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Determining the Optimum Asphalt Content
with the Texas Gyratory Coampactor

Tim Aschenbrener

1.0 INTRODUCTION

In September 1990, a group of individuals representing AASHTO, FHWA, NAPA, SHRP, Al, and
TRB participated in a 2-week tour of six European countries, Information on this tour has been
published in a "Report on the 1990 European Asphalt Study Tour" (1). Several areas for potential
improvement of hot mix asphalt (HMA) pavements were identified, including the use of
performance-related testing equipment used in several European countries. The Colorado
Department of Transportation (CDOT) and the FHWA Tumer-Fairbank Highway Research Center
(TFHRC) were selected to demonstrate this equipment.

A recent change from the California kneading compactor to the Texas gyratory compactor has
resulted in significantly lower optimum asphalt contents. Additionally, only one laboratory
compactive effort has been used in Colorado regardless of traftic or high temperature
environment. Adjustments are being made to the COOT HMA design procedure to address these
concerns. It was decided to use results from the new European equipment to assist with the
adjustments. Additionally, results were used from three other sources: 1) the previously used
California kneading compactor, 2) samples from older pavements that were recompacted in the
Texas gyratory, and 3) experimental field projects that used the recommended end point stresses.

Optimum asphalt contents need to be determined using varying laboratory compactive efforts that
correspond to the various traffic and environmental conditions in Colorado. The purpose of this
study will be to develop and document the recommended end point stresses for the Texas

gyratory to obtain the optimum asphalt content.



2.0 ENGINEERING REGIONS

2.1 Traffic

Traffic is defined by the number of equivalent 18-kip single axle loads (ESALSs) applied to the
pavement for its design life. The design ESALs for a project should be used to select a traffic
category. A design life of 20 years and zero growth rate was used to develop the percent of the
14,800 center-line kms (9200 miles) on the CDOT network for each traffic category. The percent
of CDOT network in each category includes adjustments for the number of lanes. The five traffic
categories used for this analysis are shown in Table 1.

Table 1. Traffic Categorles for Designing HMA Pavements.

Traffic Design ESALs CDOT Network
Category (%)
Low <3x10° 21.8
Medium 3x10° to 10° 34.4
High - 10°to 3 x 10° 16.1
Very High | 3x10%t0 107 213
Very Very High >10’ | 6.4

2.2 Environment

Because of the wide variation in elevation in Colorado, there are four distinct high temperature
environments. The four high temperature areas are shown in Fig. 1. The weather data base
assembled by SHRP was used to identify the high air temperature environment for each category.
The highest temperature is calculated as the average of the highest air temperature for the hottest
seven consecutive days. A summary of the average highest 7-day air temperatures taken in each
county are in Appendix A and a copy of the SHRP data base with 153 weather stations in
Colorado are in Appendix B.
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Fig. 1. High Temperature Environmental Zones by County.
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The high elevation zones have very cool high temperatures and should receive special design
considerations. The counties with elevations over 2600 meters (8500 ft.) with a cold, wet, and
higr frost penetration environment are; Clear Creek, Gilpin, Grand, Gunnison, Hinsdale, Lake,
Minaral, Pitkin, San Juan, Summit, and Teller.

Special design consideration should be given to areas with elevation between 2000 and 2900
meters (6500 and 8500 ft.). These counties are: Alamosa, Archuleta, Chaffee, Conejos, Costilla,
Custer, Dolores, Jackson, La Plata, Ouray, Park, Rio Grande, Routt, San Miguel, and Saguache.

The majority of the state is in the moderate temperature region. This includes: Adams, Arapahoe,
Boulder, Cheyenne, Delta, Denver, Douglas, Eagle, Elben, El Paso, Garfield, Huerfano, Jefferson,
Kit Carson, Larimer, Las Animas, Lincoln, Logan, Moffat, Montezuma, Montrose, Morgan, Phillips,
Rio Blanco, Sedgwick, Washington, Weld, and Yuma.

The hottest areas of the state are on the western slope or along the Arkansas River in
southeastern Colorado. These countles include: Baca, Bent, Crowley, Fremont, Kiowa, Mesa,

Otero, Prowers, and Pueblo.

Table 2. Four High Temperature Environmental Zones In Colorado.

