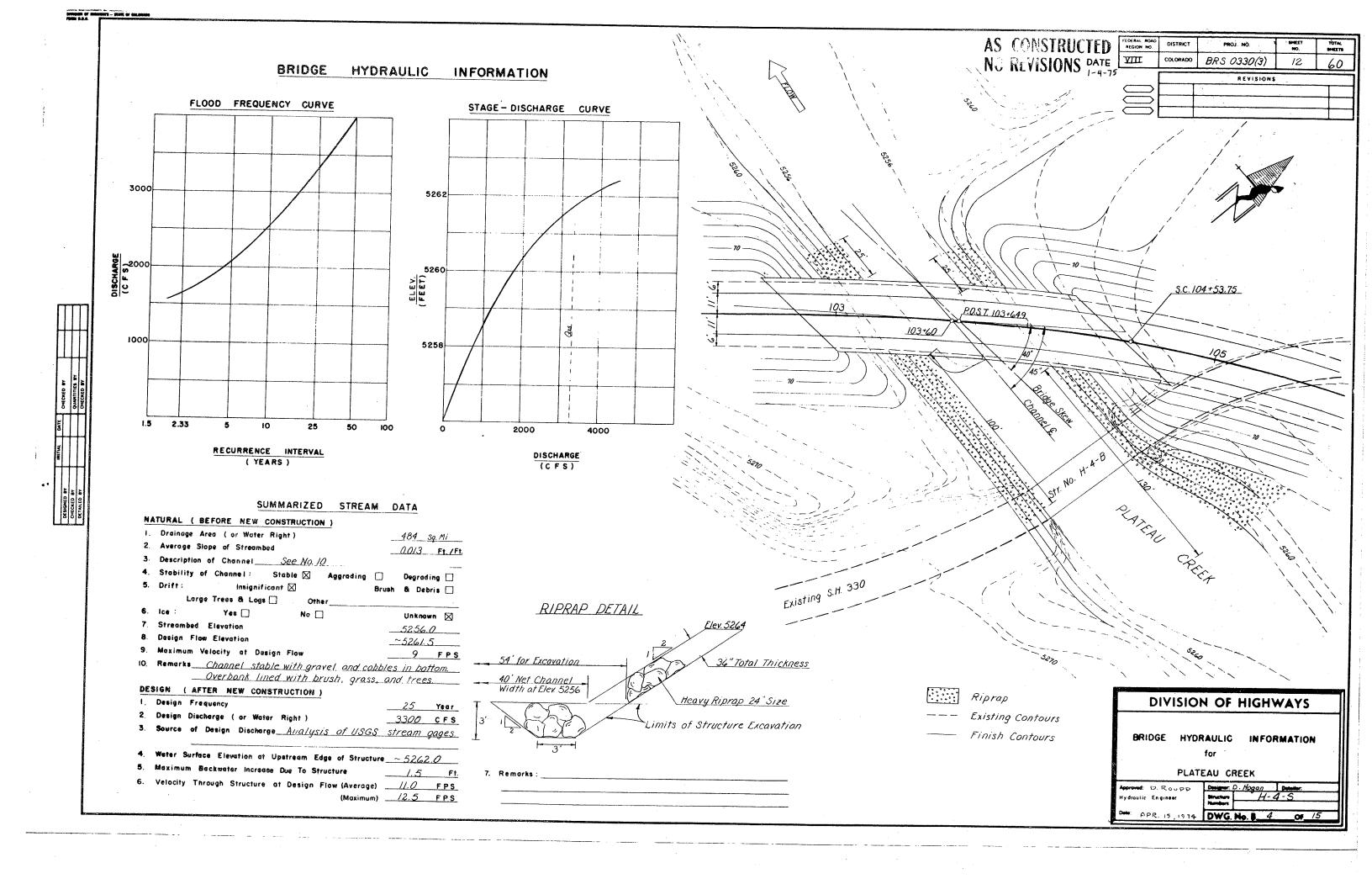
STRUCTURAL STEEL: A36 Fs = 29,090 LBS. PER SQ. IN. A572, GRADE 59 Fs = 27,000 LBS. PER SQ. IN. CONCRETE: Fc = 1,200 LBS. PER SQ. IN.

AUCTOHOTES	FEDERAL ROAD REGION NO	DISTRICT	PROJ. NO	SHEET NO	TOTAL
ONSTRUCTED	УШ	COLORADO	BR 5 0330(3)	9	60
ED DATE 1-4-75			REVISIONS		
	(R-I)	6/13/74	ITEM 613		K.D.H.
	(RZ)	6-27-74	Replaced Elastomeric	Pads with	1
	\square		steel Rs I/A/W C.O.	#05765	RRA


OWG	NO.	81	GENERAL INFORMATION-SUMMARY OF QUARTITIE
NHC.	NO.	82	GENERAL LAYOUT
DWC.	110.	83	ENGTHEERING GEOLOGY
owG.	NO.	B 4	BRIDGE HYDRAULICS INFORMATION
DWG .	NO.	C 5	ELEVATIONS
DWG,	40.	86	CONSTRUCTION AND PILING LAYOUT
n₩S.	NO.	в7	DETAILS ABUTMENT 1
DWG .	40.	88	DETAILS ABUTHENT 3
DKS.	30.	B 9	WINGWALL DETAILS
n⊌G.	10.	610	PIER 2 DETAILS
DWG .	₩0.	611	SUPERSTRUCTURE DETAILS
DWG.	NO.	812	COLORADO G 54 GIRDER
OWG .	40.	613	BRIDGE RAIL TYPE 3
0₩G .	<i>и</i> 0.	814	MISCELLANEOUS DETAILS
₽₩G.	:10	815	STRUCTURE NUMBER STANDARD


BRIDGE DESCRIPTION 2 - Cont. Spans (80'-0", 80'-0") Concrete Slab and Prestressed Girder Bridge

Over Plateau Creek 36' Roadway Curb to Curb 40° 00' Skew 1'-3" Curbs, Standard Bridge Rail Type 3


	DIVISION OF HIGHWAYS
4687 4687 4687	GENERAL INFORMATION SUMMARY OF QUANTITIES Station 102+81,15 to 104+49.97
	Station Near Moling, Sec. 16 T. 105 R. 96 W
oved	Designer R. AKIN Structure H-4-5 Detailer L. Sims Numbers
dgeEngineer Date	Drawing Number B of 15 Drawings

0(4-1-73)

	SUMMARY OF TEST RESULTS															TYPE OF MATCHIAL		CONTINUOUS PENETRATION TEST
		Classification					Atterberg Limits Wo			T	Triaxial Shear Strength Dro.			ngth	Dre.	SILTY, CLAYEY SAND		2 m. Dia. Drive Poin
mple	Depth			Grading Analysis Percent Gravel Coorse Fine Silt Sand Sond Clay				1. 1		Gricentine			d Consolidated Ø * C Time Pres T.S.F. hrs. P.S.		Sample		3" Hole Size	140 Lb. Hammer 30 in. Free Fall.
No.		Corps of Engrs. or Visual	Gravel	Course Sand	Fine Silt Sond Cla	Limit L	mit Indox ^P w ^I w	×	٦ P.C.F.	Q T.S.F.	øŗ	C	# T.S.F.	Time Pre hrs. P.S	.1.	SILTY SAND & GRAVEL W/COBBLES & BOULDERS	Blows Per Foot Standard	So in the ron.
																SILTY, CLAYEY SAND & GRAVEL	Penetration 777 Test 777	
										ļ						SILTY SAND & GRAVEL W/COBBLES	Water Table 2/16/67	
																SAND & GRAVEL W/COBBLES & BOULDERS		
						+-+											● 2 in. O.D. Split-Tube Sampler	
										+	┠──┼			┼╌┼╸		SILTY, CLAYEY SAND & GRAVEL W/COBBLES	140 Lb. Hammer	0 50
						+-+		+									30 in. Free Fall	Blows per Faot
								-										1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1

		ABUT L END OF WING WEST QUISIDE 102 EAST QUISIDE 102	\$7ATION ELEVATIO ? • 37.57 5276.7' ? • 84.50 5275.87	STATE HIGHWAY NO. 330 OVER PLATEAU CREEK STRUCTURE NO H-4-5 DESIGNEO RRA 6-1-73 OETAILED AND INPUT RRA 7-5-73 ALL ELEVATIONS ARE 0.125 FEET BELOW FINISHED GPADE ELEVATIONS			ARUT 3 BACKFACE WEST OUT WEST INSIDE TAN AT POS CL OF RHIDGE EAST INSIDE EAST OUTSIDE		5 5277.78 5276.79 7 5276.55
		CL BRG AGUT 1 CL SO BRG AGUT 1 CL SO BRG AGUT 1 CL SO BRG AGUT 1	• 61.34 5276.88 • 62.60 5276.85 • 77.95 5276.36 • 81.15 5276.4 • .36 5275.78 • 1.72 5275.73	IF BT = 101 + 3.7500 ✓ ALPHA = PI = 106 + 0.0000 ✓ DC = PO5 = 103 + 64.8800 THETA = CLOFF = 0.0000 FPI = 537	PUT DATA FOR BRIDGE H=4=S -43 10 52.00 NCON = -1000.0000 GBK = - 7 0 0.00 WCON = 1000.0000 GAH = - 12 15 0.00 LS = 350 MAX = .0790 50 VC = 400 MIN = .0200 = 17.0000 STLPL = 0.0000	4286 9750 -	CL NO BRG PIER 2 CL RRG ABUT 3 VEST OUTSIDE STA BACK 1 101H 2 107H 3 107H 4 107H 5 107H 6 107H 8 107H 9 107H	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	5277.42
57 57 57	۲	4 10TH 102 4 10TH 102 3 10TH 102 4 10TH 102 5 10TH 103 6 10TH 103 7 10TH 103 9 10TH	• 63.62 \$276.89 • 71.77 \$276.98 • 78.96 \$277.03 • 94.24 \$277.07 • 1.94 \$277.12 • 94.24 \$277.12 • 94.24 \$277.12 • 94.64 \$277.12 • 94.65 \$277.12 • 94.65 \$277.21 • 17.46 \$277.21 • 25.26 \$277.31 • 41.08 \$277.35 • 66.37 \$276.84		· ·	6 5	STA AHEAD GIRDEH 1 STA BACK 1 10TH 2 10TH 3 10TH 4 10TH 5 10TH 6 10TH 6 10TH 9 10TH 9 10TH 9 10TH 9 10TH 9 10TH 9 10TH	$104 \cdot 20.63$ $163 \cdot 47.14$ $103 \cdot 55.02$ $103 \cdot 62.90$ $103 \cdot 70.78$ $103 \cdot 76.64$ $103 \cdot 66.54$ $103 \cdot 94.82$ $104 \cdot 10.18$ $104 \cdot 10.18$ $104 \cdot 18.05$ $104 \cdot 25.91$	5277.84 5277.85 5277.28 5277.30 5277.35 5277.34 5277.41 5277.46 5277.48 5277.55
OHEORED BY <u>名しど 8</u> QUANTINGS BY <u>と、5</u> 8 OHEORED BY <u>さい) ご </u> 3		2 10TH 102 - 3 10TH 102 - 4 10TH 102 - 5 10TH 103 - 6 10TH 103 - 7 10TH 103 - 8 10TH 103 - 9 10TH 103 - 9 10TH 103 - 9 10TH 103 - 103 - STA AMEAD 103 - 618DER 2 STA BACK 102 -	14.29 5276.87 82.20 5276.08 90.12 5276.98 90.03 5276.97 5.95 5277.00 13.86 5277.07 29.07 5277.17 37.58 5277.17 45.46 5277.19 74.90 5276.45				GIRDER 2 STA BACK 1 IQTH 2 IQTH 3 IQTH 4 IQTH 5 IQTH 5 IQTH 6 IQTH 7 IQTH 8 IQTH 9 IQTH 5TA AMEAD	103 + 56,93 103 + 64,86 103 + 72,80 103 + 88,69 103 + 88,69 103 + 96,63 104 + 4,57 104 + 12,51 104 + 20,45 104 + 28,39 104 + 36,31	5276.87 5276.87 5276.89 5276.90 5276.91 5276.93 5276.95 5276.95 5277.03
NITTIAL DATE KC2A 4-73 U-4-14-73 L-5 9-73		GIRDEH 3 STA MACK JOTH 102 - JOTH 103 - SIOTH 103 - SIOTH 103 - GIRDEH 3 STA MACK 102 - IOTH 102 - STA 10CH 102 -	6.78 5276.71 14.74 5276.72 22.69 5276.74 30.65 5276.76 30.60 5276.78 34.60 5276.88 54.50 5276.88	· · · · · · · · · · · · · · · · · · ·			GIRDEN J STA MACK 1 i lútm 2 i0tm 3 jutm 4 iutm 5 i0tm 6 iqtm 7 i0tm 8 iqtm 9 i0tm STA AHEAD	$103 \cdot 66.86$ $103 \cdot 74.86$ $103 \cdot 82.86$ $103 \cdot 90.87$ $103 \cdot 98.88$ $104 \cdot 6.88$ $104 \cdot 14.89$ $104 \cdot 30.90$ $104 \cdot 30.90$ $104 \cdot 46.90$	5270.44 5270.43 5276.42 5276.41 5276.41 5276.41 5276.42 5276.44 5276.44 5276.46 5276.50 5276.54
DE INICO BY		2 10TH 102 + 3 10TH 103 + 4 10TH 103 + 5 10TH 103 + 6 10TH 103 + 6 10TH 103 + 7 10TH 103 + 9 10TH 103 + 9 10TH 103 + 5TA AHEAD 103 + GIRDER + 5TA 8ACK 102 + 9 1 10TH 103 +	99,62 5276.41 7.62 5276.41 15.62 5276.41 23.63 5276.41 31.63 5276.41 39.64 5276.41 39.64 5276.42 55.64 5276.42 55.64 5276.44 20.64 5276.15				GIRDEP 4 STA BACK 1 10TM 2 10TM 3 10TH 4 10TH 5 10TH 6 10TH 6 10TH 8 10TH 9 10TH STA AHEAD	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5275.97 5275.94 5275.92 5275.88 5275.88 5275.88 5275.88 5275.89 5275.91 5275.93 5275.96
		2 10TH 103 + 1 3 10TH 103 + 1 4 10TH 103 + 2 5 10TH 103 + 2 5 10TH 103 + 4 6 10TH 103 + 4 8 10TH 103 + 4 9 10TH 103 + 6 9 10TH 103 + 6 5TA AHEAD 103 + 7 GIRDER 5 5TA GACK 103 + 1 1 10TH 103 + 9 1 0 TH 100 + 9	A.47 5276.10 6.52 5276.09 4.57 5276.05 0.68 5276.04 8.74 5276.02 4.80 5276.02 4.80 5276.02 4.80 5276.02 1.24 5275.84				STA AHEAD	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	\$275.45 5275.38 5275.38 5275.32 5275.32 5275.31 5275.30 5275.33 5275.33 5275.34 5275.34
		101H 103 • 17 3 101H 103 • 12 4 107H 103 • 25 5 107H 103 • 33 5 107H 103 • 41 6 107H 103 • 42 7 107H 103 • 57 8 167H 103 • 56 9 7 107H 103 • 64 5 167H 103 • 57 6 9 167H 103 • 57 6 9 167H 103 • 64 103 • 64 5 57A 346A 103 • 62 EAST 0UTSIDE 57A 84CK 103 • 42 1 107H 103 • 12 107H 103 • 12	1.43 5275.76 1.53 5275.72 1.64 5275.69 1.75 5275.69 1.86 5275.63 1.98 5275.63 1.98 5275.58 1.21 5275.55 1.33 5275.72				2 101H 2 10TH 3 10TH 4 10TH 5 10TH 6 10TH 6 10TH 8 10TH	$103 \cdot 90.20$ $103 \cdot 98.26$ $104 \cdot 6.41$ $104 \cdot 14.60$ $104 \cdot 23.01$ $104 \cdot 31.46$ $104 \cdot 40.00$ $104 \cdot 40.77$ $104 \cdot 57.62$ $104 \cdot 75.75$	5275.30 5275.26 5275.22 5275.18 5275.14 5275.11 5275.08 5275.03 5275.03 5275.01 5275.01 5275.01 5276.99
		2 10TH 103 + 20 3 10TH 103 + 20 3 10TH 103 + 26 4 10TH 103 + 36 5 10TH 103 + 44 6 10TH 103 + 61 8 10TH 103 + 61 8 10TH 103 + 66 5 10TH 103 + 66	.31 5275.64 .39 5275.60 .53 5275.56 .74 5275.52 .02 5275.46 .38 5275.44 .61 5275.44				ABUT 3 ENO OF WING WEST OUTSIDE 1 EASI OUTSIDE 3	AL . AL .	5277,97 5274,96

• · · • • <u>- -</u>

.

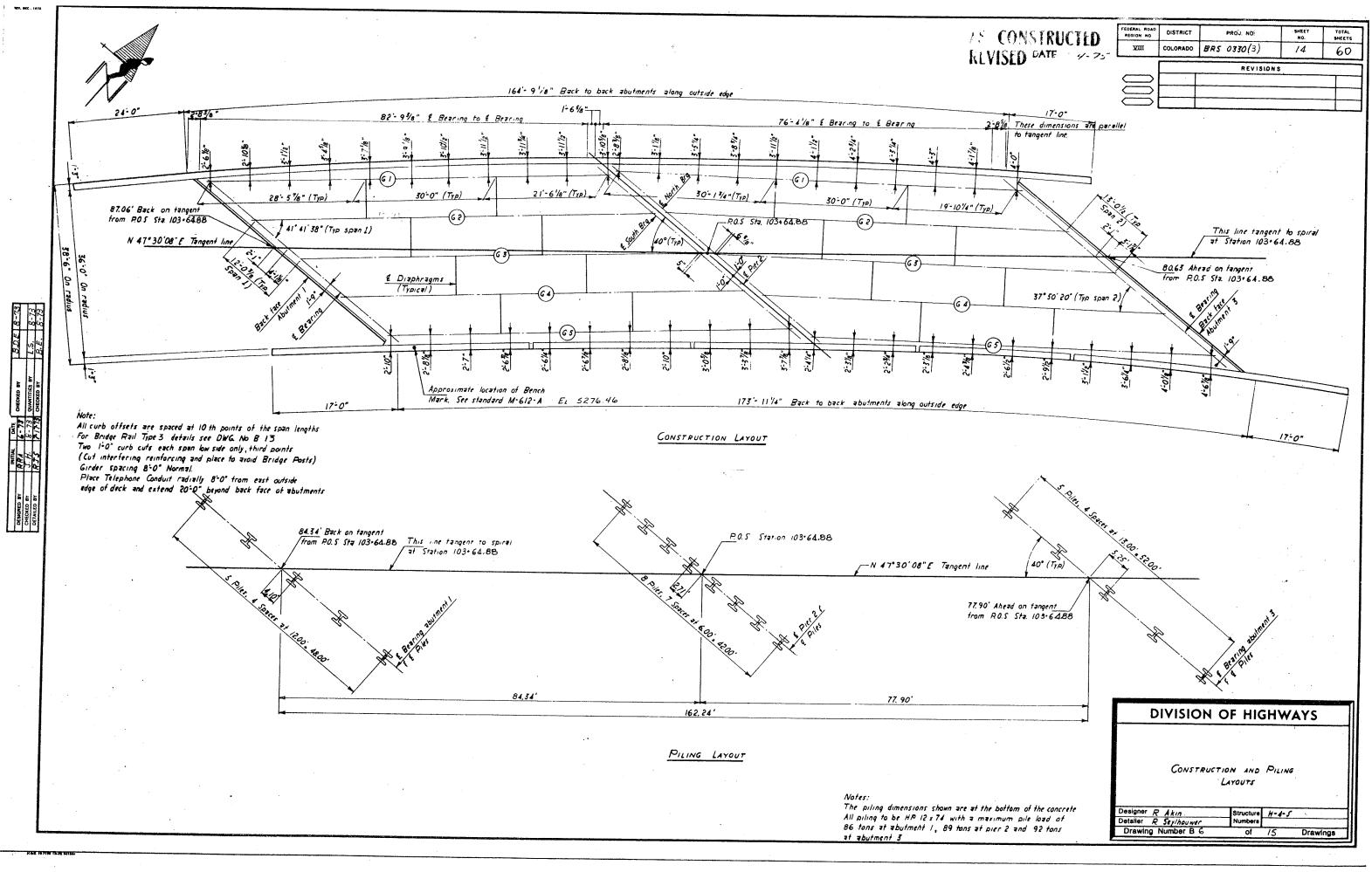
*....

.

۰.

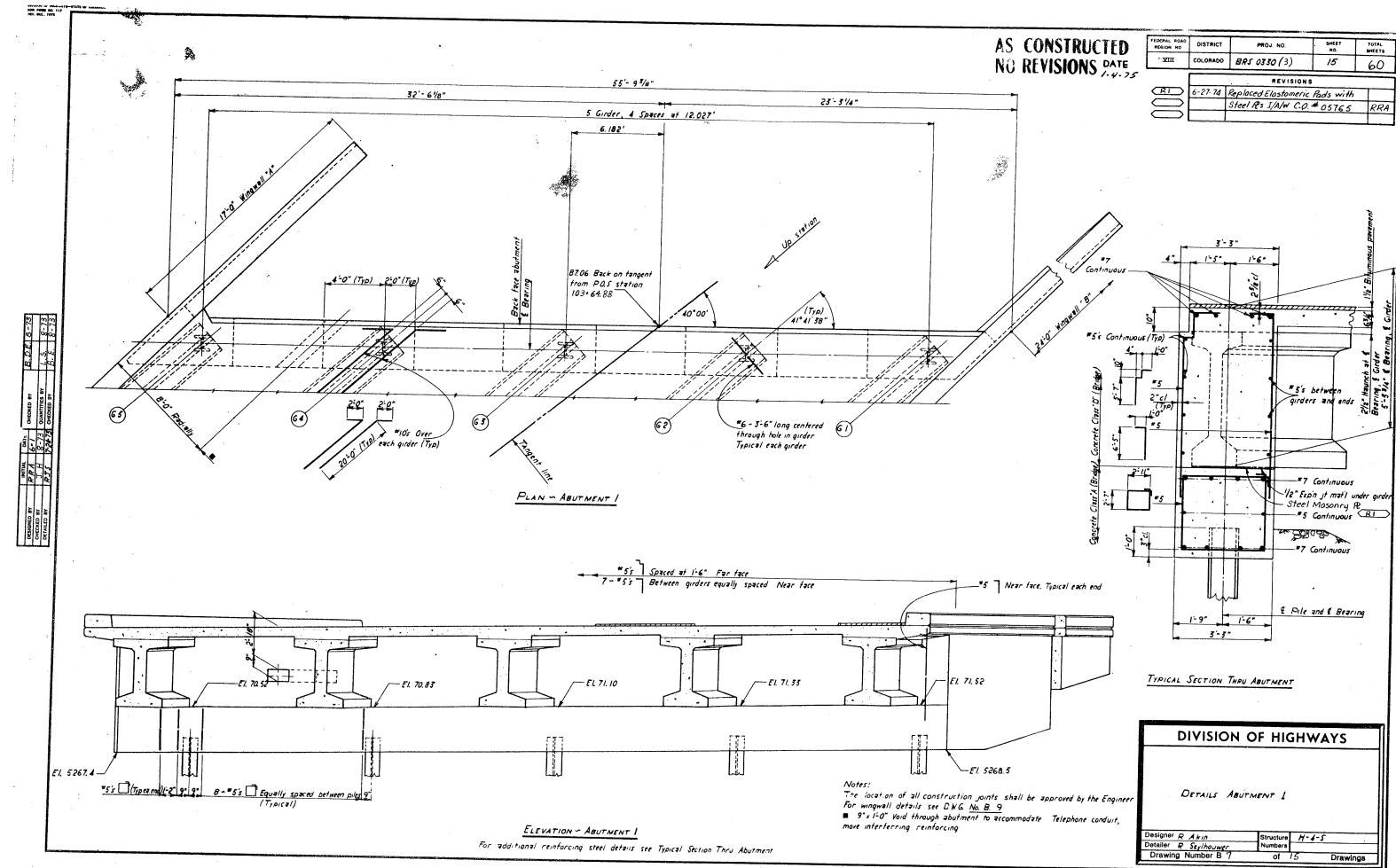
		Pro		The second second second second second second second second second second second second second second second s	No. of Concession, Name of Street, or other	
ATION	ELEVATION	FEDERAL ROAD REGION NO	DISTRICT	PROJ. NO.	SHEET NO.	TOTAL
23.50 57 25.15 57 45.32 57 49.97 52 77.07 52	5277.85	VIII COLO	COLORADO	BR50330(3)	13	60
	5277.78 5276.79			REVISIONS		-
	5276.55 5275.09 5274.99					
		\square			<u> </u>	
				10 0010-		

AŞ	CONSTRUCTED
	REVISIONS DATE

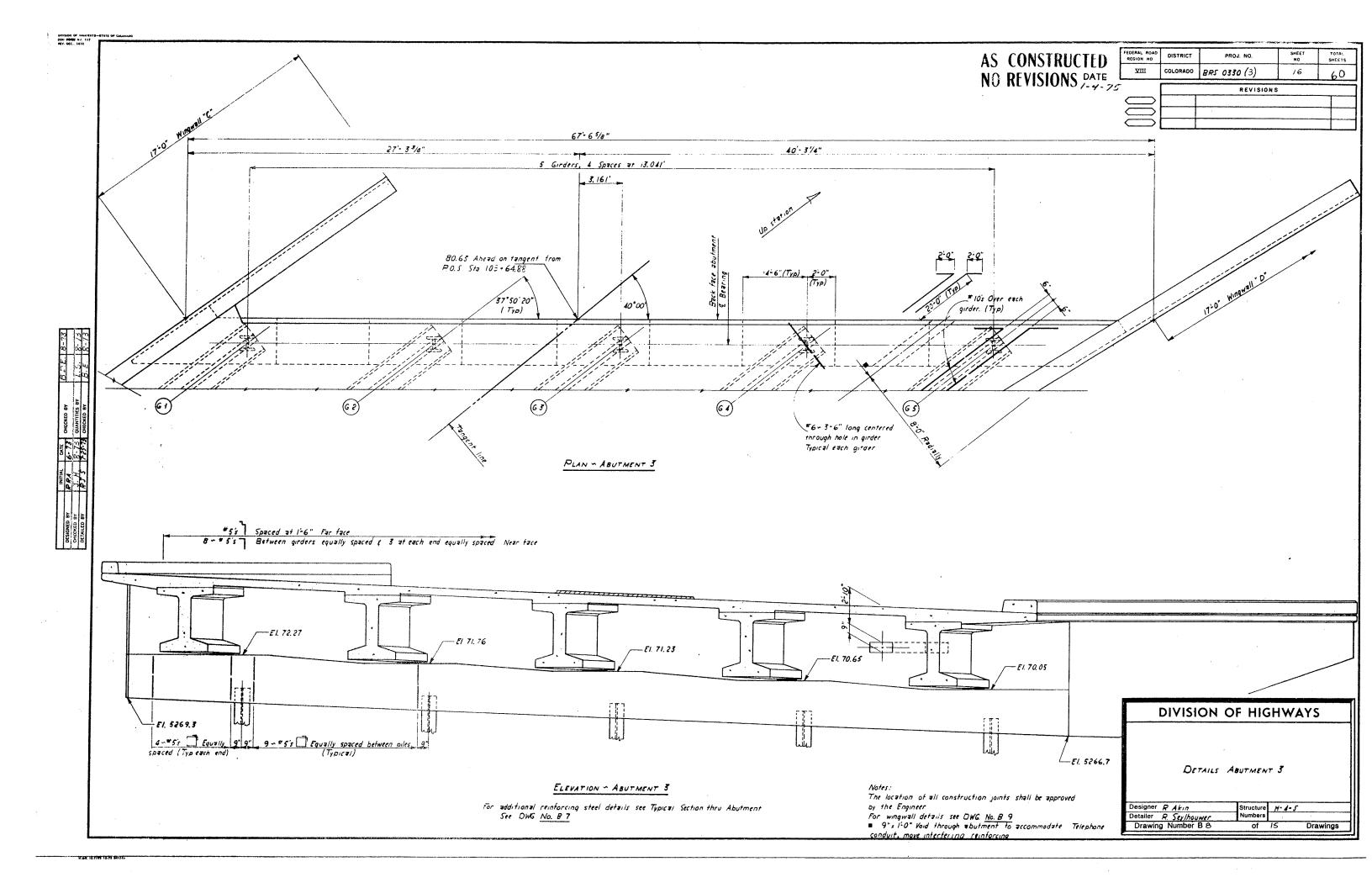

.