High Temperature Highest 7-Day Avg. CDOT Network
Region Max. Air Temperature (%)
, Hot > 36°C 14.7
(SE and West) (> 97°F)
Moderate 32 to 36°C 57.2
(Denver, Plains and West) (90 to 97°F)
Cool 27 to 31°C 13.9
(Mountains) (81 to 88°F)
Very Cool <27°C 14.2
(High Mountains) (< 81°F)




2.3 Summary of Traffic and Temperature
The percent of the network for the various traffic and temperature categories are shown in Table

3.

Table 3. Percent of Network for Various Traffic and Temperature Categories.

Traffic High Temperature
Very Cool Cool Moderate Hot
Low 6.6 _ 4.3 9.4 3.3
Medium 47 5.0 13.6 4.1
High 1.9 4.1 14.1 3.1
Very High 1.0 0.6 13.7 42
Very Very High 6.4




3.0 TESTING DEVICES

3.1 Texas Gyratory

The Texas gyratory procedure is defined in ASTM D 4013, and the device is shown in Fig. 2. A
sample is compacted with a pre-gyration stress of 350 kPa (50 psi). At the end of three
gyrations, the end point stress is checked. If the end point stress is less than 1030 kPa (150 psi),
then three more gyrations at 350 kPa (50 psi) are performed. |If the end point stress is greater
than 1030 kPa (150 psi), then the compaction is completed. The end point stress is checked by
applying a 0.5 mm (0.020 in.) deformation into the sample. The deformation creates a stress
defined as the end point stress. A leveling load of 17,240 kPa (2500 psi) is applied after the end
point stress is reached.

In order to vary compactive efforts with the Texas gyratory, the end point stress should be varied.
Lower end point stresses result in lower compactive efforts.

3.2 California Kneading Compactor

AASHTO T 247 is the procedure to compact samples using the California kneading compactor.
Colorado has used a modified procedure from 1973 to 1991. A comparison of the Colorado and
AASHTO procedures is shown in Table 4. The Colorado procedure uses a lower compactive
effort by reducing the compaction blows from 150 to 90 and the compaction pressure from 3450
kPa (500 psi) to 3100 kPa (450 psi). The Colorado procedure was used for this study since the
procedure provided many excellent performing pavements during its time.

Table 4. Comparison of the Colorado and AASHTO Procedures for the California Kneading
Compactor.

|| AASHTO T 247 ~ Colorado
Semi-compaction 20 blows @ 1.7 MPa 20 blows @ 1.7 MPa
Compaction 150 blows @ 3.4 MPa 90 blows @ 3.1 MPa
Leveling 6.9 MPa 6.9 MPa




3.3 French Rutting Tester

The French rutting tester is used to measure the resistance of an HMA to permanent deformation.
The device is shown in Fig. 3. A slab is 50 by 18 cm (19.7 by 7.1 in.) and is typically 100 mm
(4 in.) thick. Two slabs are tested simultaneously.

The slabs are loaded with 5000 N (1124 Ibs.) by a pneumatic tire inflated to 600 kPa (87 psi).
The tire loads the slab at 1 cycle per second. The chamber is heated to 60°C (140°F) but can
be set to any temperature between 35° and 60°C (95° and 140°F).

When a test is performed on a laboratory compacted sample, it is aged at room temperature for
as long as 7 days. It is then placed in the French rutting tester and loaded with 1000 cycles at
room temperature. The deformations recorded at the end are the “"zero" readings. It is then
heated to the test temperature for 12 hours before the test begins. Rut depths are measured
after 100, 300, 1000, 3000, 10000, 30000, and possibly 100,000 cycles. The rut depth after a
given number of cycles is calculated as the average of 15 measurements: 5 locations along the
length and 3 along the width.

A successful test will have a rut depth that is less than 10% of the slab thickness after 30,000
cycles. A pair of slabs can be tested in about 9 hours.



Fig. 3. The French Rutting Tester.



4.0 TESTING METHODOLOGY

4.1 Summary of Hot Mix Asphalt Designs

Contractors in Colorado were asked to submit an HMA design that would be used on a typical
CDOT project. Each contractor was allowed to submit one design. Although a maximum of 20
designs were targeted for the study, 19 were submitted. All mixes contained lime. As expected,
there was a wide variety of mixtures submitted. The aggregate properties are summarized in
Table 5.

4.2 Experimental Grid

Each HMA used in this experiment was tested using the standard CDOT procedures as outlined
below:

1) Texas gyratory, 170 kPa (25 psi) end point stress,

2) Texas gyratory, 520 kPa (75 psi) end point stress,

3) Texas gyratory, 860 kPa (125 psi) end.point stress,

4) French rutting tester, and

5) California kneading compactor.

Designs performed on the Texas gyratory used 4 different asphalt contents at 0.5% increments.
The pre-gyration stress was also adjusted somewhat proportionately with the end point stress.
The pre-gyration, end point and consolidation stresses used were:

1) 70-170-17240 kPa (10-25-2500 psi),

2) 140-520-17240 kPa (20-75-2500 psi), and

3) 210-860-17240 kPa (30-125-2500 psi).

Designs on the California kneading compactor used 3 different asphalt contents at 0.5%
increments. Samples were tested on the French rutting tester to determine the maximum asphalt
content of the HMA before rutting on a high trafficked pavement.



Table 5. Summary of Aggregate Properties Used In This Study.

Mix | Grading | Nominal Aggregate Source
Maimum | Naturai | RaP Crushed (%)
mm (in) Sand (%) )
(%) Pit Quarry
1 c 12.5 (1/2) 0 0 100 0
2 C 19.0 (3/4) 10 10 60 20
3 C 12.5 (1/2) 20 0 0 80
4 C 19.0 (3/4) 0 0 0 100
5 C 19.0 (3/4) 20 15 0 65
6 C 19.0 (3/4) 35 0 0 65
7 c 12,5 (1/2) 10 0 90 0
8 CX 9.5 (3/8) 20 0 80 0
9 CX 12.5 (1/2) 20 20 0 60
10 CX 9.5 (3/8) 0 0 100 0
11 CX 12.5 (1/2) 20 20 0 60
12 CX 12.5 (1/2) 20 0 80 0
13 CX 125 (1/2) 0 0 100 0
14 c 19.0 (3/4) 10 0 90 0
15 CX 9.5 (3/8) 20 0 80 0
16 C 19.0 (3/4) 20 0 80 0
17 CX 125 (1/2) 0 0 100 0
18 CX 12.5 (1/2) 10 0 90 0
19 c 19.0 (3/4) 0 0 100 0

RAP - Recycled Asphalt Pavement
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5.0 LABORATORY RESULTS AND DISCUSSION

5.1 Texas Gyratory Results

Each HMA submitted was compacted at 3 different end point stresses with the Texas gyratory.
It was desired to determine the appropriate end point stress for the various traffic and
environmental conditions in Colorado. Additionally, the Hveem stability, Voids in the Mineral
Agaregate (VMA), and Voids Filled with Asphalt (VFA) were measured. Specifications relating
the Hveem stability, VMA, and VFA might also need adjusting. A summary of the optimum
asphalt content, Hveem stability, and VMA of each HMA compacted in the Texas gyratory is
shown in Table 8. Plots of the optimum asphalt content versus the various end point stresses

are shown in Appendix C.

5.2 Optimum Asphalt Content

The optimum asphalt content was selected at 4% air voids in all cases.

5.2.1 High Traffic

5.2.1.1 Hot Environment. The French rutting tester was used at 60°C (140°F) to define the

threshold asphalt content of each HMA for high traffic pavements in the hot environment. The
threshold asphalt content for each mix was defined as the highest asphalt content that would pass

the French rutting tester. Results from the French rutting tester are shown in Appendix D.

Each mix was also designed using three different end point stresses with the Texas gyratory.
When the threshold asphalt content corresponded to the asphalt content at 3% air voids for a
certain end point stress, a mix designed with the same end point stress at 4% air voids would be
1% air voids away from rutting. Take Mix 2 for example, using a 450 kPa (65 psi) end point
stress at 4% air voids, the optimum asphalt content is 5.8%. The asphalt content at 3% air voids
is 6.2%, the rutting threshold asphalt content. Therefore, if Mix 2 were designed at 4% air voids
using a 450 kPa (65 psi) end point stress, the mix would be 1% air voids from the rutting
threshold.

11



Table 6. Optimum Asphalt Content, Hveem Stabllity, and VMA for Samples Compacted in
the Texas Gyratory.