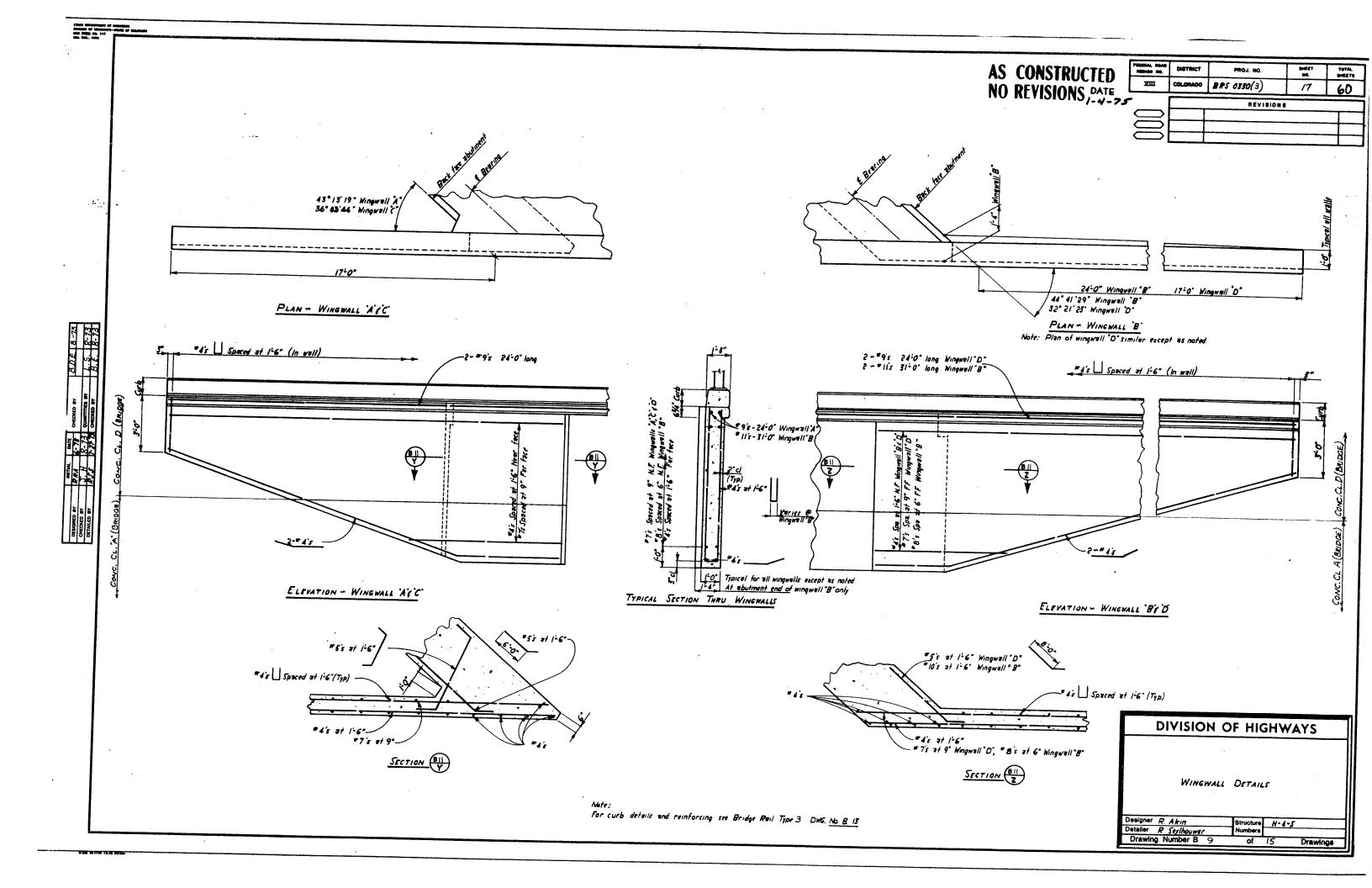
DIVIS	SION OF HIGHWAYS					
ELEVATIONS						
Approved:	Designer: R Akin Detailer: L Sims					
rippi oreg.						
Bridge Engineer Date:	Structure H-J-S Numbers					

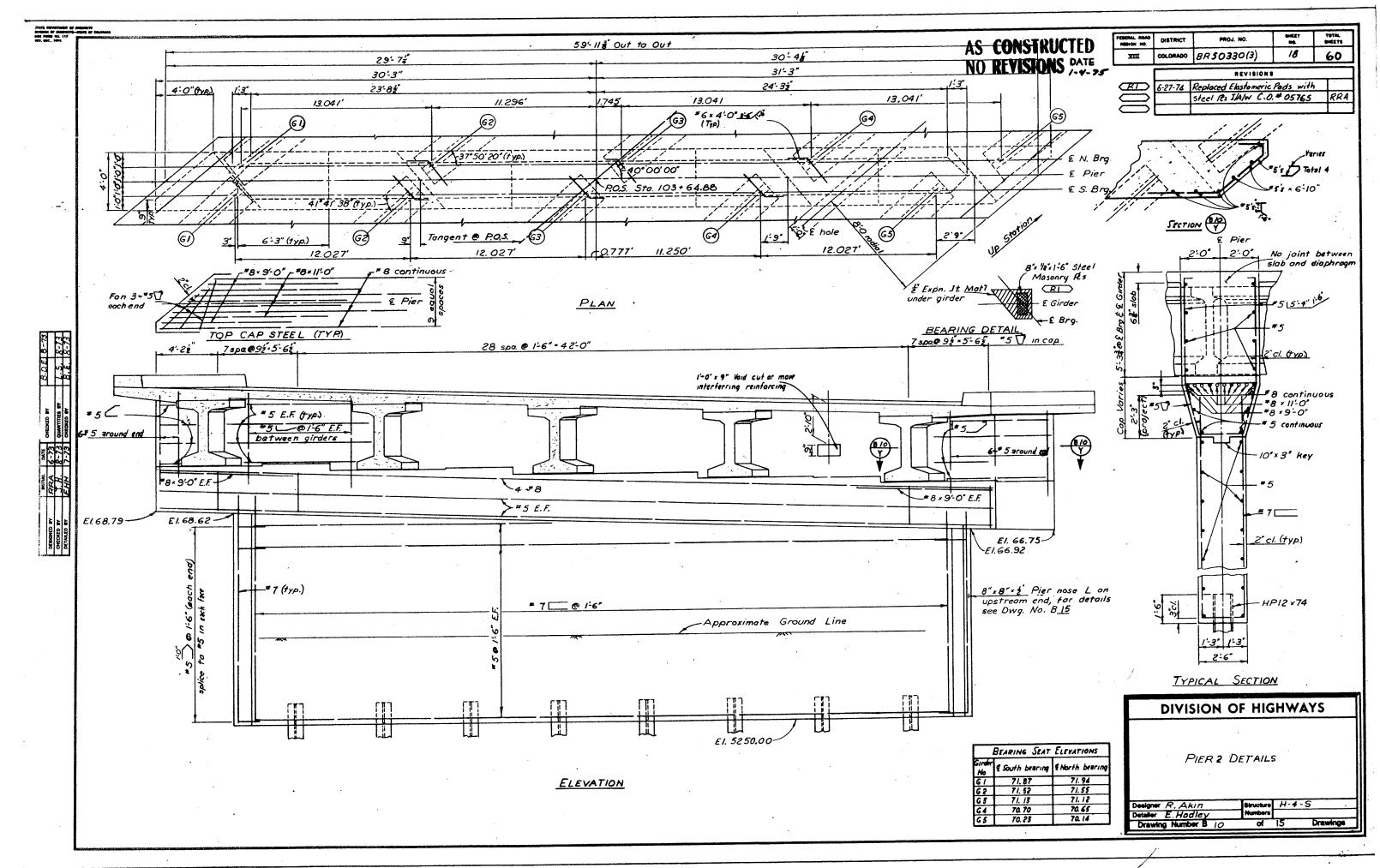
.

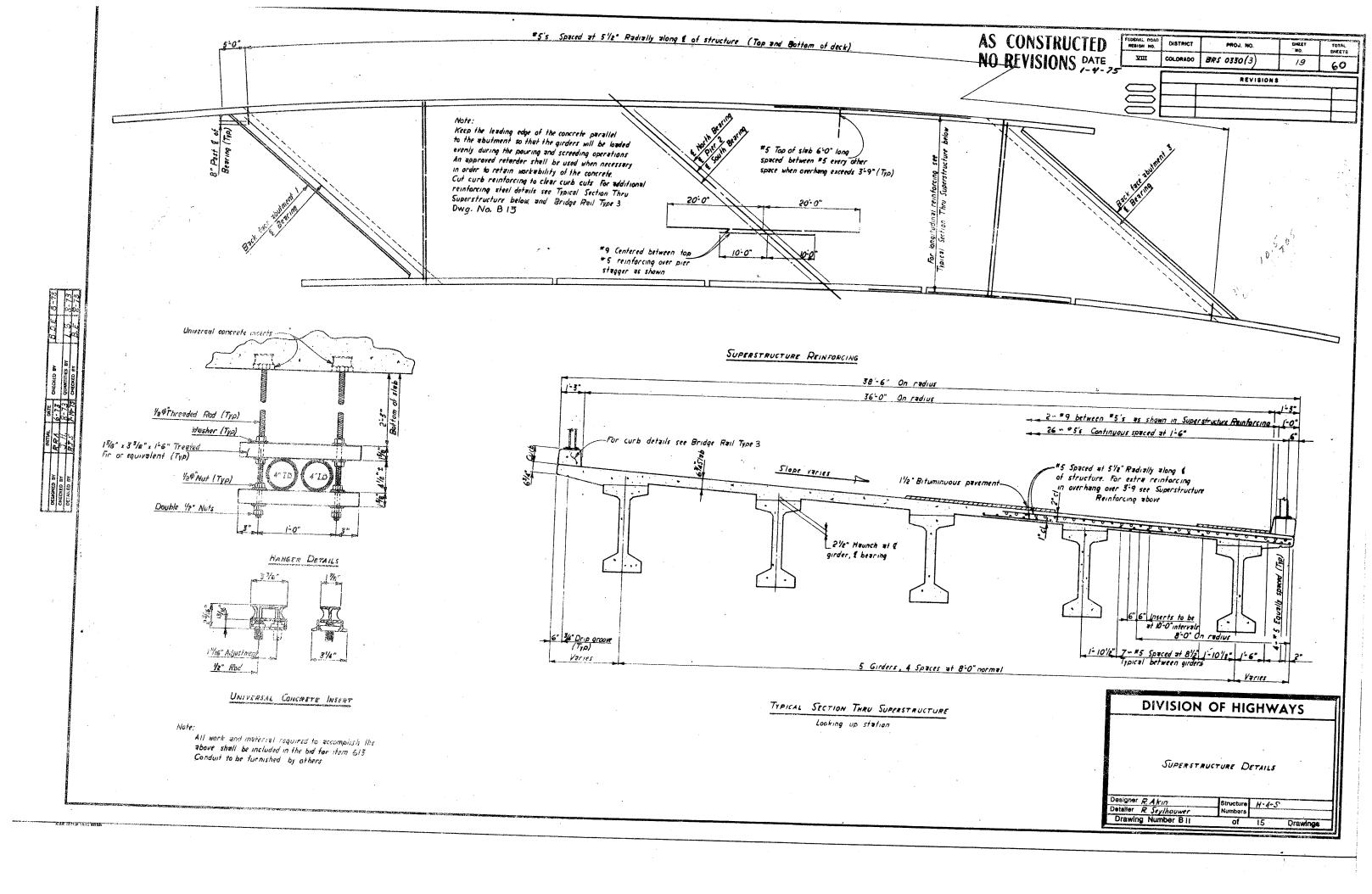

-

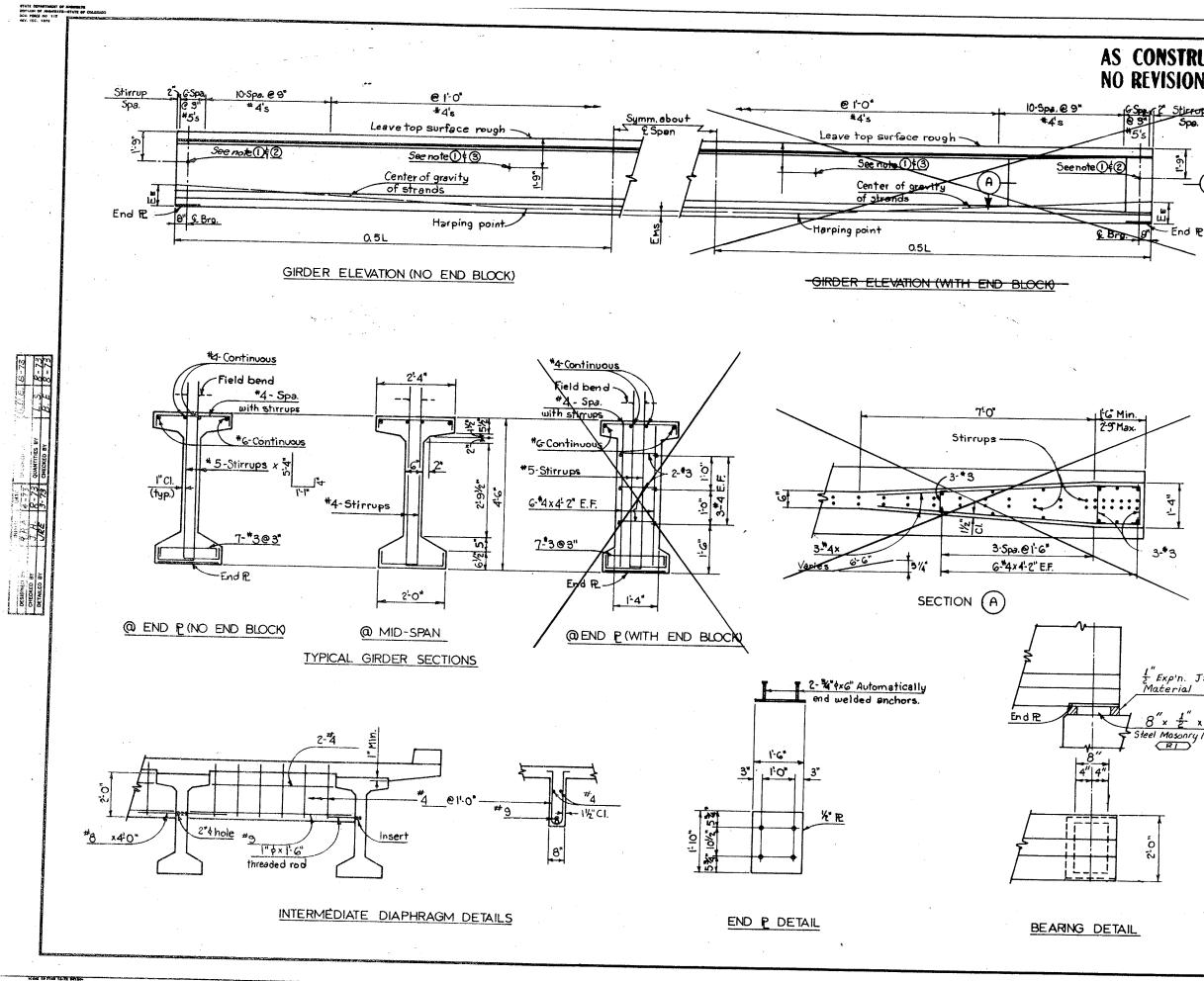
.




1


.




.

CONSTRUCTED	FEDERAL ROAD REGION NO.	DISTRICT	PROJ. NO.	SHEET NO.	TOTAL SHEETS
REVISIONS DATE	<u></u>	COLORADO	BRS 0330(3)	20 "	60
11-1010107.4.73			REVISIONS		
6 Sper 2 Sticrop	æ	6-27-74	Replaced Elastomeric Po	ds with	· · ·
e 3⁴ Spe. ¹⁵ /s		·	Steel Rs I/A/W C.O.+	05765	RRA
					-

A

GENERAL NOTES FABRICATION AND TOLERANCES OF THE PRESTMESSED GIRDERS AND BEARINGS SHALL CONFORM TO THE DIVISION OF HIGHWAYS, STATE OF COLORADD "STANDARD SPECIFICATIONS FOR ROAD AND BRIDGE CONSTRUCTION", "THE LATEST EDITION OF A.A.S.H.O. SPECIFICATIONS", AS MENDED, AND "STANDARD FOR PRESTRESSED CONCRETE POLES, SLABS, I-BEAMS AND BOX BEAMS FOR BRIDGES" AS PREPAMED BY THE JOIRT COMMITTEE OF THE A.A.S.H.O. COMMITTEE ON STRUCTURES AND THE P.C.I. ALL WORK "ECESSARY TO FABRICATE AND INSTALL THE INTEGRAL PARTS OF THE GIRDER (INCLUDING THE 1" \$ X 1'-6" THREADED ROBS AND STECL "MASONRY" PLS.) AS SHOWN ON THE PLANS SHALL BE INCLUDED IN THE BID PRICE FOR ITEM NO. 618, PRESTRESSED CONCRETE UNIT.

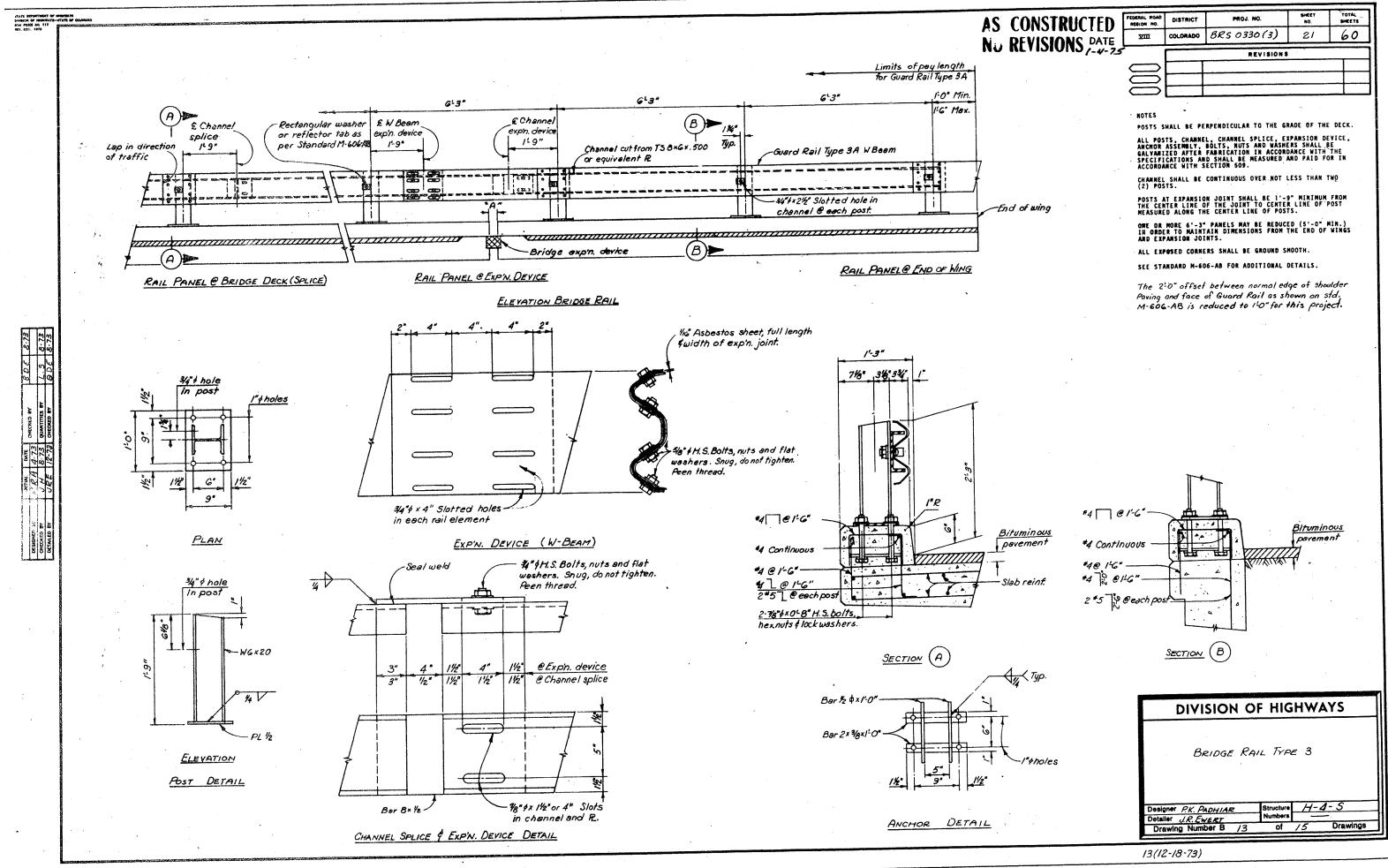
ALL ANCHOR BOLTS SHALL BE SNUGGED AND JANNED EXCEPT AT EXPANSION BEARINGS MHERE THEY SHALL BE SNUGGED AND BACKED OFF ONE FULL TURN BEFORE JAMMING. A MINIUM OF TWO MARPING POINTS SHALL BE USED PER GIRDER. CUT ALL STRANDS FLUSH WITH GIRDER ENDS. THE EXPOSED ENDS OF STRANDS AND A 1" STRIP OF ADJOINING CONCRETE SHALL BE CLEANED AND PAINTED NITH AN APPROVED WATERPROOFING COMPOUND. USE 1/2" B STRANDS F'S = 270 KSI (STRESS-RELIEVED). ALTERNATE STRANDS ARE LOW-RELAXATION STRANDS MEETING THE REQUIREMENTS OF ACTM-AAIS-68 GRADE 270. IF LOW-RELAXATION STRANDS ARE USED THE NET COMPRESSIVE STRESS IN THE CONCRETE AFTER ALL LOSSES SHALL BE AT LEAST AS LARGE AS THAT PROVIDED BY THE STRESS-RELIEVED STRANDS, ALSO, THE USING THE STRENGTH OF THE STRUCTURE WITH THE LOW-RELAXATION STRANDS SHALL MEET THE REQUIREMENTS OF THE APPLICABLE A.A.S.H.O. SPECIFICATIONS.