Optimum AC (%) Stability VMA (%)

Mix @ 4% Air Voids @ Optimum @ Optimum
25 75 | 125 25 75 | 125 25 75 | 125
1 56 | 54 | 51 45 46 48 144 | 143 | 137
2 63 | 57 | 5.1 40 42 | 46 169 | 164 | 152
3 57 | 50 | 49 42 50 48 160 | 145 | 14.1
4 55 | 5.1 5.0 40 43 42 152 | 140 | 14.3
5 53 | 47 | 45 40 44 43 140 | 128 | 124
6 57 | 55 | 52 43 47 49 158 | 154 | 147
7 63 | 59 | 56 - 42 41 — | 160 | 154
8 6.1 57 | 53 35 38 | 40 158 | 151 | 14.3
9 6.6 61 | 57 40 43 — | 163 | 154
10 60 | 53 | 50 36 43 44 159 | 140 | 139
11 63 | 58 | 55 40 44 47 || 185 | 174 | 17.1
12 6.1 57 | 53 37 40 42 157 | 147 | 136
13 58 | 56 | 48 37 | 39 46 16.0 | 157 | 13.5
14 | >60 | 56 | 47 - 35 41 - 155 | 13.8
15 63 | 58 | 55 37 42 42 170 | 159 | 152
16 57 | 53 | 50 40 44 42 155 | 142 | 14.0
17 | 60 | 57 | 54 - 41 43 - 158 | 14.9
18 56 | 52 | 51 39 | 42 43 | 144 | 132 | 134
19 49 | 48 | 44 r41 45 46 132 | 130 | 125

25 = 170 kPa (25 psi) end point stress on the Texas gyratory
75 = 520 kPa (75 psi) end point stress on the Texas gyratory
125 = 860 kPa {125 psi) end point stress on the Texas gyratory

12



The threshold asphalt content and the asphalt contents at 1% and 2% air voids away from the
threshold asphalt contents are shown in Table 7. Additionally, the end point stress required by
the Texas gyratory to match the 1% and 2% air voids factor of safety are shown in Table 7. For
high trafficked pavements, an optimum asphalt content selected at 4% air voids using a 860 kPa
(125 psi) end point stress is recommended.

There is considerable scatter in the recommended end point stresses shown in Table 7. The
scatter appears to be related to two variables: 1) the angularity of the aggregates used, and 2)
the maximum aggregate size in the mix.

The first variable appears to be aggregate angularity. The mixes using primarily quarried
material, always highly angular, meet the rutting threshold with a 1% air void factor of safety at
an end point stress that is less than 690 kPa (100 psi) (Mix 9) and mostly less than 340 kPa (50
psi) (Mix 3, 4, 5, and 11). Although Mix 6 is primarily from a quarried source, it contains 35%
rounded sands and meets the rutting threshold at 860 kPa (125 psi).

When aggregates are from sand and gravel pits, a higher end point stress is required to meet the
rutting threshold with a 1% air void factor safety than with quarried materials. The aggregates
from sand and gravel pits with generally marginal angularity (Mix 8, 10, 13) require an end point
stress greater than 900 kPa (130 psi). Aggregates from pits with noticeably higher angularity (Mix
2, 7) have an end point stress of less than 690 kPa (100 psi) to avoid the rutting threshold by 1%

air voids.

The second variable appears to be maximum aggregate size. The larger the maximum aggregate
size, the stronger the mix. The 7 mixes with a 19.0 mm (3/4 in.) nominal maximum aggregate
size meet the rutting threshold with a 1% air void factor of safety at an end point stress of 510
kPa (74 psi). Mixes with a nominal maximum aggregate size less than 19.0 mm meet the same
factor of safety at 670 kPa (97 psi).

Varying the end point stress alone will be insufficient to resist rutting. Minimum Hveem stability
and VMA values will be required to ensure that sufficiently angular materials are produced for the
high and very high traffic categories. Larger nominal maximum aggregate size will be needed.

13



Table 7. Optimum Asphalt Contents (AC) from the French Rutting Tester and the Texas

Gyratory Compactor.

Mix AC @ AC @ T.G. AC @ T.G.
Rutting 1% Higher | End Point 2% Higher End Point
Threshold Air Voids Stress Air Voids Stress
| (%) (%) kPa (psi) (%) kPa (psi)
1 6.2 5.8 170 (25) 55 340 (50)
2N 6.9 6.3 170 (25) 5.8 450 (85)
2 6.2 5.8 450 (65) 5.4 690 (100)
3 5.7 5.3 340 (50) 49 860 (125)
4 5.8 5.5 170 (25) 5.0 690 (100)
5 5.7 5.4 170 (25) 48 480 (70)
6 5.6 5.2 860 (izs) 4.8 1030 (150)
7 6.6 6.2 280 (40) 5.9 520 (75)
8 5.0 47 1030 (150) 4.4 >1030 (>150)
9 6.2 5.9 690 (100) 5.6 930 (135)
10 5.0 4.7 1030 (150) 44 > 1030 (>150)
11 6.3 6.0 340 (50) 5.7 620 (90)
12 5.4 5.1 930 (135) 4.8 1030 (150)
13 5.0 46 900 (130) 4.2 1030 (150)
14 5.3 5.0 860 (125) 47 970 (140)
15 | 56 5.2 1030 (150) 48 >1030 (150)
16 5.3 4.9 860 (125) 45 >1030 (150)
17 5.8 55 340 (50) 5.1 1030 (150)
18 5.6 5.3 410 (60) 5.0 1030 (150)
19 5.5 5.2 <170 (25) 4.9 170 (25)
Avg. 5.62 5.31 610 (88) 4.93 850 (123)
sD. | o053 0.50 330 (48) 0.51 250 (37)

" High Elevation Data (not included in averages)
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5.2.1.2 Cool Environment. Two of the HMAs (Mix 1 and Mix 2A) were examined for placement
at high elevations. The asphalt content for the threshold of rutting was determined from the
French rutting tester. The French rutting tester was performed at 50°C (122°F) to model the cool

or vary cool high temperature categories. For the very high traffic category in a cool environment,
an end point stress of 520 kPa (75 psi) is appropriate.

5.2.2 Medium Traffic

The Callifornia kneading compactor was used successfully in Colorado from 1973 to 1991. It was
particularly successful on the low and medium trafficked roads, and there were even successes
on high and very high trafficked roads. It was desired to compare the asphalt contents obtained
with: the successful experience of the California kneading compactor with the various end point
stresses used on the Texas gyratory. The results are shown in Table 8.

Results indicate the Colorado version of the California kneading compactor is comparable to a
340 kPa (50 psi) end point stress with the Texas gyratory. Once again there is scatter in the
data, that can be attributed to the wide variety of aggregate anguiarity and maximum aggregate
size. Using a 340 kPa (50 psi) end point stress for the moderate environmental and medium

traffic category appears reasonable.

5.2.3 Low Traffic

For low trafficked roads there was not a significant data base or test that could be used to
develop recommended end point stresses on the Texas gyratory. Primarily, the recommendations
are based on the past experience of CDOT and contractor personnel.
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Table 8. Optimum Asphalt Contents from the California Kneading Compactor.

Mix Kneading Gyratory
Compactor End Point
Optimum AC Stress
(%) kPa (psi)
1 6.4 <170 }(<25)
2 6.2 240 (35)
3’ 6.1 <170 (<25)
4 5.7 <170 (<25)
5 5.4 170 (25)
6 55 520 (75)
7 6.5 <170 (<25)
8 55 690 (100)
9 6.2 450 (65)
10 5.6 380 (55)
11 6.3 170 (25)
12 5.9 - 340 (50)
13 5.4 590 {85)
14 5.9 340 (50)
15 6.0 380 (55)
16 5.8 170 (25)
17 8.1 170 (25)
18 55 280 (40)
19 4.8 280 (40)
Avg. 5,83 310 {45)
SD 0.43 160 (23)
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5.2.4 Summary
The recommended end point stresses to be used on the Texas gyratory for various traffic and

environmental zones are shown in Table 9. The optimum asphalt content determined from the

19 mixes studied in this experiment are shown in Table 10.

Table 9. Recommended End Point Stresses (psi) for the Texas Gyratory.

Traffic High Temperature
Very Cool Cool Moderate Hot
Low 25 . 25 25 50
Medium 25 25 50 75
High 25 50 75 100
Very High 50 75 - 100 | 125
Very Very High || 125

1 psi = 6.895 kPa

Table 10. Average Asphalt Contents for Each Category.