INTITIAL PRESTRESS FORCE:	THE JACKING FORCE PER GIRDER
	INCLUDING ALL LOSSES. $F1 = f's \times 0.74 \times (A^*)$
FINAL PRESTRESS FORCE: TH	E FORCE REMAINING PER CIRCER

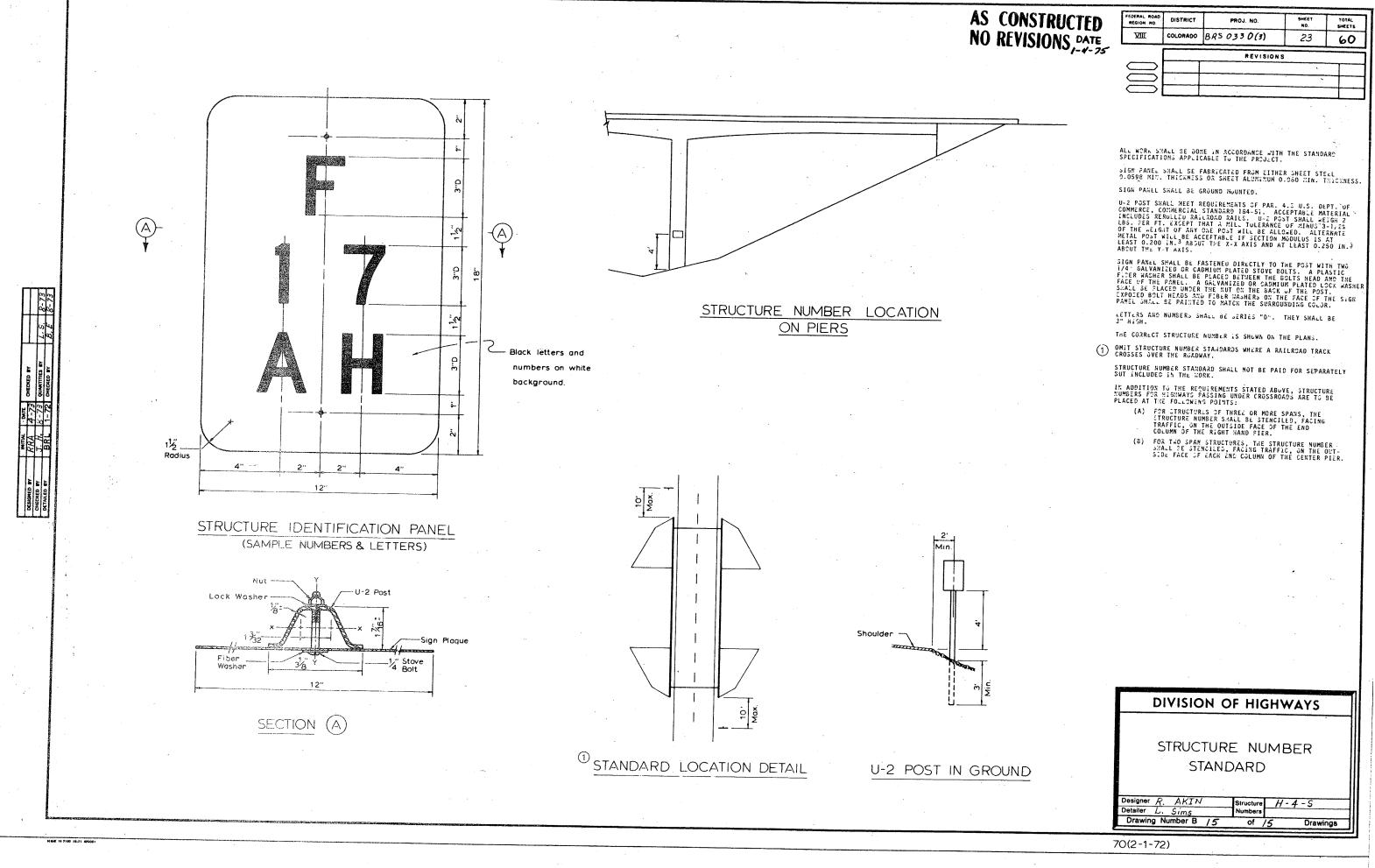
After ALL LOSSES $Ff = f's \times 0.52 \times (A_s^*)$ After ALL LOSSES $Ff = f's \times 0.52 \times (A_s^*)$

f's * ULTIMATE STRENGTH OF PRESTRESSING STEEL

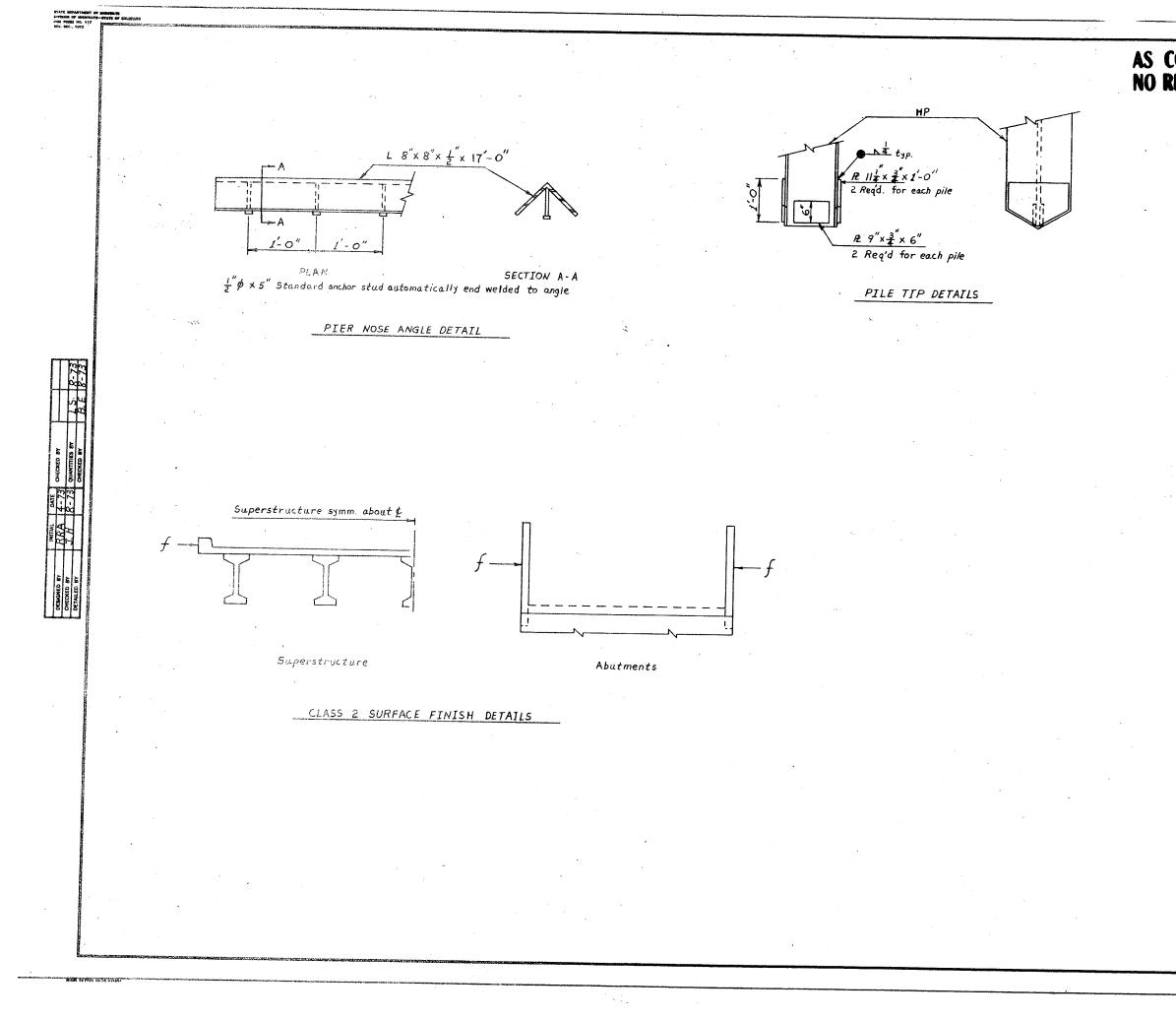
CONCRETE STRENGTH: F'cI IS AT TIME OF RELEASE OF PRESTRESS FORCE. F'c IS AT 28 DAYS.


CLEARANCE: 1. THE MINIMUM DISTANCE BETWEEN GROUPS OR INDIVIDUAL STRANDS IS 1 3/4" (MEASURED BETWEEN CENTERS OF ADJACENT STRANDS). 2. MINIMUM CONCRETE COVER FOR PRESTRESSING STEEL IS 1_1/2"

USE 1/2" MINIMUN CHAMFER ON ALL CORNERS.


FOR DIAPHRAGM LOCATION, SEE SUPERSTRUCTURE PLAN.
 AT END DIAPHRAGMS, 2" DIAMETER HOLES.

AT INTERIOR DIAPHRAGMS, 2" DIAMETER HOLES EXCEPT AT EXTERIOR GIRDERS AND BRIDGES OTHER THAN 90" SKEW, OMIT HOLES AND PLACE INSERTS FOR 1" DIAMETER THREADED RODS.
 DEFLECTION AT CENTER LINE OF SPAN DUE TO CAST IN PLACE SLAB.


,"		G	IRDER		Sc	HED	ULE	•		
<u>1</u> " Exp'n. J t . Material	Span	Gird.	L	Еms	Εe	1	Fq	Conc.s	trength	See
- nacer nar	No.	No	(Feet)	anab	(Track)	NIDE	1/105	Fci	Fć	Note
8" 1" w/ 4		ALL	012 1	TL I	unen)	KIPS,		(151)	crsu	(Inch)
8"x 1" x 1.6" Steel Masonry Rs		ALL	81'- 4"	12	14	<u>796</u>	<u> 261</u>	<u>4000</u>	<u>4000</u>	0.73
Steel Masonry les			1							
. L	l			I	1					
4		D	1V/ICI							81.4.5
=		<u> </u>	IVIS	NUI	0	- н	IGF	IWA	YS	
2 ¹ 0"										
5		CO	LOR	AD	0	G5	4 (GIRE	FR	
					Ť	00				
and the second second second second second second second second second second second second second second second										
-			AKIN		1	Structu	re	H-4	-5/	
	Detail	н <u>к</u> .	HEATE			Numbe	ra 🗌			
	Dra	wing I	Number	B /2	2	of	15		Drawin	98
	32/2	-1 7	2)							
	53(3	-1-7.	3)							

NSTRUCTED	FEDERAL ROAD REGION NO.	DISTRICT	PROJ. NO.	SHEET NO.	TOTAL SHEETS
ISIONS DATE	VIII	COLORADO	BRS 0330(3)	21	60
13101131-4-75			REVISIONS		
	Ш	┠───┤			

FEDERAL ROAD REGION NO.	DISTRICT	PROJ. NO.	SHEET NO.	TOTAL SHEETS
VIII	COLORADO	BRS 0330(3)	23	60
		REVISION	s	
\square				
\leq	·			
		·		

CONSTRUCTED	FEDERAL ROAD REGION NO.	DISTRICT	PROJ. NO.	SHEET NO.	TOTAL SHEETS
REVISIONS DATE	Million	COLORADO	BRS 0330(3)	22	60
			REVISIONS		
	\mathbb{S}				

DIVISION			HWA	
MISCELL	ÀNE	ous	DETA	ILS

Designer R. AKIN	Structure	H-4-5
Detailer L. Sims	Numbers	
Drawing Number B /4	of	15 Drawings

ar animu tag	
TI - FAR or causedage	
	1

GENERAL NOTES

ALL MORE SMALL BE DOME ACCORDING TO THE STANDARD SPECIFICATIONS OF THE DIVISION OF HIGHWAYS, SIATE OF COLOMADO. APPLICABLE TO THE PROJECT. USE GRADEG GO FOR ALL REINFORGING STEEL, EXCEPT TIES AND STIRRUPS APE GADDE THERWISE NOTED ALL TIES AND STIRRUPS AFE GADDE SUPPORTING FOR SHOWN ON DRAFING NO. BI SMALL RELYFACULT SUPPORTS.

ALL CONCRETE CHANFERS SHALL BE 3/4 INCH UNLESS DIMERWISE NOTED. EXPANSION JOINT MATERIAL SHALL NELT A.A.S.H.O. SPECIFICATION N 213-65 UNLESS OTHERMISE ROTED.

SOUNDINGS AND DEPTH OF FOUTINGS ARE IN ACCORDANCE WITH THE BEST AVAILABLE Data. When Different conditions are encountered. The Bridge Engineer Will Inspect and Determine if redesign is necessarts.

WHEN THEATED TENBER PILING IS SHOWN ON THE PLANS, THE PRESERVATIVE FOR TREATMENT SHALL BE CREOSOVE OIL.

WHEN EICAVATING FOR FOOTINGS, THE FIMAL SIX INCHES IN DEPTH SHALL BE DOKE BY -AND LABOR METHODS.

FOR DETAILS OF STRUCTURE EXCAVATION AND STRUCTURE BACKFILL, SEE STARDARD H-206-AA.

ALL STRUCTURAL STEEL NOT OTHERVISE NOTED SHALL BE A.A.S.H.O. SPECIFICATION N-183.

ALL STRUCTURAL STEEL NOT OTHERWISE MOTED SHALL BE PAINTED IN ACCORDANCE WITH SECTION SOS FOR (ALVANNUM) PAINT.

ALL BOLTS SHALL BE 3/4" DIAMETER, HIGH STRENGTH, UNLESS OTHERWISE NOTED.

NO WELDING OF ANY KIND SHALL BE PERMITTED ON THE FLANGES OF STEEL GIRDERS UNLESS SPECIFICALLY CALLED FOR IN THE PLANS.

LEARN BEFORELGE BARS AND THE LEARD. EARN BEFORELGE BARS AND LES TAGGED N'TH BARS DESIGNATION, STRUCTORE NUMBER, AND STRUCTOR D'THE REDALCT. THE FIRST DEGLT OR DECITS: 4-11 OF THE CAR DESIGNATION INFOLMENTS THE BARS STRUCTORE CONTROL 103 - ATI RAS. ETC. ALL DIMENSIONE ON BAR BENDING DIAGAMAN SARE OUT DUT. DIMENSIONS FOR EXITACIDENCE ON BARS BENDING DIAGAMAN SARE OUT OUT. DIMENSIONS FOR EXITACIDENCE ON THE SHORE AS THE AND THE CENTERIES OF THE SHALL LA A MINIMUM OF 40 DIAMETERS.

ALL REINFORCING AND SPLICES SHOWN IN THE SUPERSTRUCTURE SHALL MAYE A MINITUM LAP OF NO DIAMPTERS UNLESS DIVIEWISE NOTED. WHIRE SPLICES CONTAIN BARS OF DIFFERENT DIAMPTERS, THE SPLICE LENGTH SHALL BE GOVERND DI THE SHALLSI BAR.

THE FOLLOWING TABLE SHOWS THE MINIMUM 40 DIAMETER LAP FOR COMMON BAR SIZES:

 BAR 512E
 p4
 p5
 p6
 p7
 p8
 p9
 p10
 p11

 LAP
 1'-8"
 2'-1"
 2'-6"
 2'-11"
 3'-4"
 3'-10"
 4'-3"
 4'-9"

E.F. - EACH FACE N.F. - WEAR FACE F.F. - FAR FACE B.E.I. - BY EQUAL INCREMENTS

LOADING DATA

CROSS REFERENCE DRAWING BURGER

SECTION OR DETAIL IDENTIFICATION

item	Description	Unit	Super- structure	Abut. I	Pier 2	Abut. 3	Tota≀
203	Unclassified Excavation	Cu Ya	{ {				165
204	Haul	Ton Mi	130				130
206	Structure Excavation	Cu Yd.		180	135	365	680
206	Structure Backfill (Class 2)	Cu Yd.		35	88	35	158
403	Hot Bituminous Pavement (Grading Dx)	Ton	62				62
411	Asphalt Gement (AC 5)	Ton	5				5
502	Steel Piling (148P89)	Lin Ft		108	128	168	404
502	Reinforcing Tip	Each		6	8	6	20
506	Heavy Riprap	Cu.Yd		551		1194	1745
509	Structural Steel	Lb			455		455
509	Structural Steel (Galvanized)	Lb.	11,740				11,740
515	Waterproofing (Membrane)	Sq.Yd.	790				790
601	Concrete Class A (Bridge)	Cu.Yd.		27.4	98.2	27.4	153.0
601	Concrete Class D (Bridge)	Cu Ya	321	18		18	357
60Z	Reinforcing Steel	LDS	111,702	4441	9386	4441	129,970
613	3 Inch Electrical Conduit (Plastic)	Lun.Ft.	334				334
626	Mobilization	1.5.					0.15

AS COLOTINGTED R. V. SLD DATE

100 400 MD40	DISTRICT	PRGJ. NO.	BHBCT NO.	NIAL INCOME
	COLORNOO	30065(5)	19	
		REVISIO	N 3	
œD	4-10-72 F	levised Summai	ry of Quant	ittes J J
$ \square $	<u></u>			_
\square				
NOE X		RAWINGS		

Dwg. No. 81 General Information -Summary of Quantities Dwg No.82 General Layout Dwg No.83 Engineering Geology Dwg No.84 Bridge Hydraulic information Dwg No.84 Bridge Hydraulic information Dwg No.85 Elevations Dwg No.85 Elevations Dwg No.87 Construction Layout Dwg No.86 Philog and Footing Layout Dwg No.89 Abutment I Dwg No.81 Wingwall Details Dwg No.81 Pier Details Dwg No.81 Stab Reinforcing Dwg No.85 Stab Reinforcing Dwg No.85 Stab Reinforcing Dwg No.85 Stab Reinforcing Dwg No.85 Stab Reinforcing Dwg No.85 Stab Reinforcing Dwg No.85 Stab Reinforcing Dwg No.85 Stab Reinforcing Dwg No.85 Stab Reinforcing Dwg No.85 Stab Reinforcing Dwg No.85 Stab Reinforcing Dwg No.85 Stab Reinforcing Dwg No.85 Stab Reinforcing Dwg No.85 Stab Reinforcing Dwg No.85 Stab Reinforcing Dwg No.85 Stab Reinforcing Dwg No.85 Stab Reinforcing Dwg No.85 Stab Reinforcing Dwg No.85 Bridge Rail Type I Dwg No.82 Structure Number Standord DwgNo.B2 General Layout

* All work to be done by contractor. (Non -federataid) Mountain Bell shall reimburse the Department for this work.

SUMMARY OF QUANTITIES

.

SURFACE FINISH DETAILS

LIYELDAD: DEADLOAD:	A.A.S.W.D. NJ-20-44 OR INTERCIATE ALTERANTE. Assumes 20 Jos, pre 50, ft. Additional Meanings Jurael No Provision has been made for additional dyerlats.

REINFORCING STEEL:	FOR TRANSFERSE	Fs Sars	î	20,000 N ROADN	L85. Ay si	PES AB ON	SQ. LY.	1N.
		ء م	•	z4 ,000	L85.	PER	SQ.	Lĸ.
STRUCTURAL STOL	A36	F 5	٠	20.000	LBS.	PER	sq.	IN.
	A572, GRADE 50	Fs	*	27,000	LBS.	PE\$	sq.	4κ.
CONCRETE:		Fc	•	1.200	195.	PER	5Q.	IS.

Over Plateou Creek 56'-0' Roadway Curb to Curb 60*-0' skew -3 curbs Bridge Rail Type I DIVISION OF HIGHWAYS GENERAL INFORMATION SUMMARY OF QUANTITIES Station 355+20.560 to 356+47.447 Station T 105. R 96 V

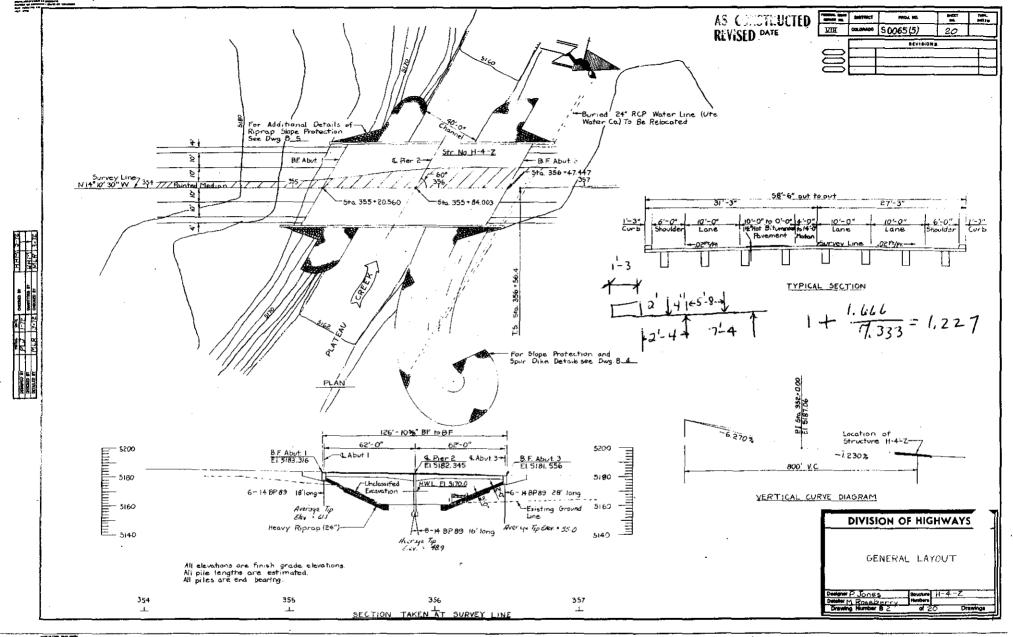
BRIDGE DESCRIPTION

2-Spans (62'-0", 62'-0") Continuous Parabolic Concrete T-Beam Bridge,

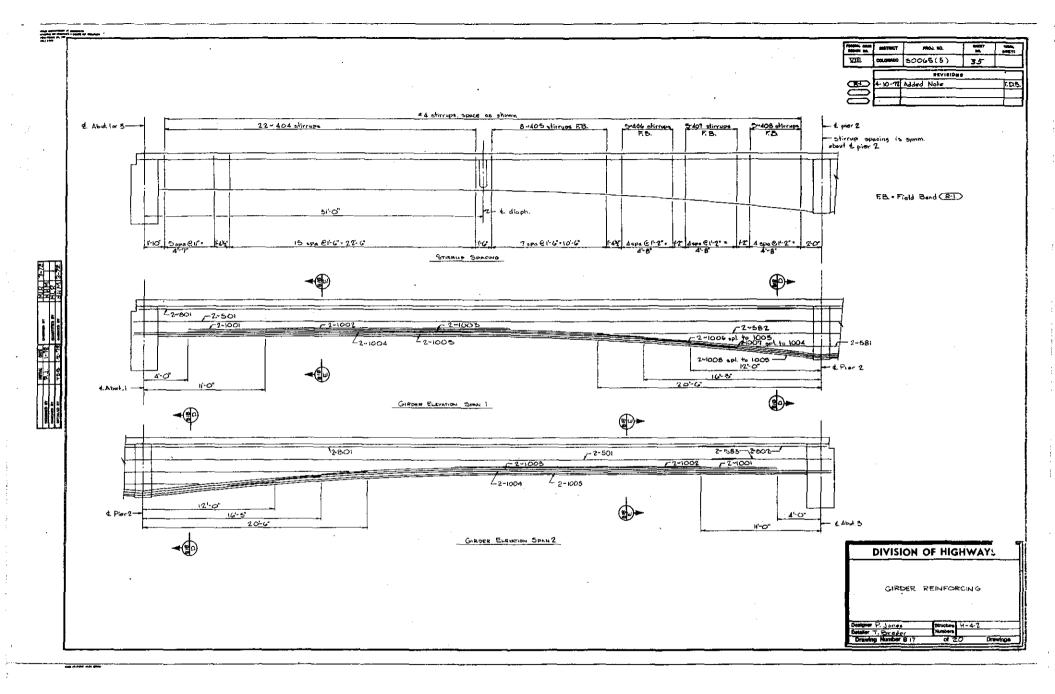
R 96 W.