Traffic : High Temperature
Very Cool Cool Moderate Hot
Low 6.0 6.0 6.0 5.7
Medium 60 | 60 5.7 55
High 6.0 5.7 5.5 53
Very High 5.7 55 53 5.1
Very Very High || | 5.1
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5.3 Hveem Stability

The Hveem stability values were determined according to AASHTO T 246. Results at the end
point stresses tested for this study are shown in Table 6 for each of the mixes.
Recommendations for the minimum stability data were developed from the actual performance
of 33 pavements in Colorado, both good and bad as reported by Aschenbrener (1). These data
were analyzed by consultants from Aguirre Engineers. The recommended minimum stability
requirements should be related to the design end point stress. The recommended values are

shown in Table 11.

Table 11. Minimum Hveem Stability Specifications.

End Point Stress Minimum
kPa (psi) Stability
860 (125) 42
690 (100) 42
520 (75) | 39
340 (50) 33
170 (25) 26

5.4 Voids in the Mineral Aggregate

All of the VMA results reported in this study were calculated using the bulk specific gravity of the
aggregates. A summary of the actual VMA values measured in this study are shown in Table 6.
A summary of the VMA values for the compactive efforts that correspond to the various traffic
categories and some recommended specifications are shown in Table 12. The recommended
VMA specifications are shown in Table 13.

When the design air voids are chosen differently than 3.0, 4.0 or 5.0%, the specified VMA should
be chosen by linear interpolation. For example, a 19.0 mm (3/4 in.) nominal maximum size
aggregate at 4.0% air voids, the VMA specification would be 13.0. For the same mix at 4.4% air
voids, the VMA specification would be 13.4.
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Table 12. Summary of the Voids in the Mineral Aggregate Data.

Mix | Grad- Nominal Specified VMA Actual VMA
ing Maximum @ 4% Air Voids (By Traffic)
- Aggregate (%) (%)
Size ]

mm (n) || OAI | Newal | 50 75 100 | 125
1| ¢ | 12502 15 14 144 | 143 | 140 | 137
2 | ¢ | 19.0 @ 14 13 165 | 161 | 157 | 15.2
3| ¢ |12502) || 15 14 | 152 | 145 | 143 | 141
4 | ¢ | 195 @) 14 13 146 | 140 | 140 | 143
5 | ¢ | 195 @M 14 13 134 | 128 | 126 | 124
6 | ¢ | 195 @3m 14 13 156 | 154 | 150 | 147
7 | ¢ | 1250 15 | 14 160 | 160 | 157 | 154
8 | cx | 95@m 16 15 154 | 151 | 148 | 143
o | ox | 1254 15 14 163 | 163 | 159 | 154
10 | ox | 95@m) 16 15 150 | 140 | 140 | 139
1 | ox | 125 (1/2) 15 | 14 179 | 174 | 172 | 174
12 | ox | 125172 15 14 153 | 147 | 141 | 136
13 | ox | 12572 || 15 14 158 | 157 | 146 | 135
14 | ¢ | 19.0 (34 14 13 155 | 155 | 146 | 13.8
15 | cx | 95 @m) 16 15 165 | 159 | 155 | 152
16| c | 19.0(34) 14 13 148 | 142 | 141 | 140
17 | ox | 125 (/2 15 14 163 | 158 | 153 | 149
18 | cx | 125 (1/2) 15 14 138 | 134 | 134 | 134
19 | ¢ | 190> | 14 13 131 | 130 | 128 | 125

Al = Asphalt Institute

50 = 340 kPa (50 psi)
75 = 520 kPa (75 psi)
100 = 690 kPa (100 psi)
125 = 860 kPa (125 psi)
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Table 13. Minimum VMA Specifications.

Minimum VMA Specifications®
Nominal Maximum Design Air Voids
Size'
mm (In) 3.0% 4.0% 5.0%
37.5 (1-1/2) 10.0 11.0 12.0
25.0 (1) 11.0 12.0 13.0
19.0 (3/4) 12.0 13.0 14.0
12.5 (1/2) 13.0 14.0 15.0
9.5 (3/8) 14.0 15.0 16.0

' The Nominal Maximum Size is defined as one size larger
than the first sieve to retain more than 10%.

2 Interpolate specified VMA values for design air voids
between those listed.

5.5 Voids Filled with Asphalt

The voids filled with asphalt (VFA) is an important parameter relating to pavement performance.
If the VFA is too high, a mix may be susceptible to premature rutting. If the VFA is too low, a mix
may be susceptible to ravelling. The recommended VFA values were obtained from the Asphalt
Institute MS-2 and are shown in Table 14.

Table 14. Recommended VFA Specifications.