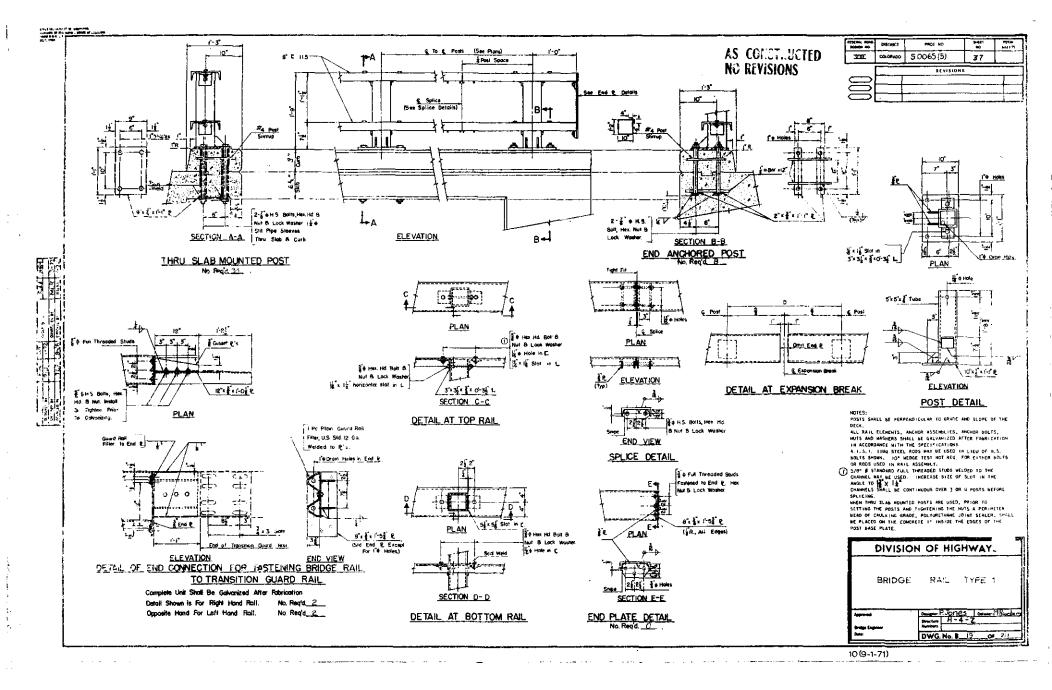
of 20 Drawings

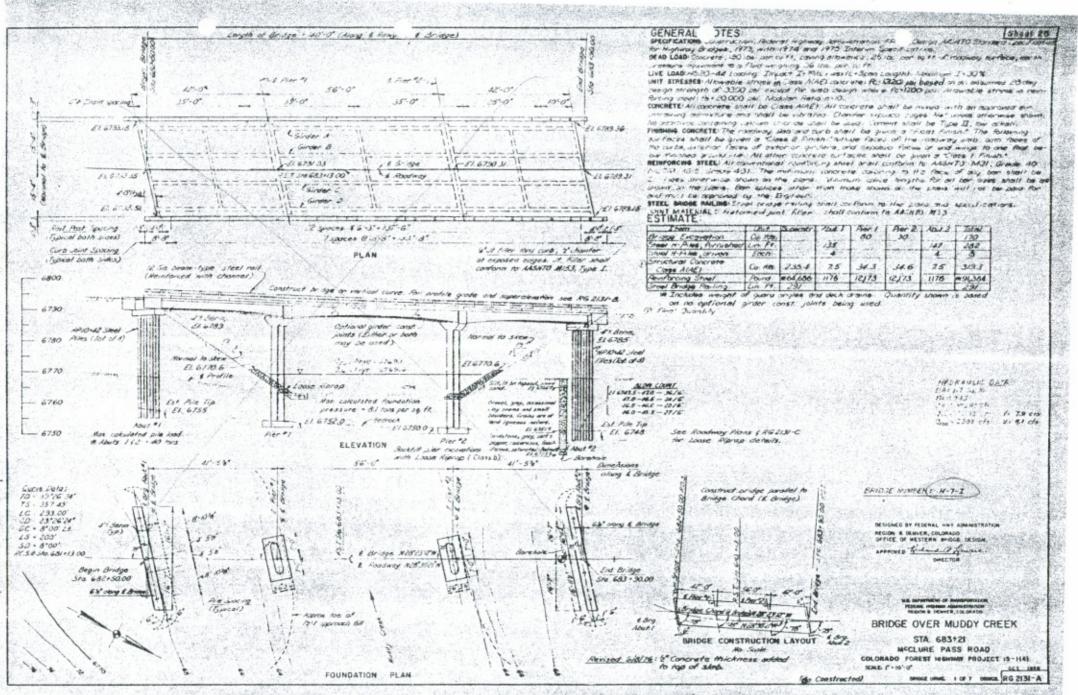
Numbers


Near Mesa Sec 18 Designer P Jones Parmin PE. 31:3172 Deteller Mays Drawing Number B 1 Bridge Engineer Date

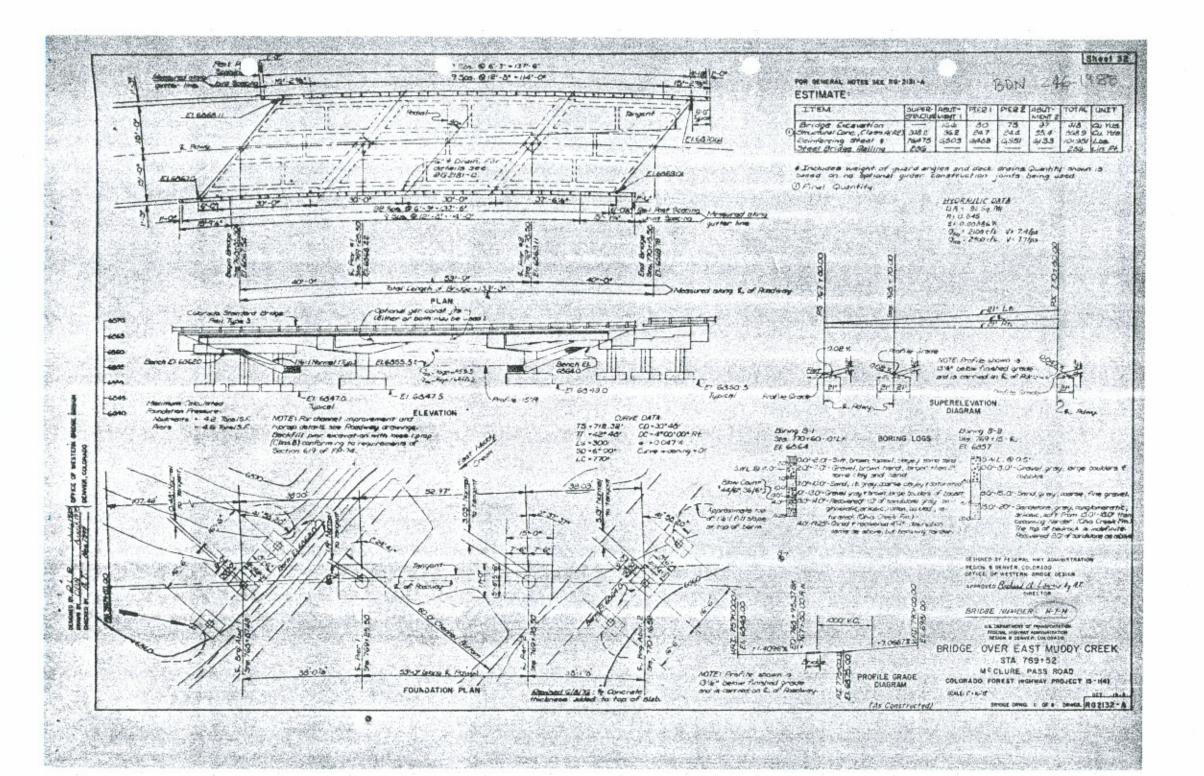
0(7-1-71)

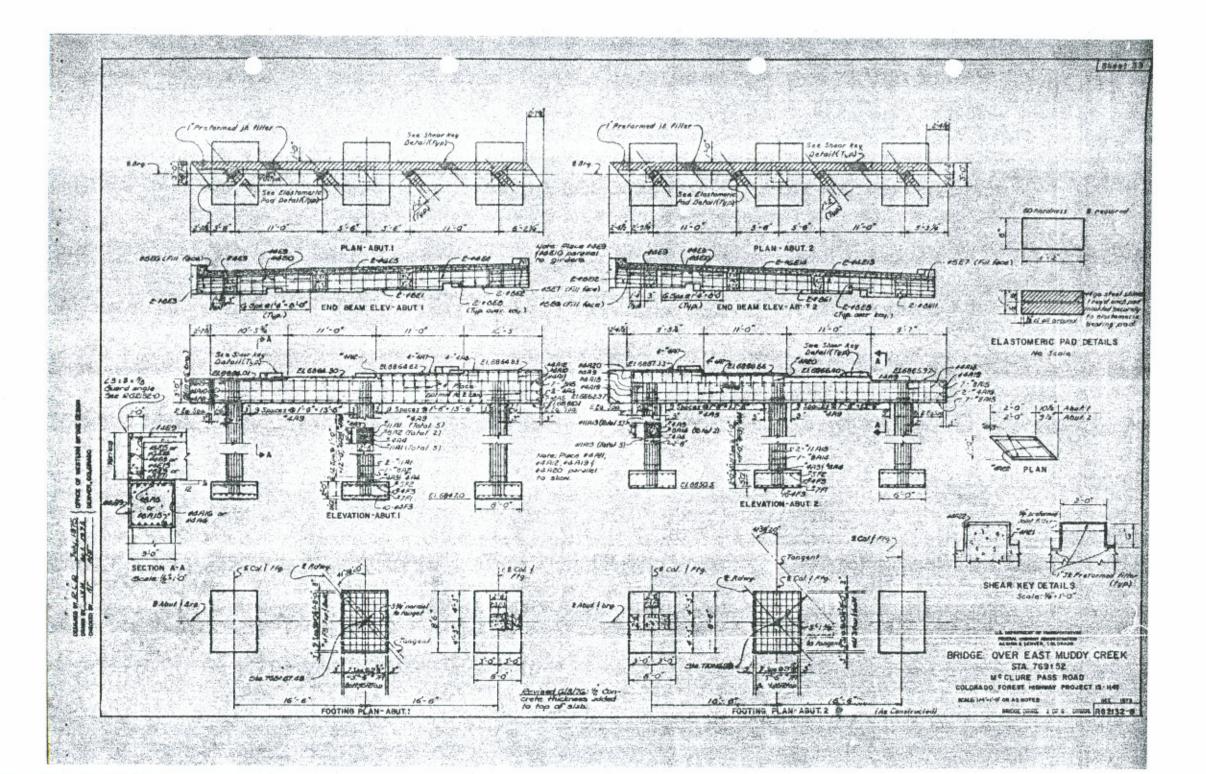

alite and a second

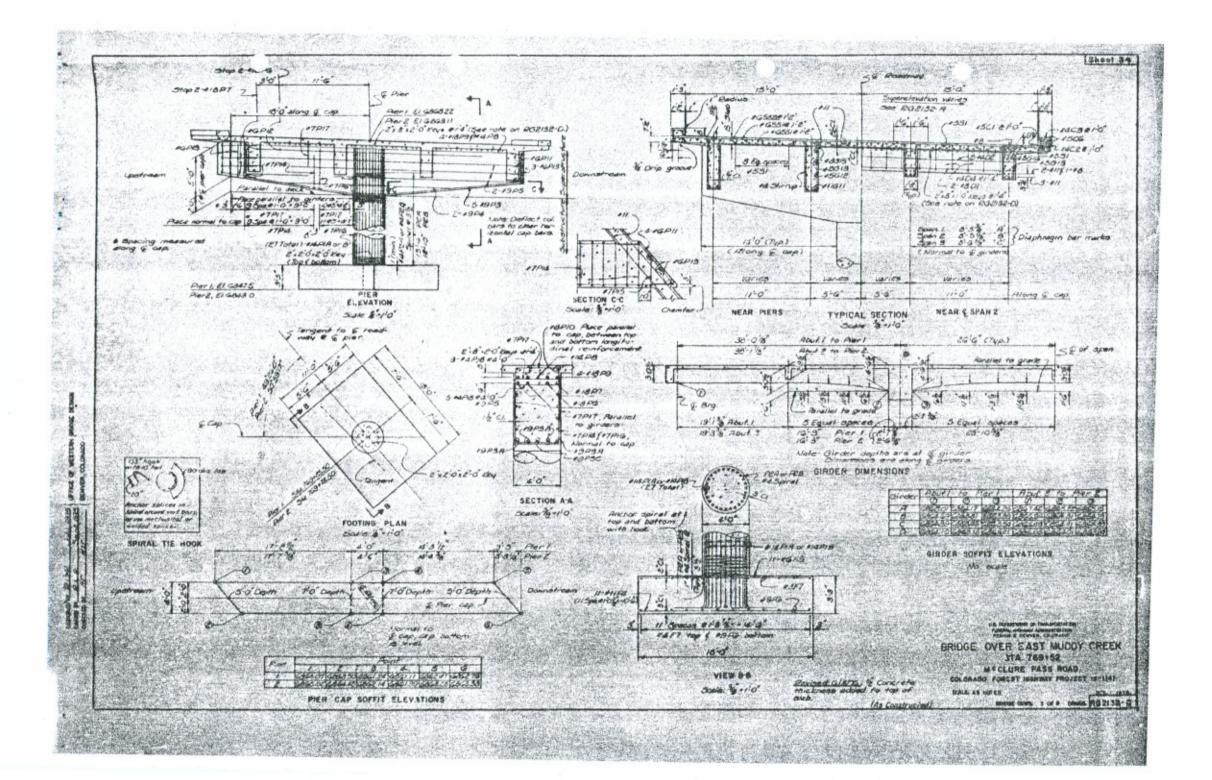

-

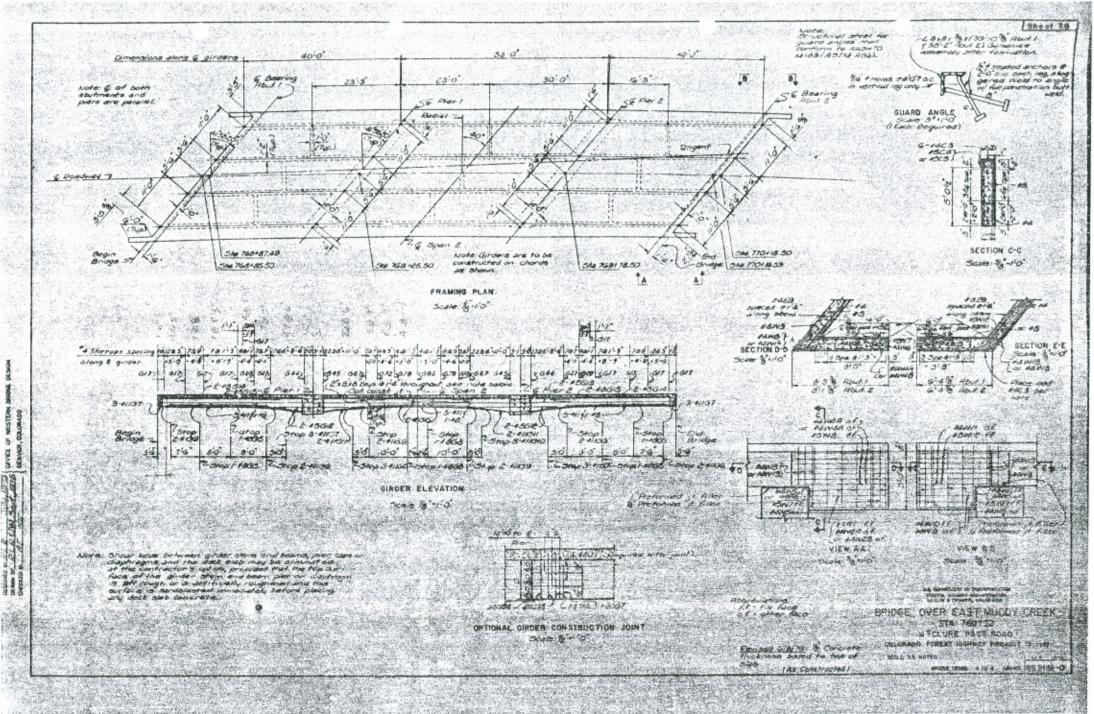

ODCOMAC

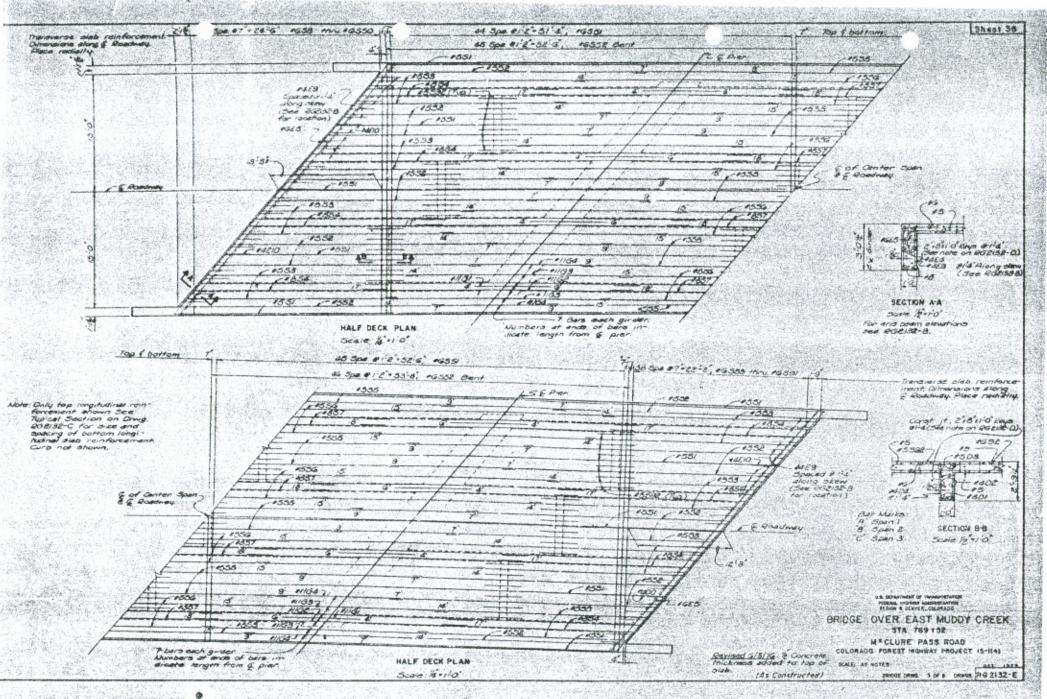
2.8' - 25. LUB 2.334 '

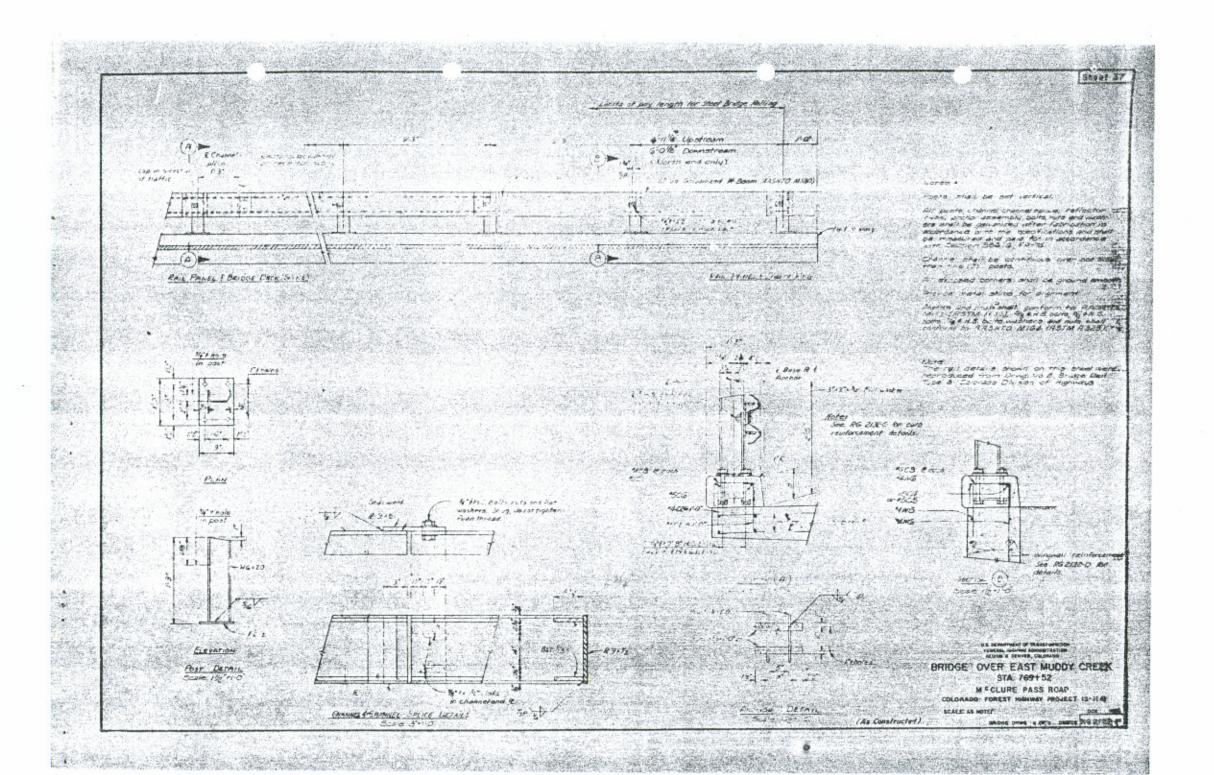


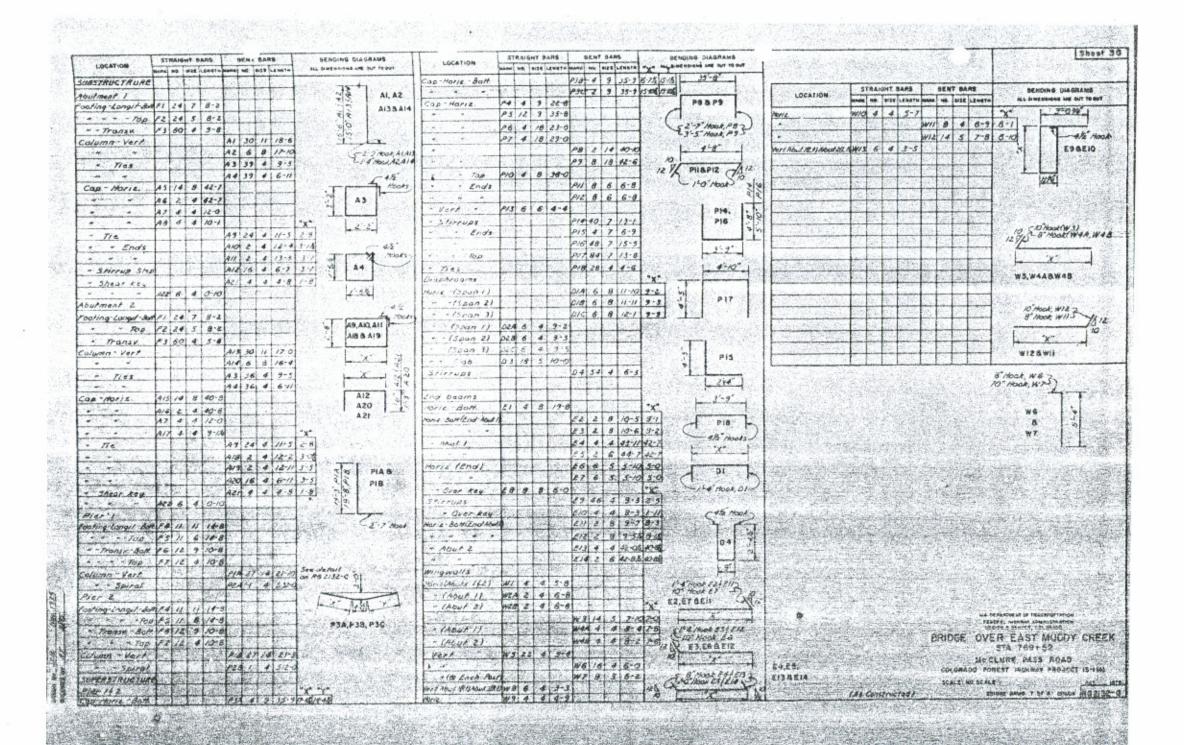


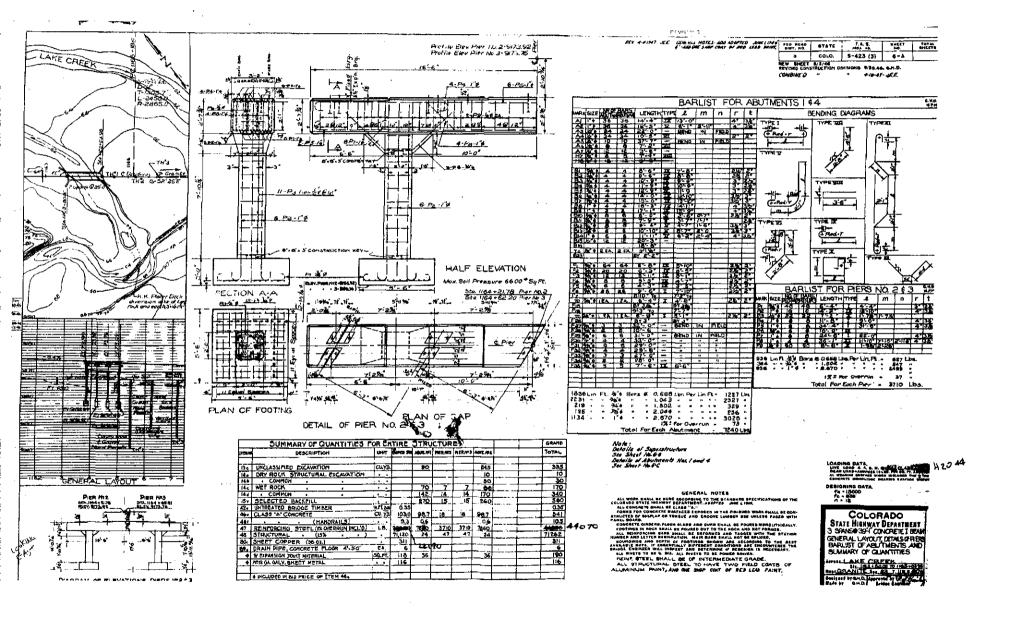


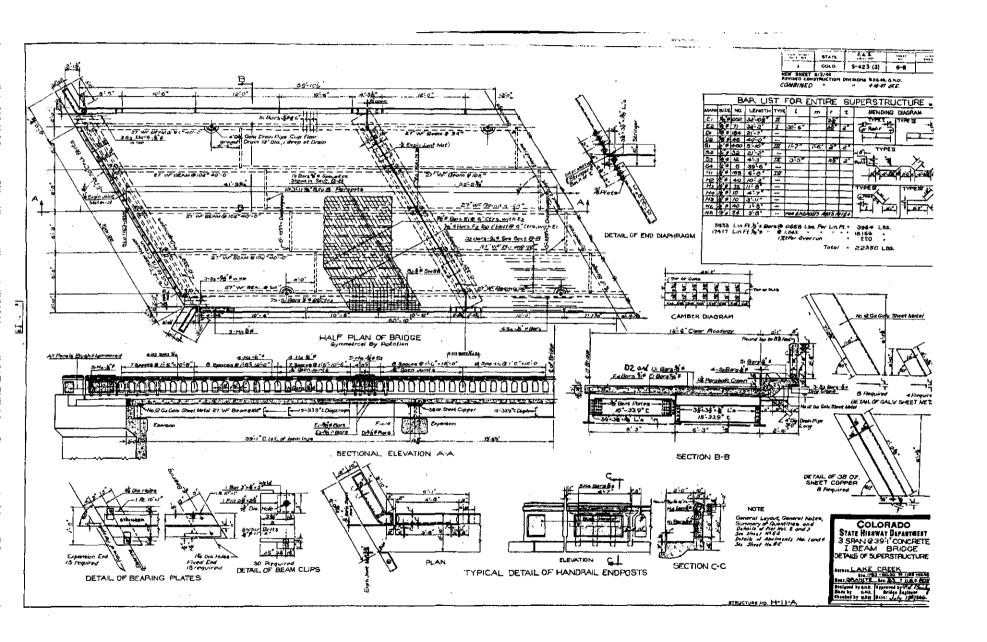

1/2 The second second second second second second second second second second second second second second second

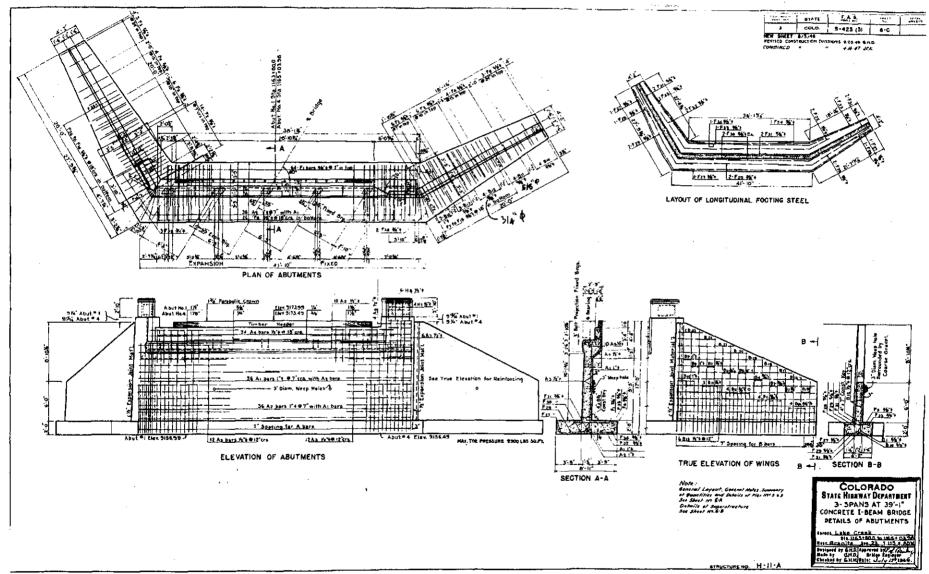

the second to be allowed and the



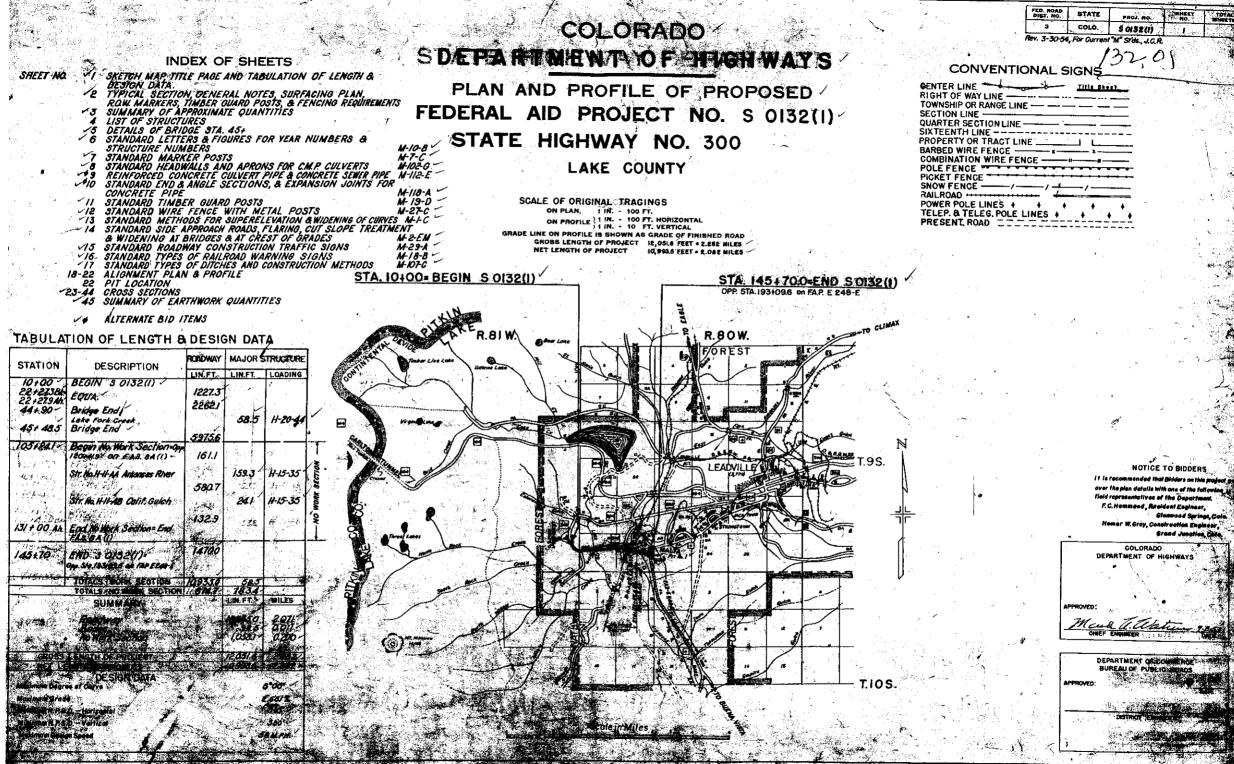


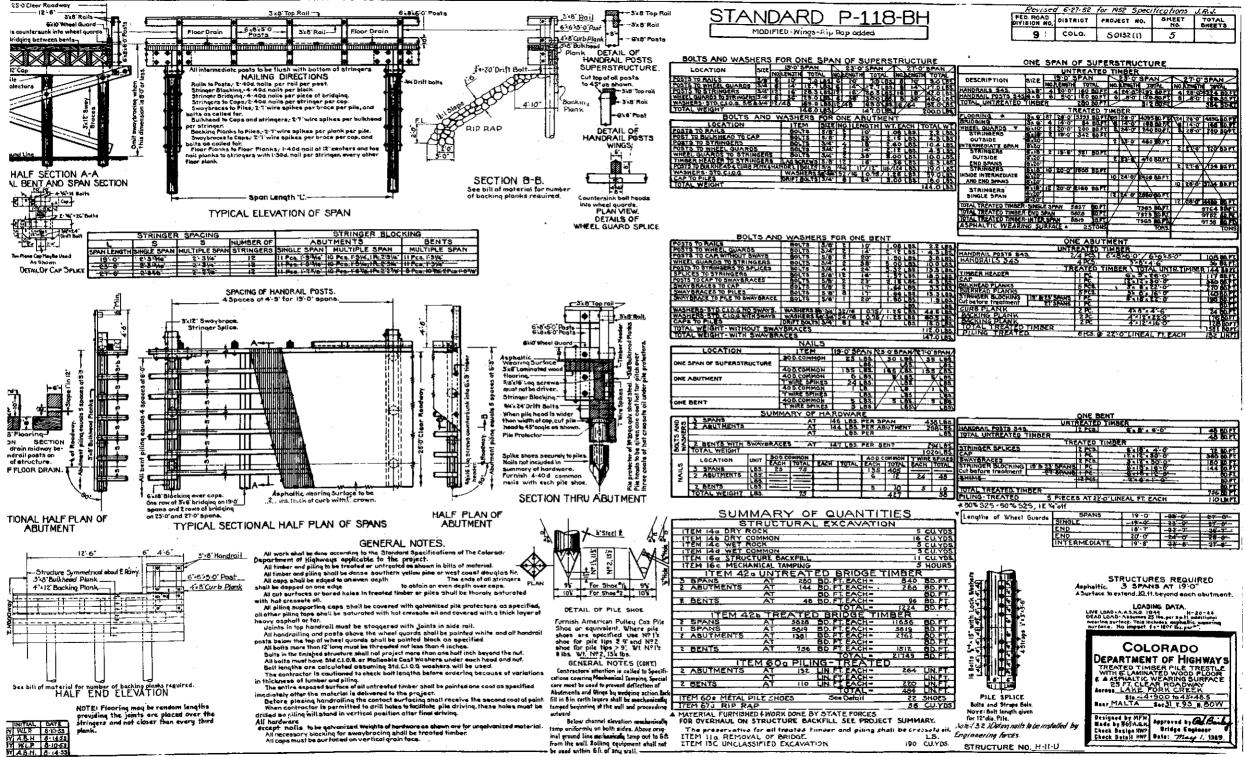


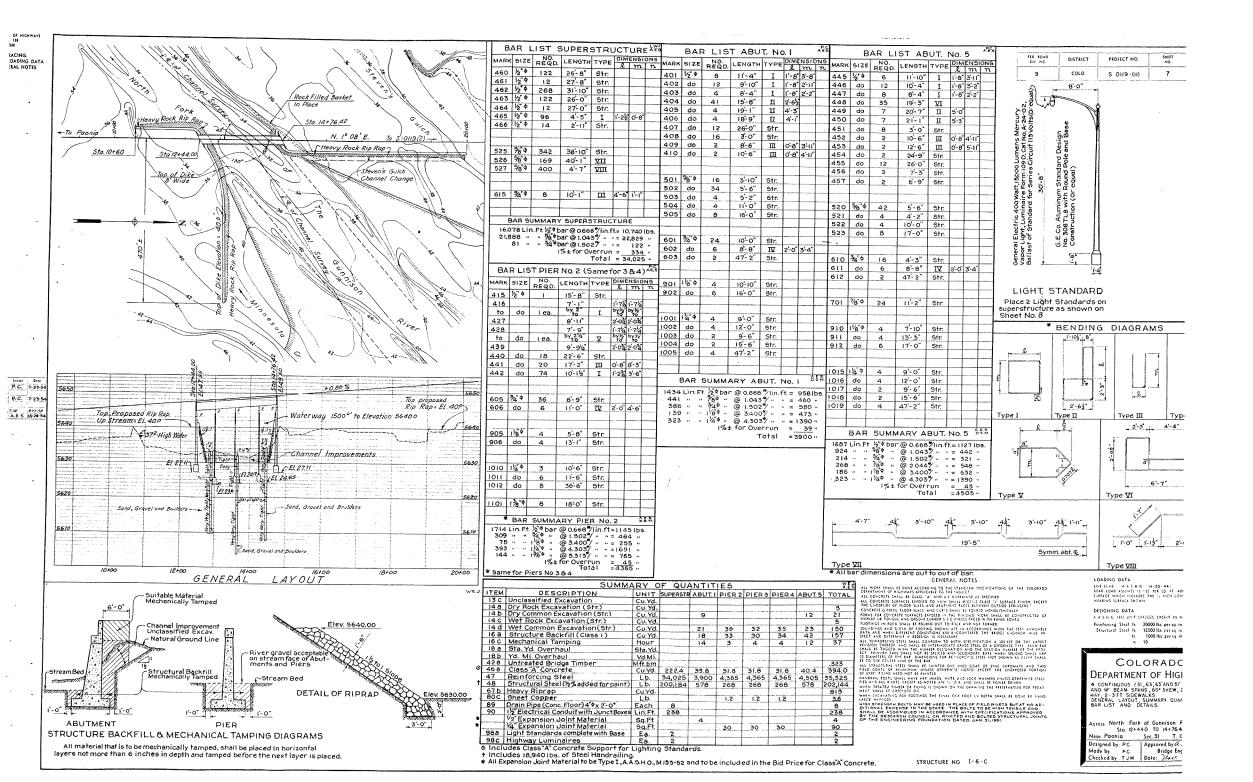


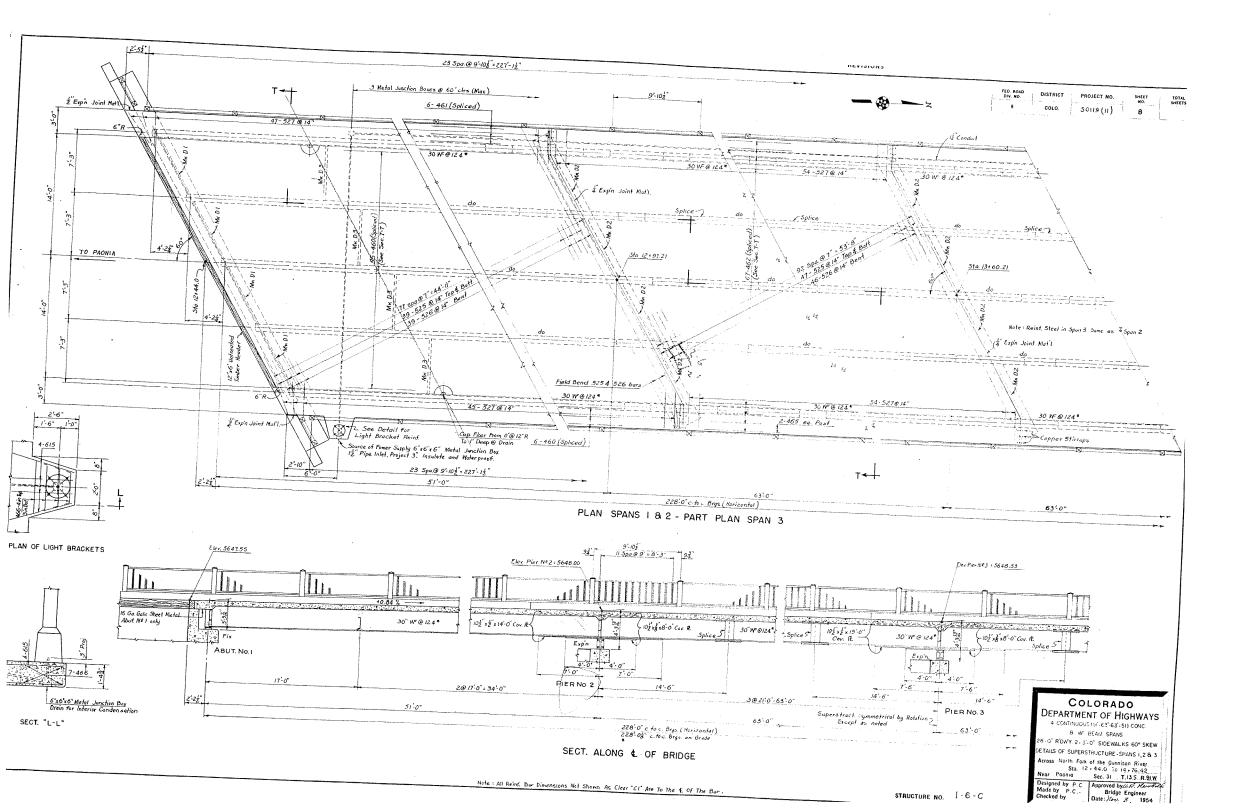


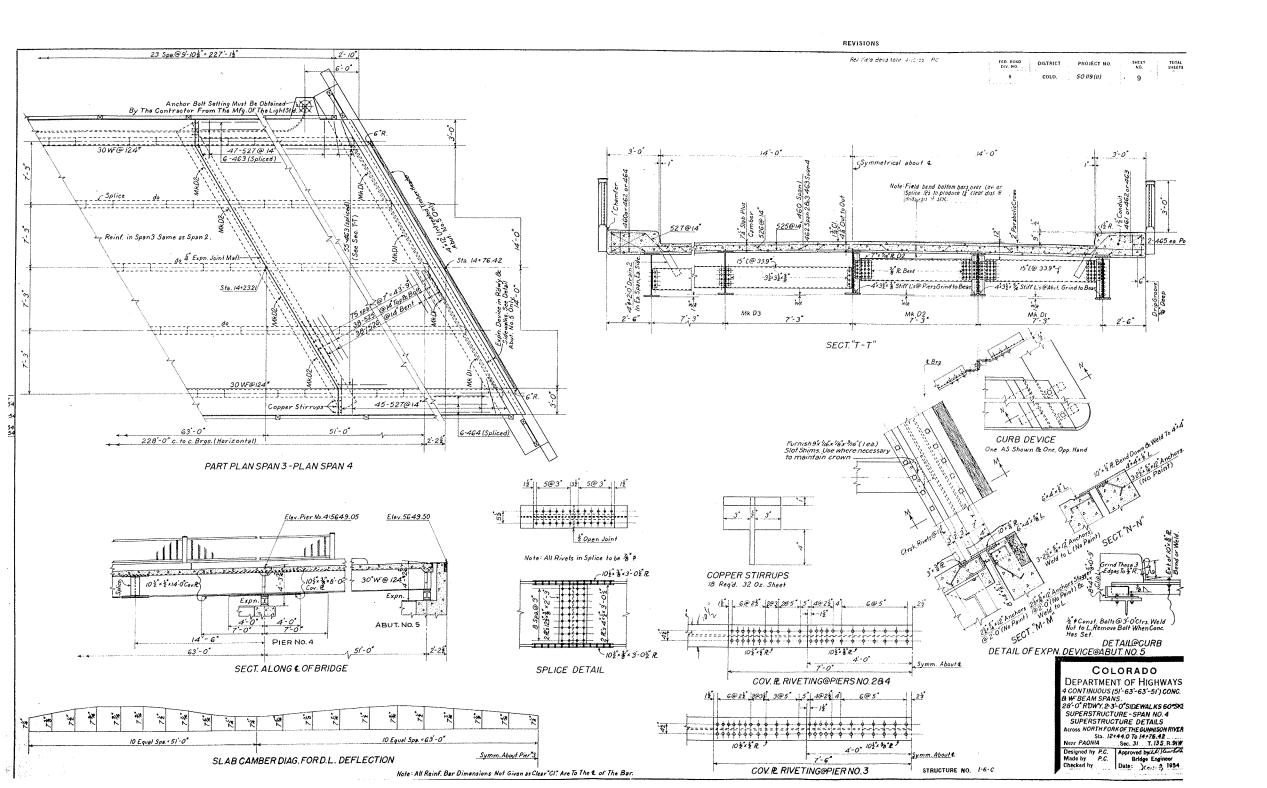
LOCATION	STRAIGHT BARS	ENT BARS	BENDING DIAGRAMS	LOCATION	STRAIGHT BAAS	and the second state of the second state of the second	BENDING DIALRAMS	and the first of the	S. C. Barran	a Secondar	Shao
CLOSER CRAWER AND		NATE SE MITE CLOUTS			BARK 492 8125 (LEND)	B57.800 4 8-8	1.5			14 - 19 S.C.S.	A CONTRACTOR
SUPERSTRUCTURE Girders	(CONTINUED)		s'o most -	Gue Stirrups		to of 81 10	to Macroments	1	STRAIGHT BARS	BENT BARS	BENDING DIAGRAMS
Longit - Top	01 8 11 10-0		67		the party of the second	360 68 4 8-1	and a second sec	LOCATION		and the second sec	
	52 16 11 35.0		12-10*		1000 100	665 8 4 8-014	3-2.14	OPTIONAL GIRL	CA CONSTRUCTION	JOINTS	Bars shown are har age gird
	63 16 11: 29-0		1 14 14 IV			656 8 4 7-115	3-14	Horizontal	11 4 8 8-0		construction joint in one gi
A State of the second	64 18 11 160		here wit			657 8 4 70%	and a second s	Concern Composition		1. 1. 1. 2.	
"-Bote Spon/12			1 YV		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	658 8 4 7-10		Press and a second			
2222	G6 16 11 24-6		a lou		The second	569 8 4 7-9	The second second second second second second second second second second second second second second second se				
+ + 50an L	40 4 0 00	37 24 11 34.10	5.9		1000	570 B 4 7-B		A CONTRACTOR			and the second second
		-+++-(672 3 4 7-6/2	And the second state of th	A State The Bridge State	COLUMN PLANT		
and the second se	610 12 11 350	and the second	e para la la statute de ser	Service Arrive		573 8 4 7-6		Charles Barlis	The sector	1000	
		GH 16 11 25-6		A STATISTICS	Real Contraction	674 8 4 7-5	2-10/4	Carde State To Bally	C Res Carlo Labor 10	3 See 14 1925	V-TOINE SHERE
- Sides	3/2 16 3 20-0		in the second second	a second second second	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	315 8 4 7-45		n an		1. 29 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	
And A SALES	312 16 3 29-0 613 Mines 3 135-8	altered ber ins	the Contractor and	1		6/6 8 4 7.3%	and the second se	and the second second	Contraction of the second		
100 100 10 100 V28 1	614 15 8 27-0					617 8 4 7-3	the second	Contraction 12			
	015 18 8 35-0		- die Hoots -		100 10 10 10 10 10 10 10 10 10 10 10 10	678 8 4 724		Contraction of the second second second second second second second second second second second second second s			LAND BORNER
Bert Stirrups	GA6 8 8 26-0	a contract to the first of the second s	X Y			679 8 4 7-2	and the second s				
a annups	the second second second second second second second second second second second second second second second s	0/8 8 4 7.1	2.84			581 4 4 7-1				111	
A	and a deal was a second respectively of	619 8 4 7-18	Contraction of the Day of the Article of the Articl	W. 1. 100 CA. 17 28.0	10 10 10	582 4 4 7-1	Contraction of the second second second second second second second second second second second second second s	P offerst pointine said			
• 10 · · · · · · · · · · · · · · · · · ·	Carster Berner Strick Plantations	630 8 4 1-25	Real real and ACC SCIENT STORES CONTINUES.	5106	E. Harris		And Share and And	a set of guilder	THE REAL PROPERTY.		and the state of the
and the second second second second second second second second second second second second second second second	$(1-1) \leq (1-2) \leq (2-2)$	G21 8 4 7-3	E912		and the second se	Contractor and Manager	Carden and State of State			ALC: NO MARK	alle a ser a ser a
100 100	1 8 18	922 8 4 7-34		Longit Top! Batt		allared purphe	Constant August Magers	Carling annual	2 N		e e ven ve vie toettelêjer.
2 * 8 - 5 - 5		623 8 4 7.4.2 4	non		50 18 5 343		"自然"的"自然"的"自然"的"自然"的"	2.5.5		LELI	
		624 E 4 7.5%		1.1.1	53 16 5 21.3	and the second state of th		ALL ALL ALL ALL ALL ALL ALL ALL ALL ALL		31-3	Start Production
1991	Statistic State in calendary sub- tank in such	629 8 4 76/2 6 626 8 4 7-1/2 2	And a second second second second second second second second second second second second second second second		55 8 5 374		and the second second second second second second second second second second second second second second second	Margaret Later	and so it.	-F	al sis 1 a.g.
Alle and all	Terret and the	SET 8 4 78%	1.04	a second second	56 8 3 35-4		· · · · · · · · · · · · · · · · · · ·	an the strong of	1.9 5.1 5.	5-5-1-	0 5.3 4.9
· · · · · · · · · · · · · · · · · · ·	20 53 66 555	G28 8 4 7-98		THE AS AN AND	57 8 8 23-2	Construction of the second sec	下型12000000000000000000000000000000000000	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	+ 6	~ >-	-
	Same and the	Get 8 \$ 7 KS.	3-194	Transversa Carmer	58 dea 6 351	I de la come			12	\$52	
1 States	A. S. S. 197	530 8 4 711/2		- 10 + 1 + 2 - 1 + 2	10 0143 10	A state of the sta			· E	1000	
1. A.	2714 2 1923	631 8eg 4 9-192.	- A LINE AND ALL REPORT OF THE	and the second se	550-85 6 31-1	A DESCRIPTION OF THE PARTY OF T	and the Automation of the			1223	
	Contraction of the second second second second second second second second second second second second second s	10 017 11	12 14 Incraments	Mile - Standard	551192 5 31-1	The second second second second second second second second second second second second second second second s		15-2.4	19	. 7	15-9%
-32. Start	100 100 100 100 100 100 100 100 100 100	637 58 4 8-10 638 8 4 8-1170	1-1 1	(Bent)	CARAGE CLARK	557 92 6 N.8		3 5 9 1 H Sec.	10 - 12 500 21	0 - M - 0 102+ +23	18 m 2 1 2 1 X 2 1
	a fair and a second	Course Provide the second	3-87	Corner	553 200 6 31 G 10 0739 10			* + C3 1.9.93	35(11-11-30)	1024 403	BC TOREN VCS
	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	540 8 4 9-51		State of the second	391 78 6 8-11	A BAR	-D' Mod-	The #23	1	6-1-1	Corres A TANT
		64 8 4 9-5	1-10/1	Long & Draph	392 34 5 9-0		the start	dars in ming	21	Constant of	the word any
	and the second second	542 8 8 9.7	Provide and the Second Provide States and the second	Curtes			V CL O	Upstream		A Standards	Comsteam
-		643 8 4 9-9 4		Slob Dowel	La la la la la la la la la la la la la la	51270 5 2-8		End Pone	The balance of the second second second	Ponst	End fand
	BILLING TOTAL	044 B- 4 2-11A		-	1 11 11 11	62 20 4 1-8	E	2 SEQUIRE	B The second second	QUIRED	2 REQUIRED
	Contraction of the second	112 8 4 2-115 + 518 8 4 2-115 +		Ties- Tap	54 4 5 14-10	53,294 0 1-8	TTAN	· Contraction	CURB REINFO	RCEMENT LAY	TUC
· Station Print		11 8 1 9 8 L		Lange	25 4 3 15-3	The second second second second second second second second second second second second second second second s	to ca	Carlotter and a		物的高度。苏非	the second second
· Franker	CALLER ST. PACE	G40 6 A 9-7%	1-11A	and a provide state of	6 36 5 12.3	Contraction of the second second second second second second second second second second second second second s					
	Contraction of the	613 8 4 9-5	1:11 Standardar			No cale and		the set by a state of	就否以"全"的	1. Carlos and	MATHIN TO TRANSFORMATING
1. A.		SP2 8 4 9 4%	E MAR	1.175	STATES STATES	the state of the state	and the second second	Sector Restored	and the second second	·法占公司法 ····································	IDI & DUNNEW COLUMN
A Star Provide Star		05 8 4 9-32	3-94	12	C. Market	Property and and a	the second second	a stranger and	and the start		R EAST MUODY CRE
- Darn - Star		55 8 4 9-8	1.1	Contraction of the second	in the last of		Sales - Carrier			THE REPORT OF TH	STA 765+52
Contraction of the second		63 6 4 9-1	TAN - CARLES	Contrast and	La la contrata ante	These Proves	545 Martin	A CARDELTON WITH SA	and the second second second		REST TODINAY PROJECT IS-14
			A LAND IN THE REAL PROPERTY AND	WATER THE PARTY	ALL DE LET DE LET	ter to the second	cs de la	A TA TA TANAL	ALL STREET		The second second
A CONTRACTOR		0.0 A A A 701	La Francisco Carlos		and the state of t	Contraction of the second		a strain a faith and the	An Construction	AND AND AND AND AND AND AND AND AND AND	WE wan, a w a - storik RE2!

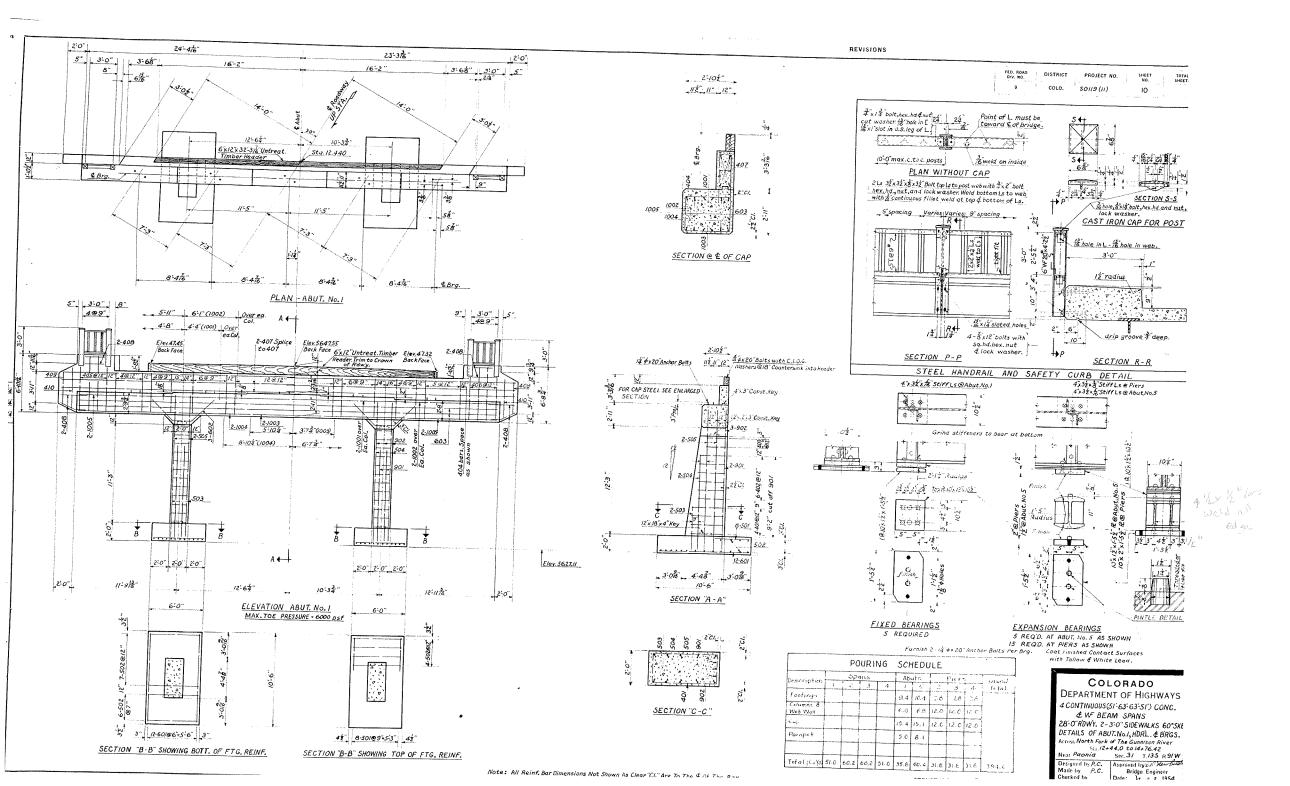


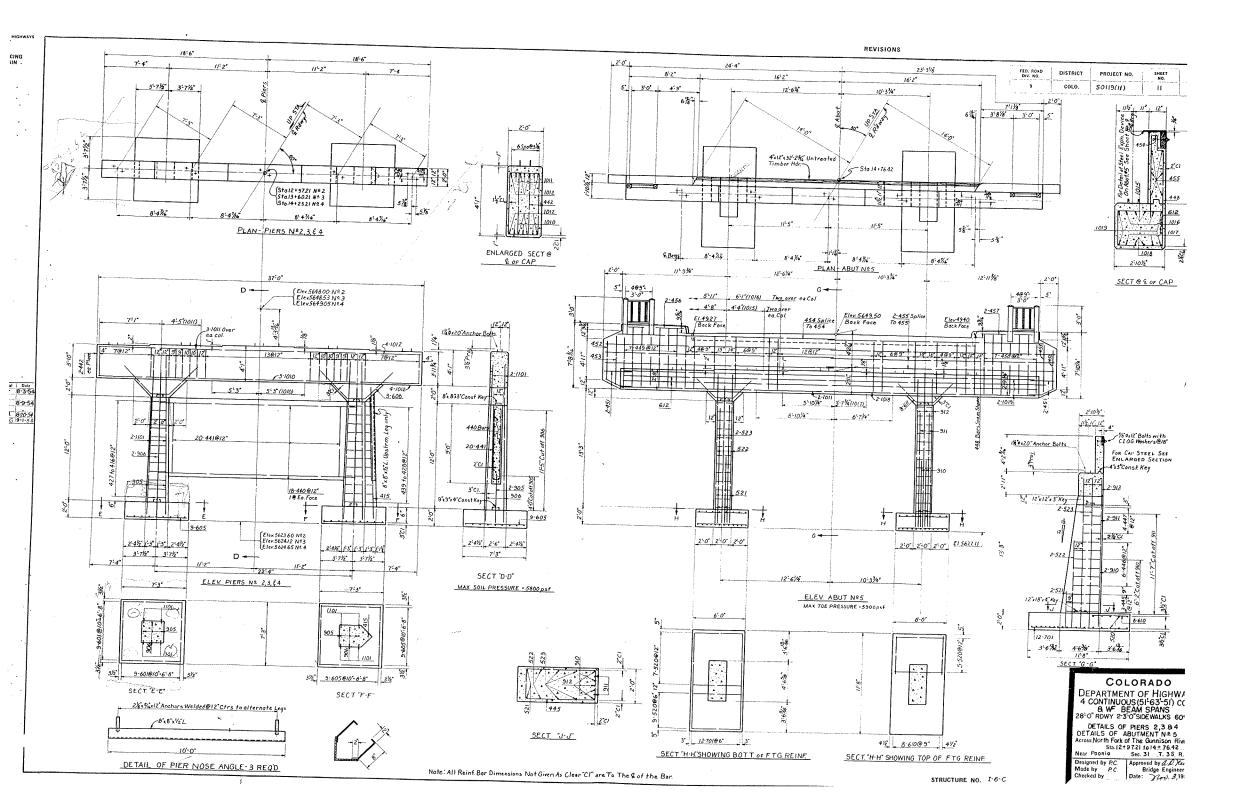


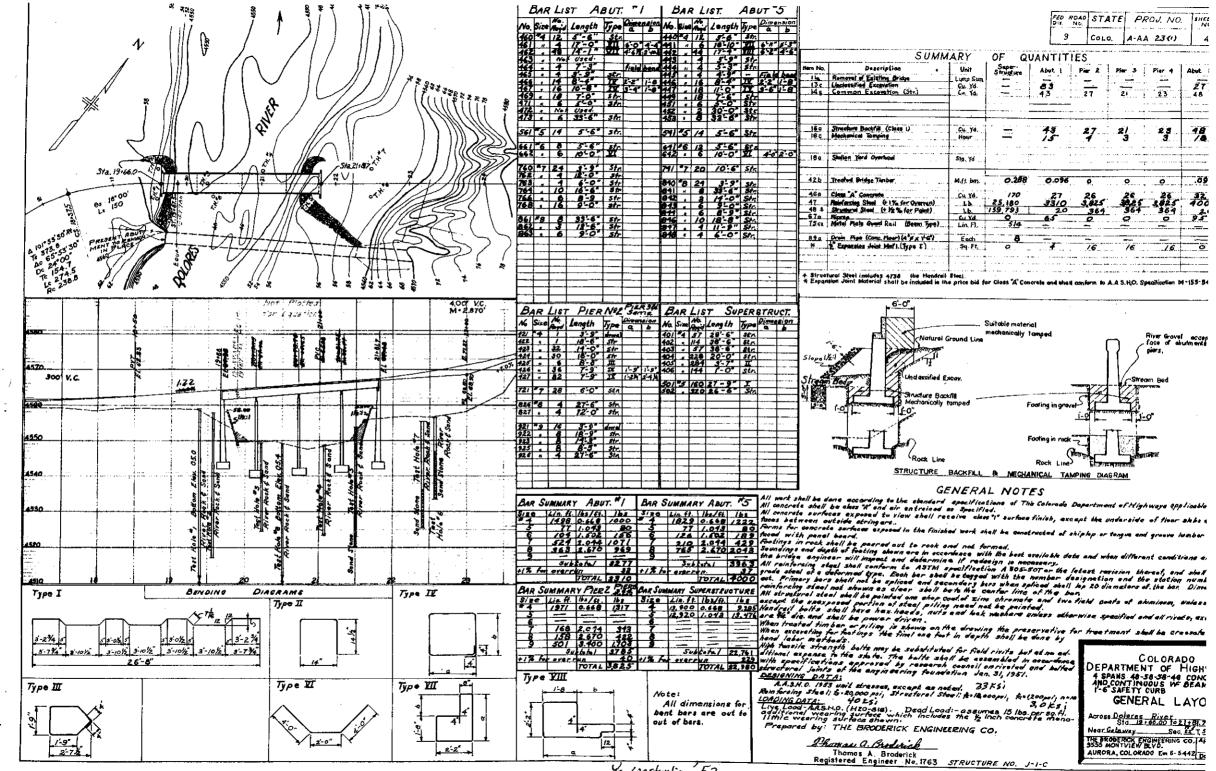

· ·

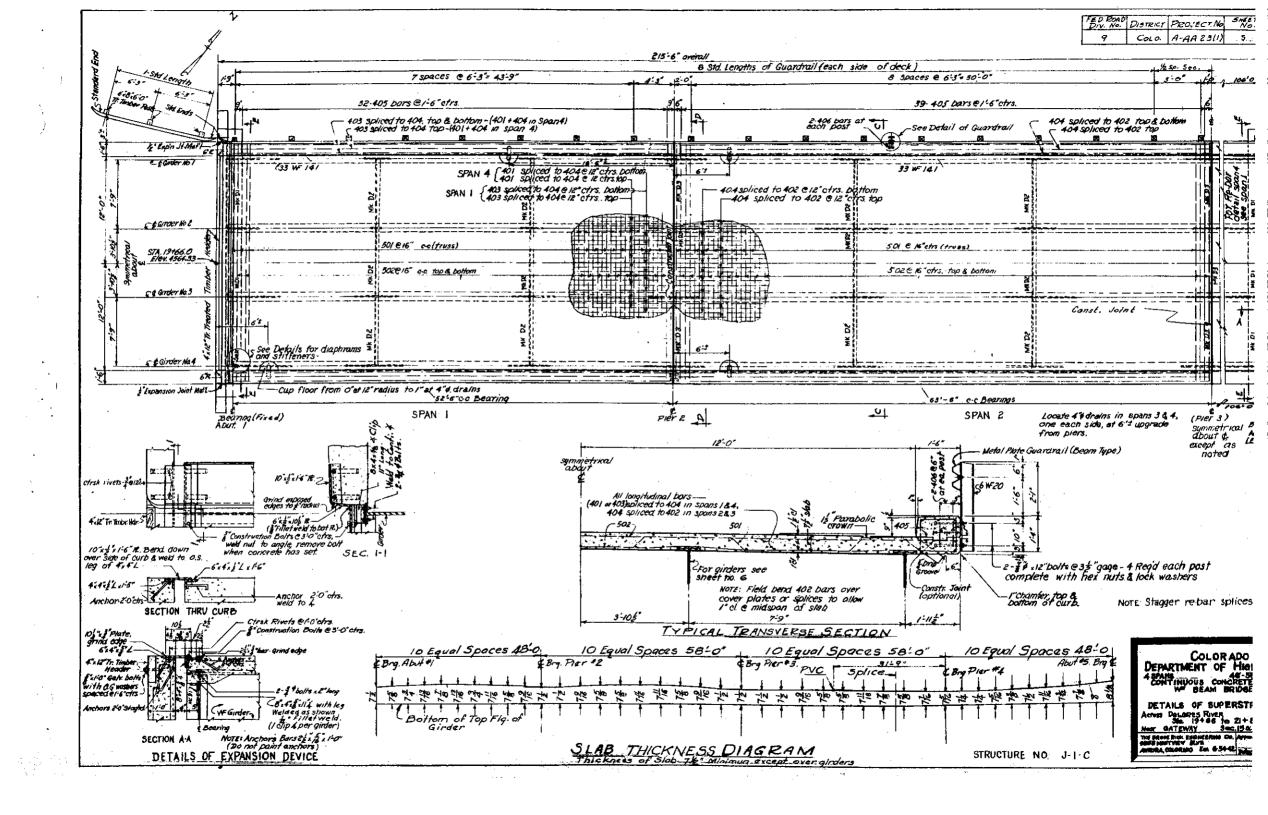


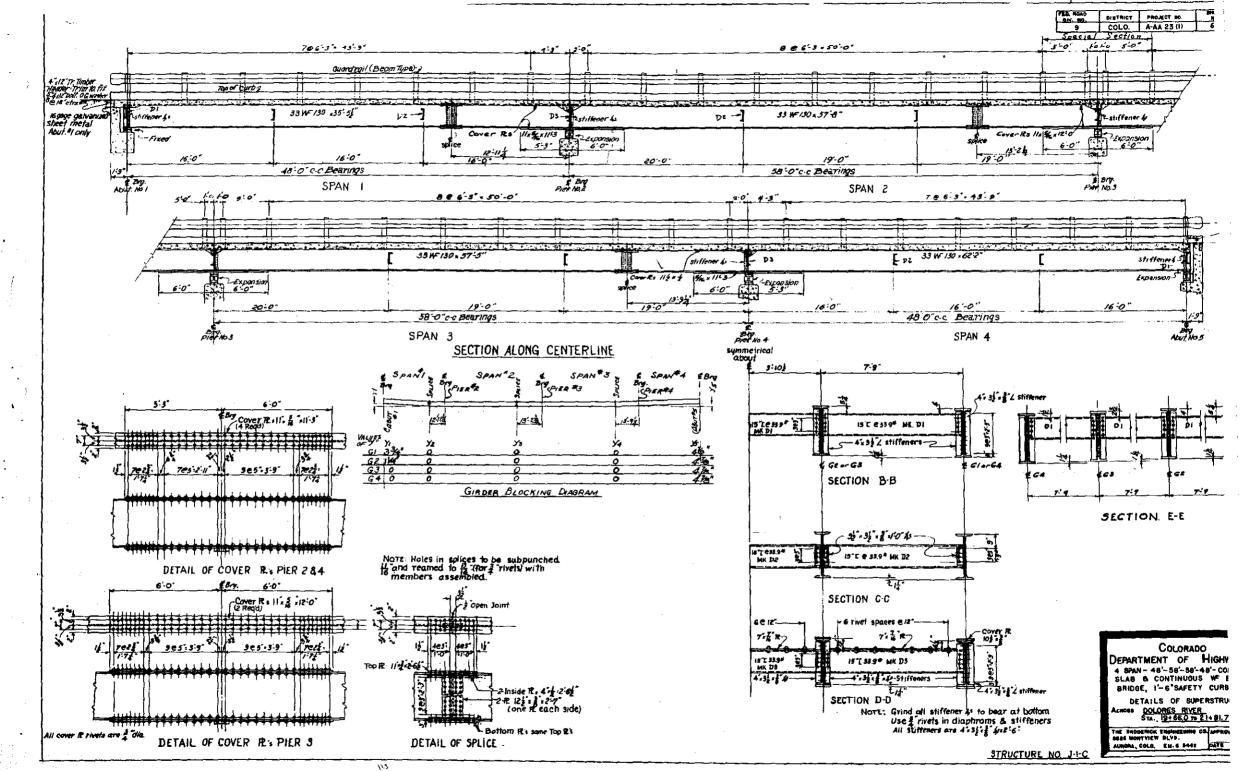

and the second second

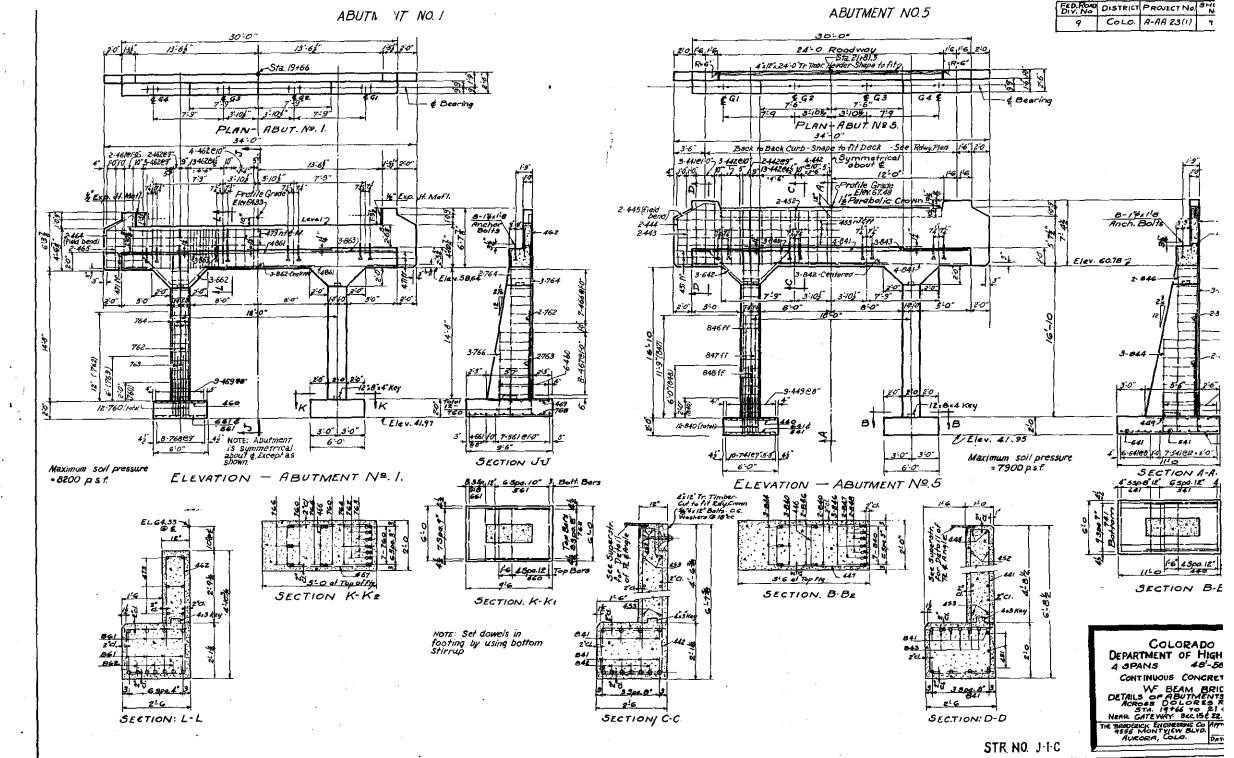


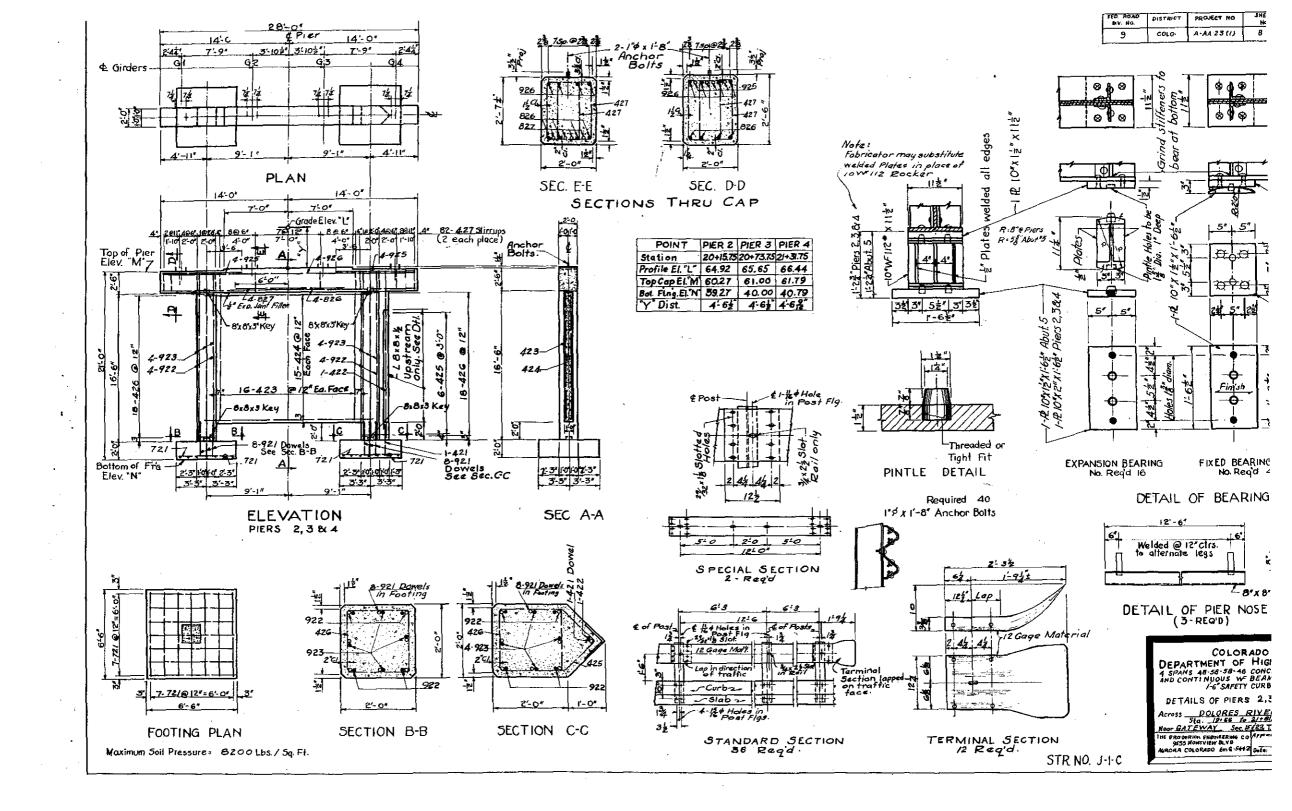

IDARD PILS DH.

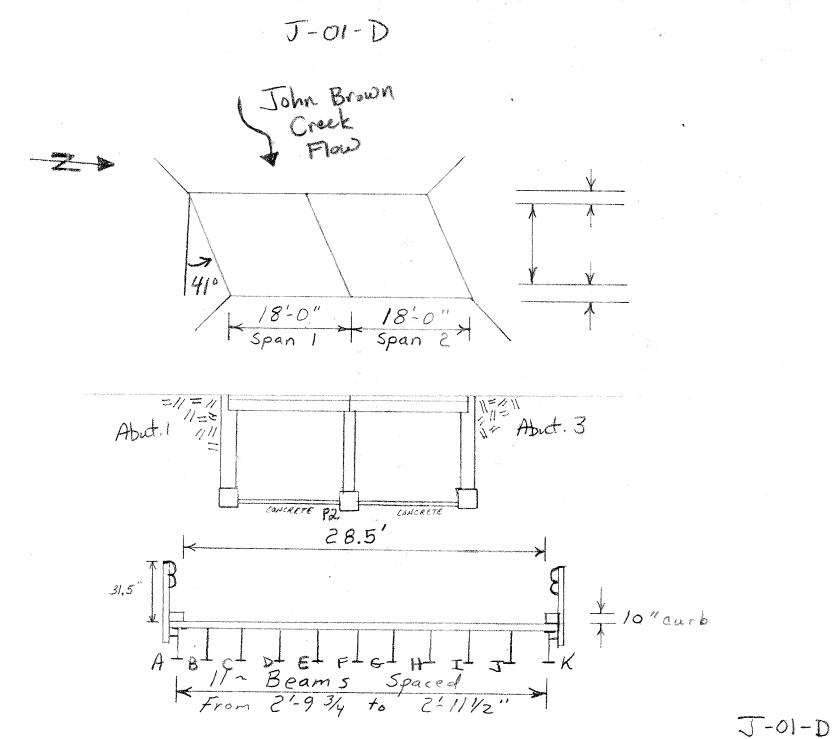


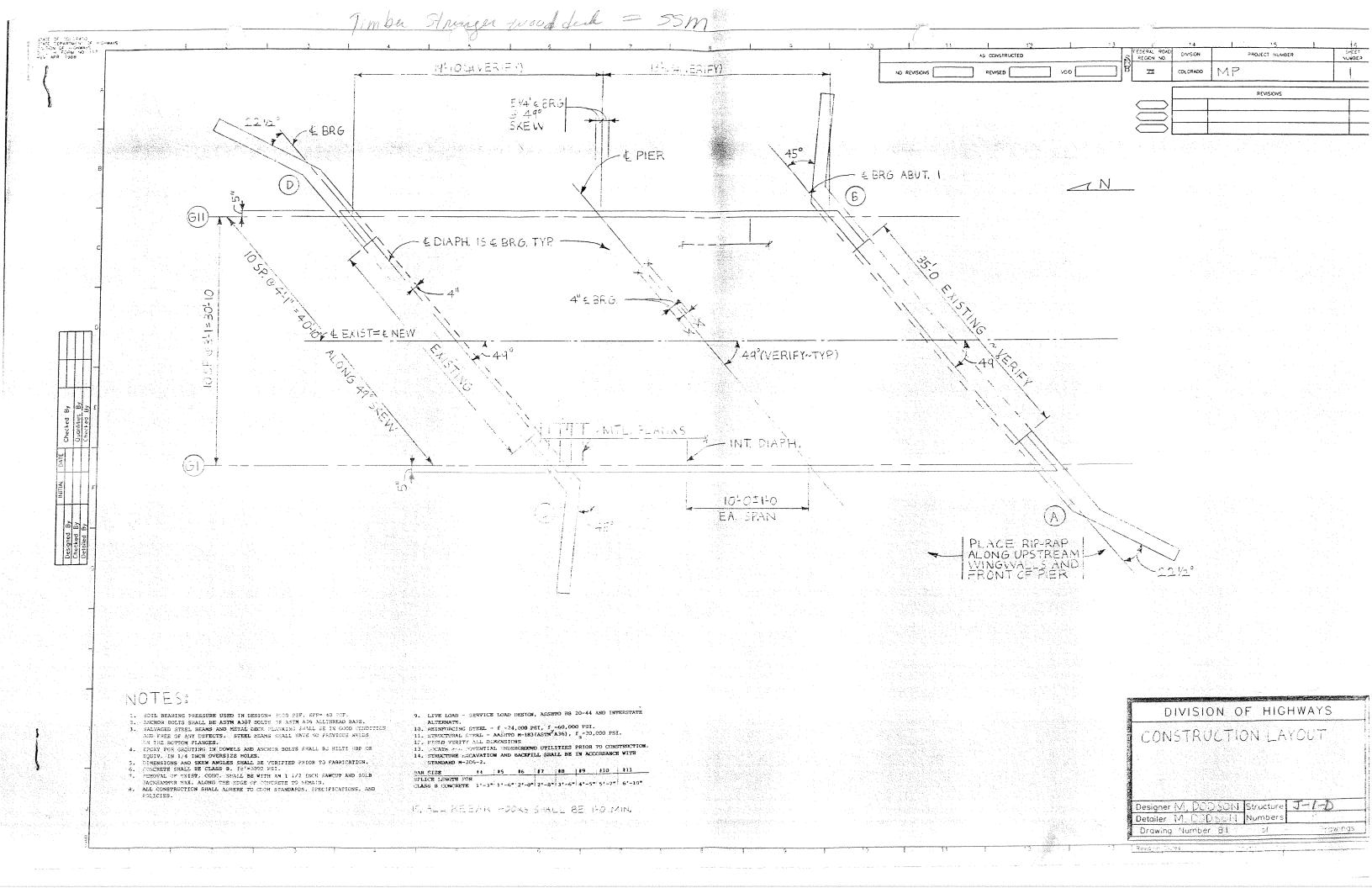


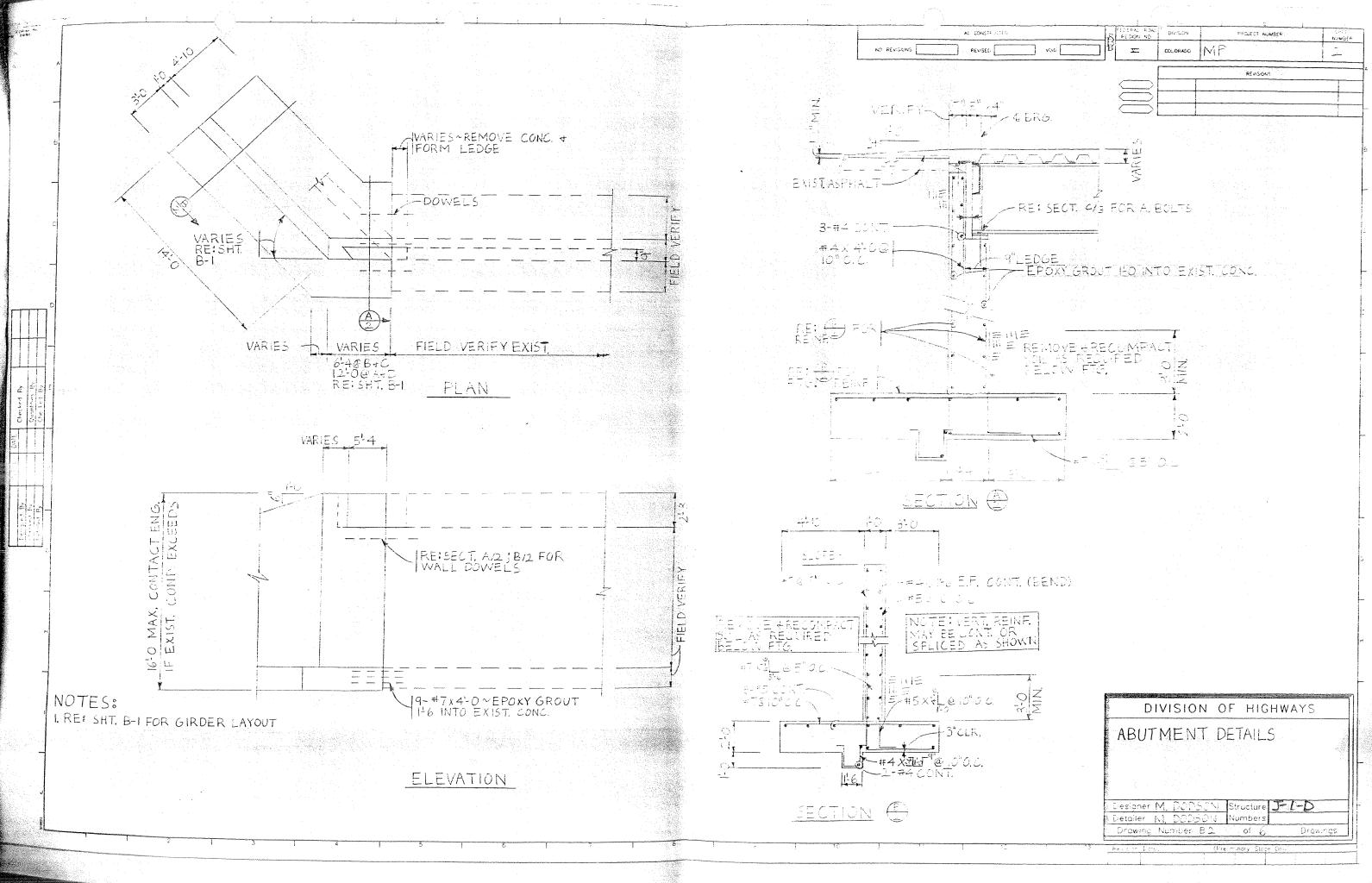


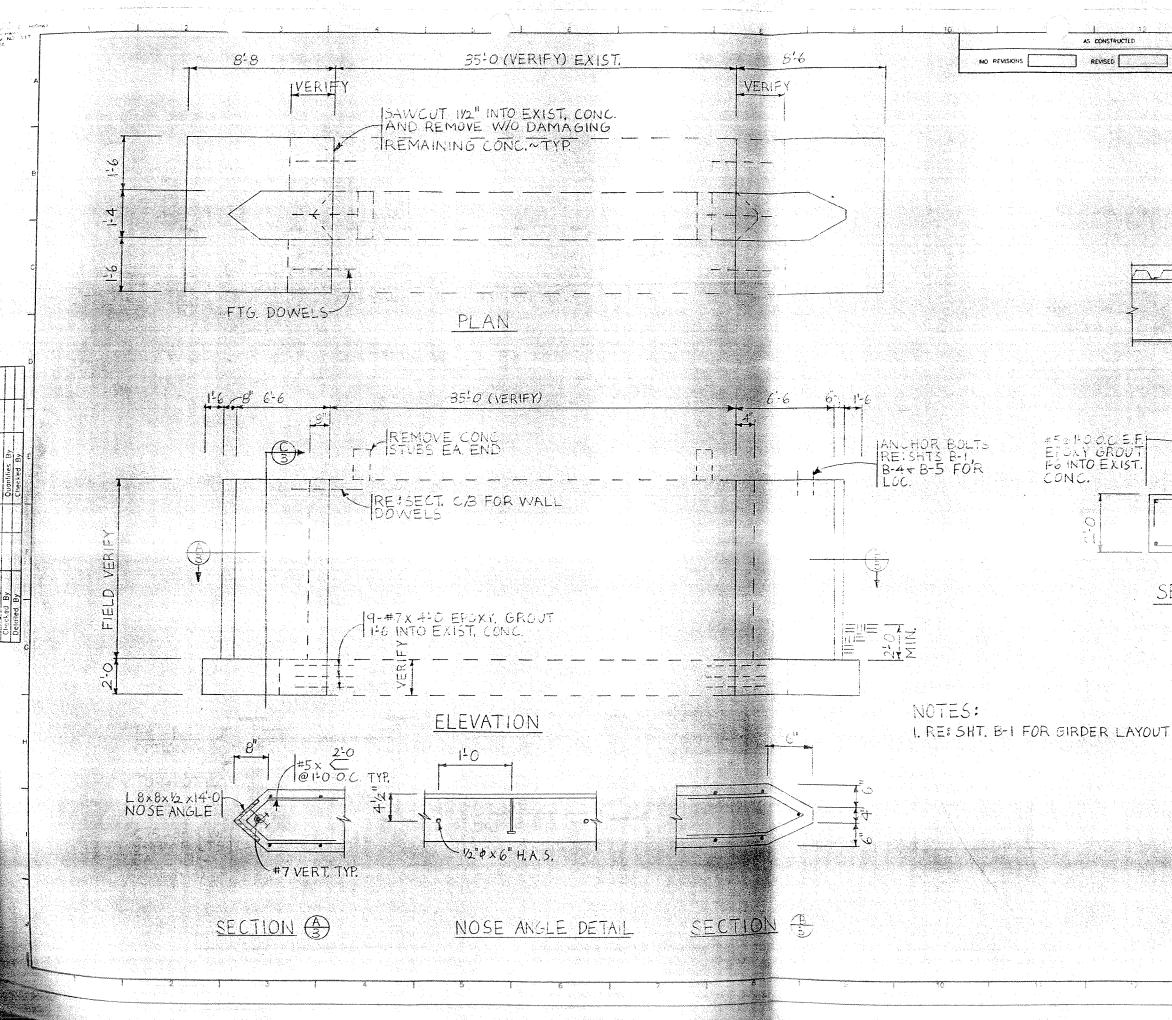


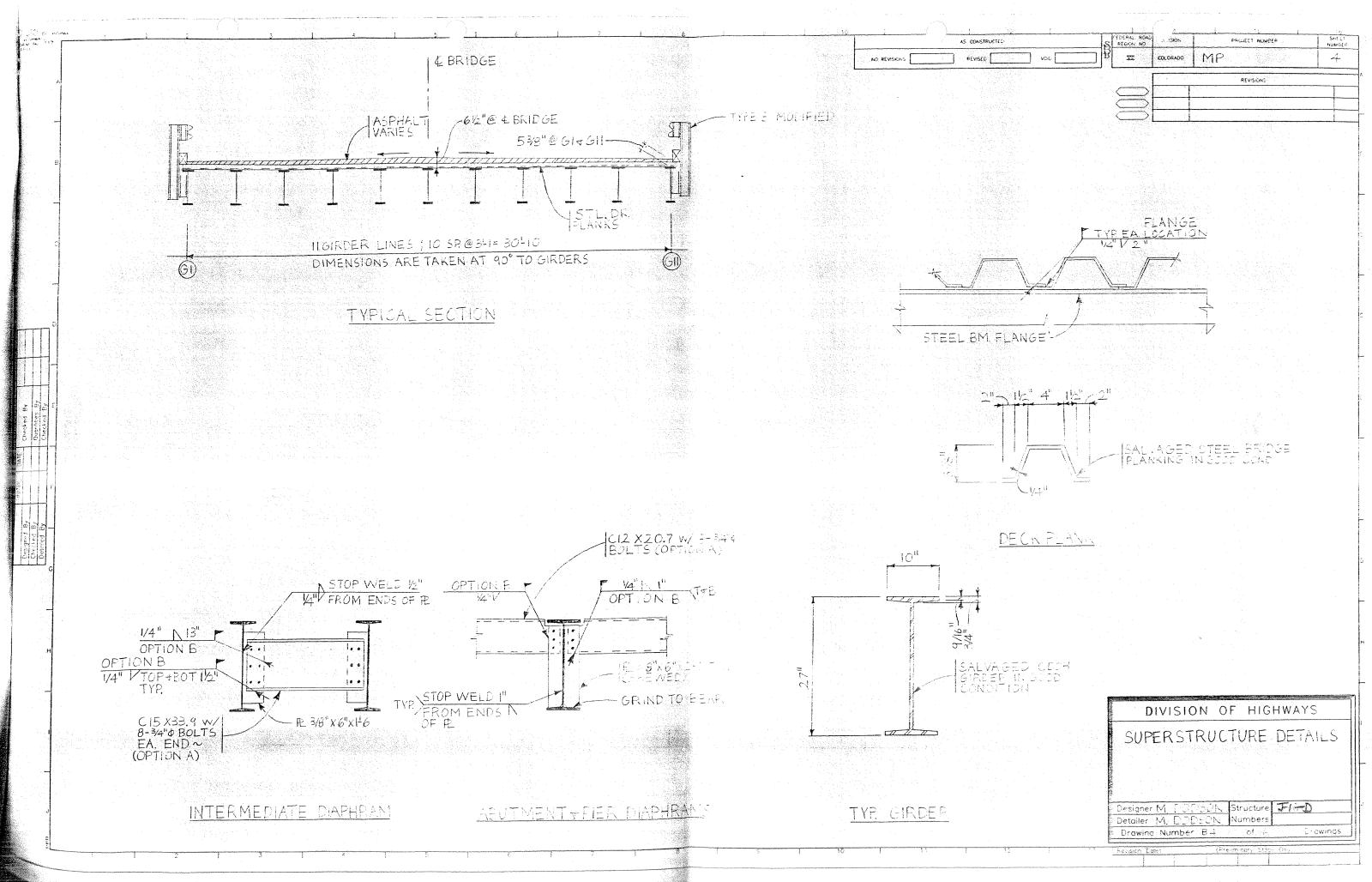


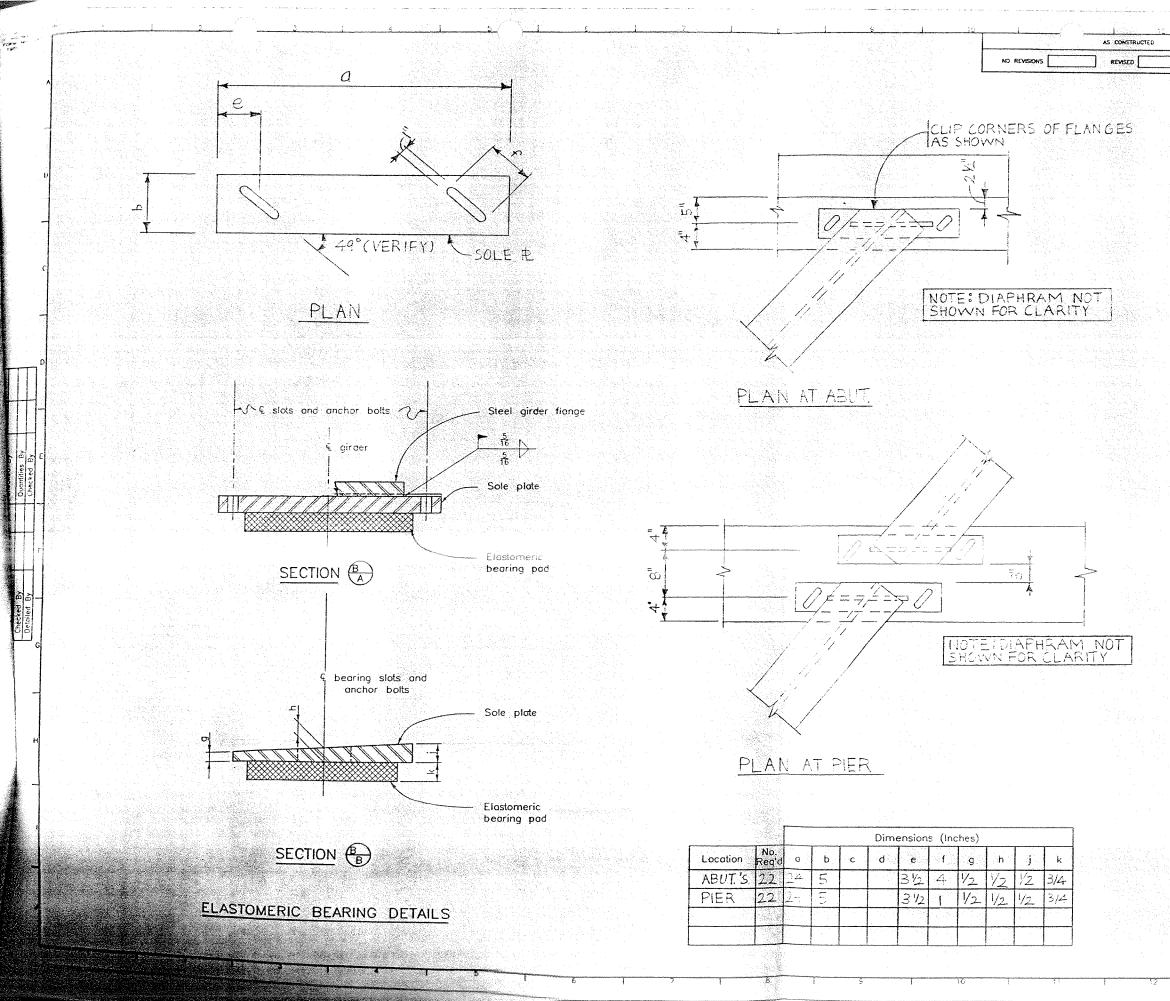

Yr. Construction = 57







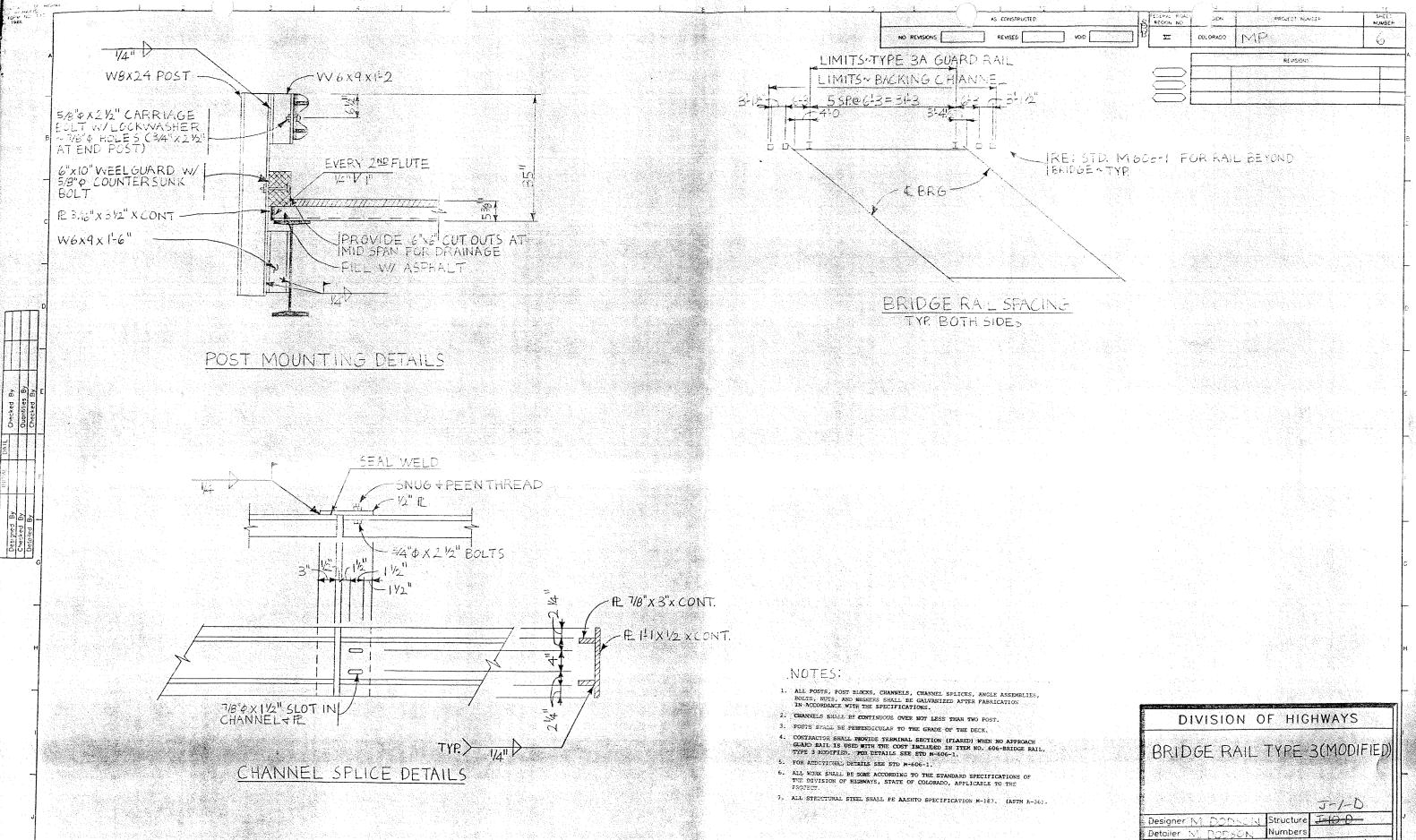




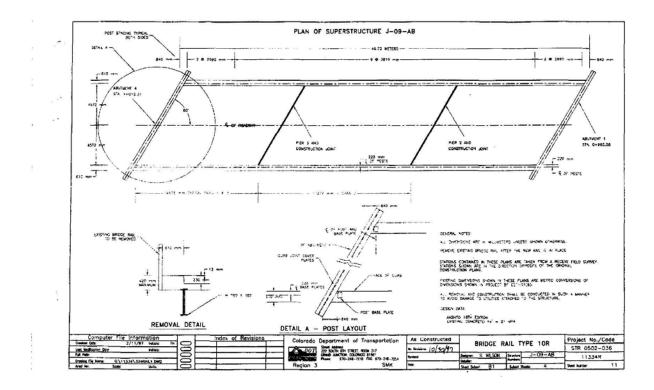
			_			
Designer	Μ.	POPSON	S	tructi	ure	J-1-D
 Detailer	M.	DODSQU	N	umb	ers	
Drowing	.Nu	muer BA		. of	6	Drowings

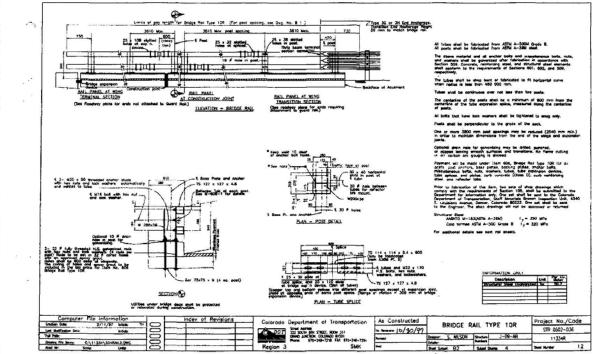
S RECKN NO U. S. O. PROFESSION NUMBER SHEL? NUMBER VE 3 VOID MP COLORADO REVISION $\overline{}$ HER HER TO A LONG RALLED EPO CARTA 374 。 、 年代31日 治QL日: $\sqrt{\sqrt{2}}$ #7812** 0.01 E.F. Ē 文章を正こ TEXT 1 1 -6-#7 LONT REMORE ENERGY Si int (\mathbf{G}) SECTION DIVISION OF HIGHWAYS PIER DETAILS Designer M. DODSON Structure J-D-D Detailer M. DODSON Numbers Drawing Number 83 of 6 Drowings

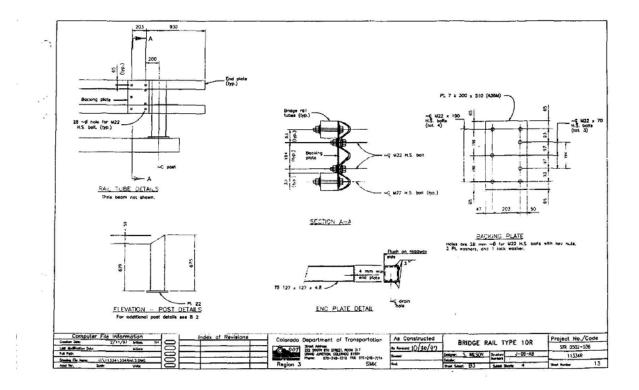
 	FEDERAL ROAL REGION NO	MISION	PROJECT NUMBER	
	3 20	COLORNOO	MP	5
			REVISIONS	
		1 3-512	 2—1	

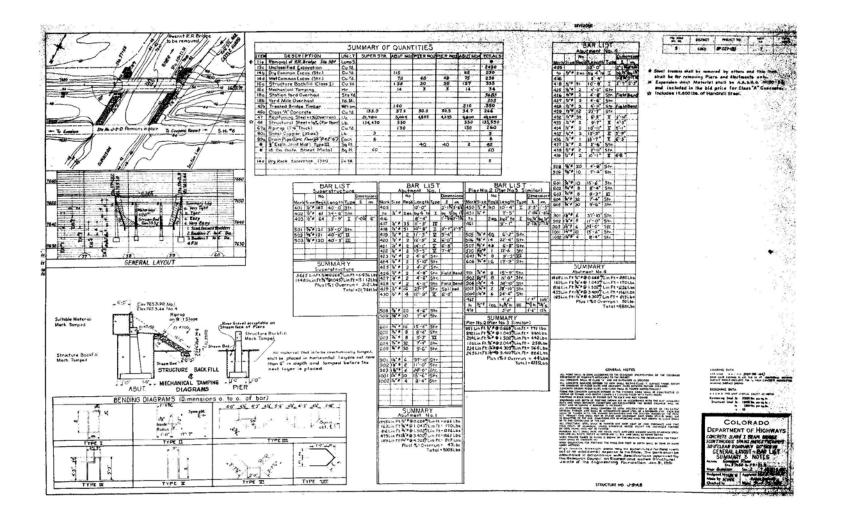

NOTES:

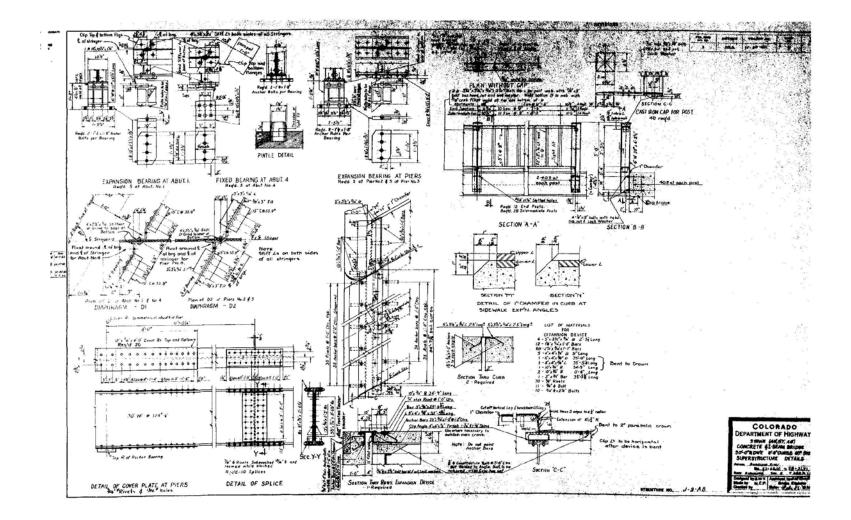
Anchor poit nuts shall be snugged and jammed with jam nuts at fixed bearings. At expansion bearings, provide $\frac{1}{2}$ clearance between jam nut and sole plate under all temperature conditions prior to jamming.

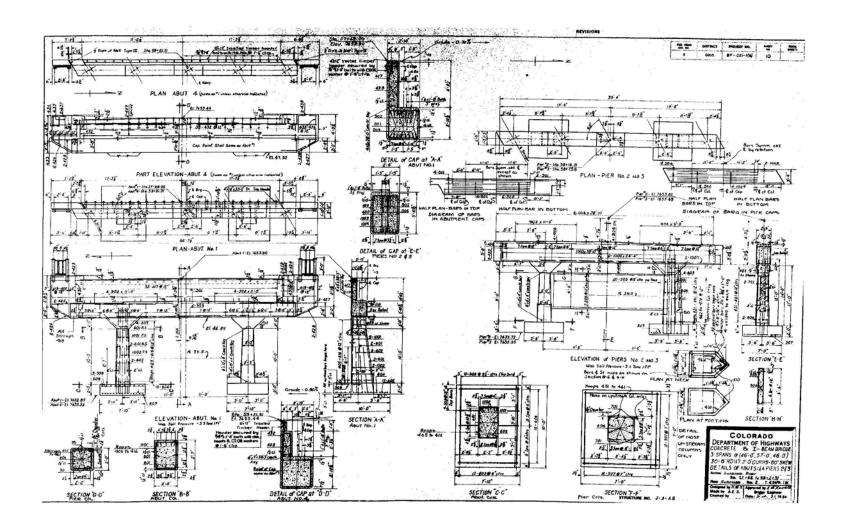

Do not point steel surfaces in contact with elastomeric pad.

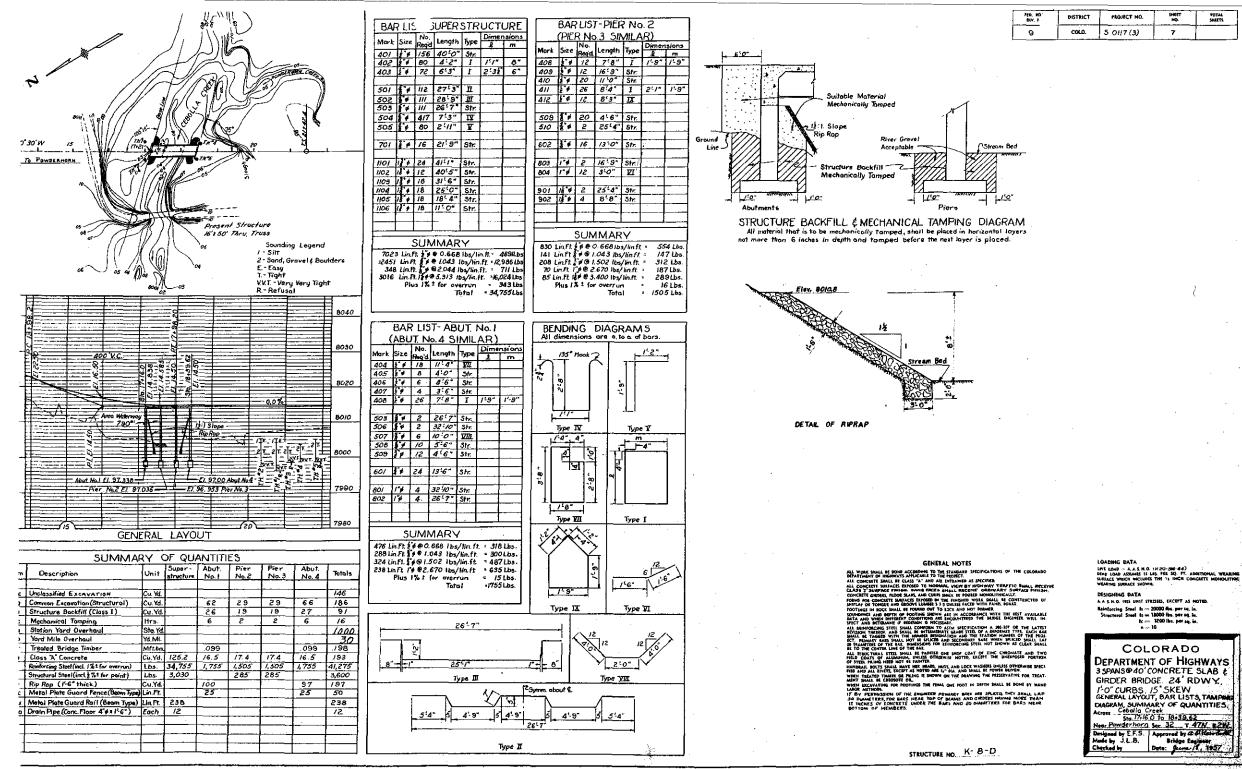

Elastomeric pad, Sole plate, anchor bolts and miscellaneous hardware shall be included in the bid price for Item 512, Bearing Device (Type 1).

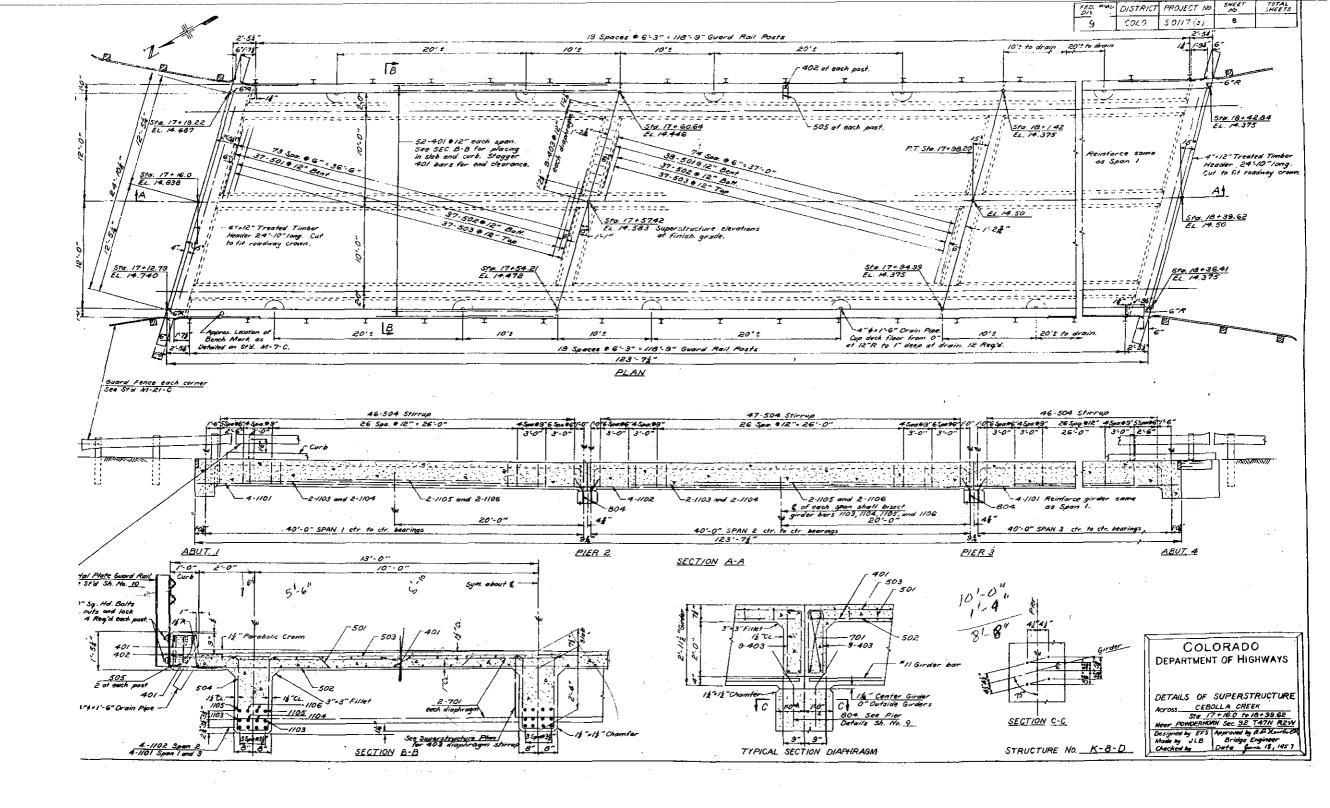

			OF HIC		
	В	FARI	NG DEV	/ICE	
		(т	YPF I)		
		(Т	YPE I)		
		(т	YPE I)	J-1-	D
Designer	M. Di	<u>ODSOI</u>	N Structure	न्द्रन्तन	
Designer Detailer	M. Di	<u>ODSOI</u>		न्द्रन्तन	Ď ≻

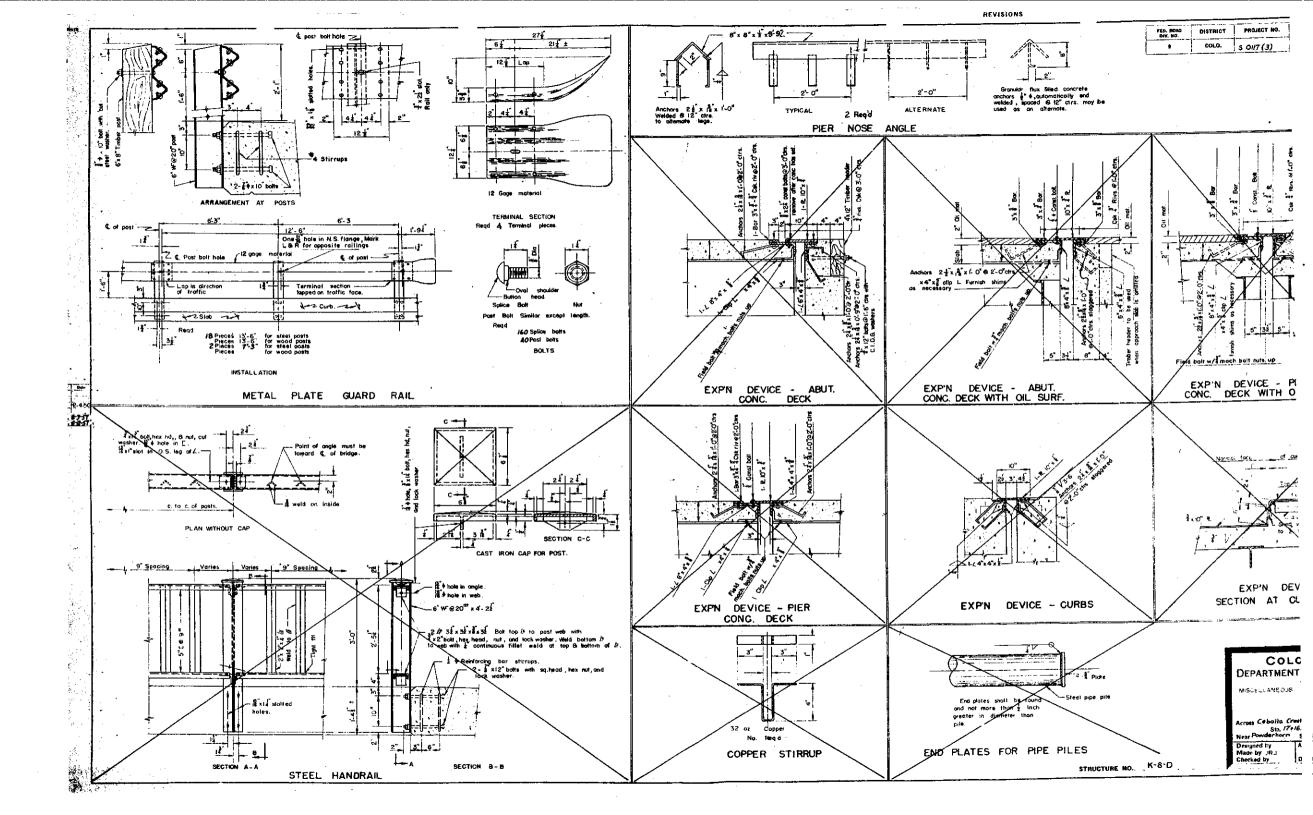

BRIDGE RA	IL TYPE	3(MODIFI	EĽ
			C
가슴 것 같은 것 같은 것 같은 것 같은 것 같은 것 같은 것 같은 것 같이 같이 같이 같이 없다.			
		J-1-D	
Designer M. DODA			
Detoiler M. DODSO	15	6 Drawin	gs
Drawing Number B	<u> </u>		

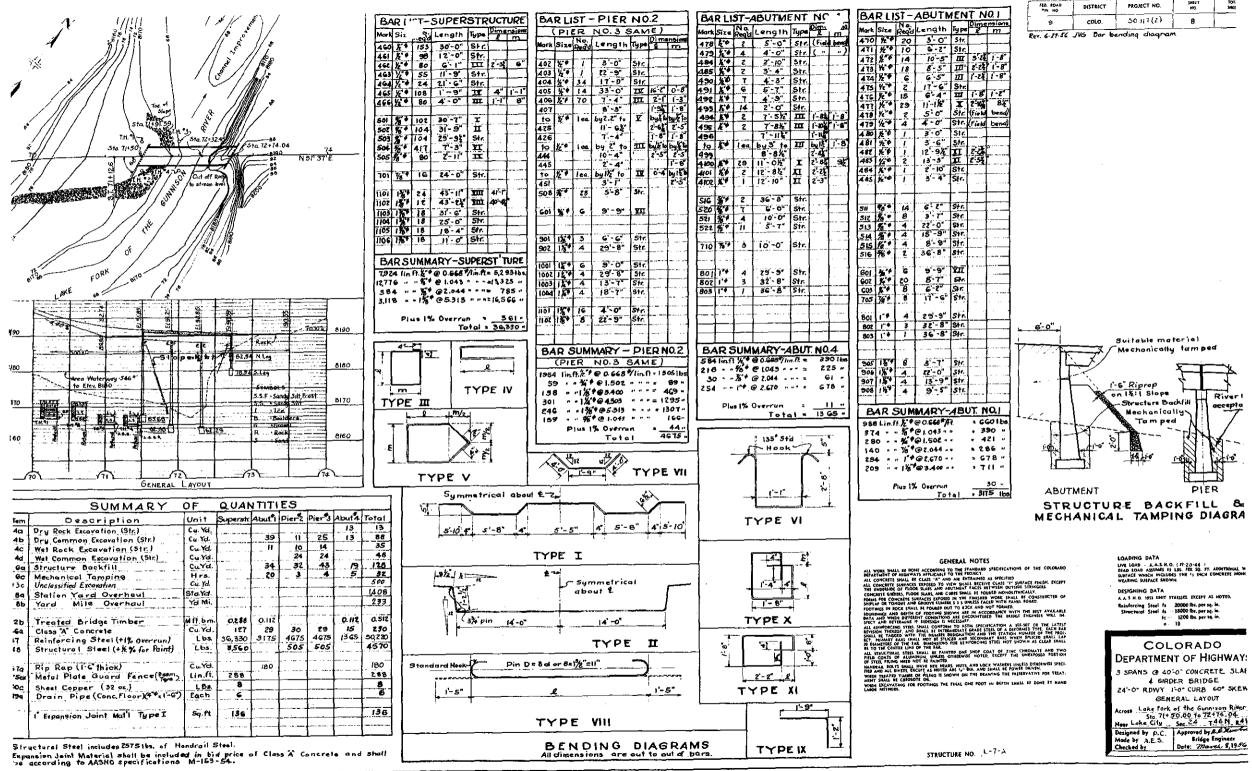




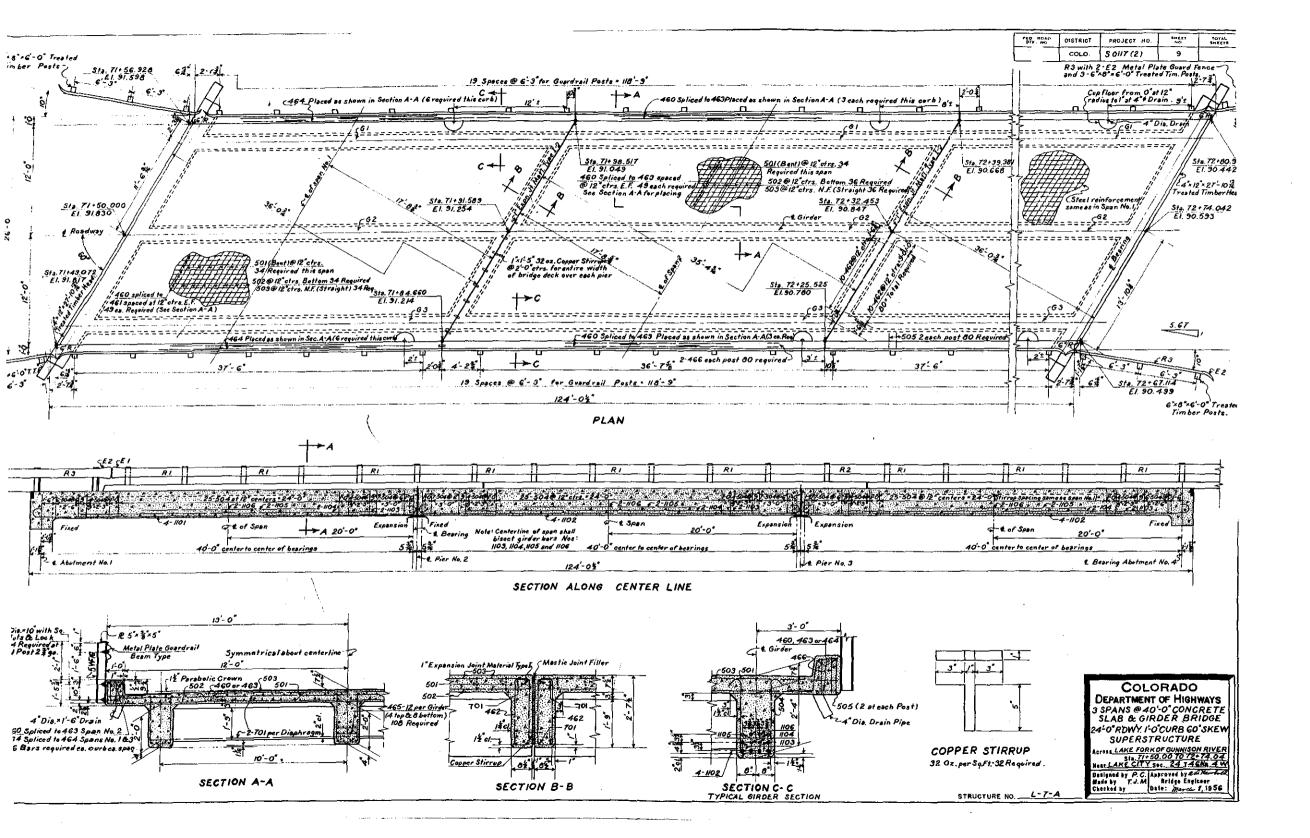








.



.

.