End Point Stress VFA
kPa (psi) (%)
860 (125) 65 - 75
690 (100) 65 - 75
520 (75) 65-78
340 (50) 65 - 80
170 (25) 70 - 80
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5.6 Impact of New Specifications

Each of the mixes analyzed in this study were compared to the new specifications. Of the 19
mixes investigated, 12 would pass the new specifications for all traffic and environmental
categories. The mixes that would fail the new specifications and the reason the mix wouid fail
is listed in Table 15. Although 9 mixes are listed in Table 15, 2 of the mixes would pass in the
3% to 5% air void window. All but one of the mixes would be acceptable for medium and low
traffic roadways. Of the 17 possible combinations or grids of traffic and environment, the number
of grids that the mix would be acceptable and unacceptable is shown in Table 15.

Table 15. Mixes Failing the New Specificatlons.

Mix Lowest Unacceptable Grid Of 17 Grids: » Cauge for
 Traffic Environment Acceptable | Unaccept. | Failure
5 | High Moderate 10 7 VMA
7 Very High Hot 15 2 Stability
8 Very High Moderate 13 4 Stability, VMA
10 High Moderate 10 7 VMA
12 Very High Hot 15 2 VMA
13 Very High Hot 15 2 VMA
14 High Moderate | 10 7 Stability
18 Medium Moderate 6 11 VMA
19 High Moderate 13 4 VMA

" Does not pass at 4.0% air voids but does pass between 3% and 5% air voids.
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6.0 CASE HISTORIES FROM 1993

During 1993, several projects were constructed using the Texas gyratory with the lower end point
stresses. Summaries of these trial projects are described below.

6.1 6th Avenue

The project is located in Denver with a highest 7-day air temperature of 33 to 34°C (91 to 93°F),
the moderate temperature category. The 10-year ESALs used to design the overlay were 2.5 x
10°, a borderline high traffic category. The end point stress should be 520 kPa (75 psi). The
project was designed with the 690 kPa (100 psi) end point stress and had an optimum asphalt
content of 4.8% at 4.0% air voids. The mix was very stiff. If the 520 kPa (75 psi) end point
stress had been used, the optimum asphalt content would have been 5.0%, considered to be
reasonable by the contractor and CDOT personnel.

6.2 Arapahoe Road

The project is located in Denver with a highest 7-day air temperature of 33 to 34°C (91 to 93°F),
the moderate temperature category. The 10-year ESALs used to design the overlay were 6.5 x
10°, a medium tréfﬁc category. The end point stress should be 350 kPa (50 psi). The project
was designed with the 690 kPa (100 psi) end point stress and had an optimum asphalt content
of 4.8% at 4.0% air voids. The mix was very stiff. If the 350 kPa (50 psi) end point stress had
been used, the optimum asphalt content would have been 5.2%, considered to be reasonable by
the contractor and CDOT personnel.

6.3 Copper Mountain

The project is located near Dillon with a highest 7-day air temperature of 26°C (79°F), the very
cooi temperature category. The 10-year ESALS used to design the overlay were 3.5 x 10°, a very
high traffic category. The end point stress should be 350 kPa (50 psi). The project was designed
with the 350 kPa (50 psi) end point stress and had an optimum asphalt content of 5.7% at 4.0%
air voids. The mix was considered reasonable by the contractor and CDOT personnel.
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6.4 ldaho Springs

The project is located on |-70 at Idaho Springs with a highest 7-day air temperature of 23°C
(84°F), the cool temperature category. The 10-year ESALs used to design the overlay were 3.5
x 10°, a very high traffic category. The end point stress shouid be 520 kPa (75 psi). The project
was designed with the 520 kPa (75 psi} end point stress and had an optimum asphalt content of
5.7% at 4.0% air voids. The mix was considered reasonable by the contractor and CDOT

personnel.

6.5 Cherry Creek State Park

The project is located in Denver with a highest 7-day air temperature of 33 to 34°C (91 to 93°F),
the moderate temperature category. The design ESALs were unknown. The low traffic category
was used since the road serves only recreational vehicles. The end point stress should be 170
kPa (25 psi). The project was designed with low air voids at the 170 kPa (25 psi) end point
stress and had an optimum asphalt content of 5.6% at 4.0% air voids. The mix appeared to have
too low an asphalt content for the application.

6.6 Berthoud Pass

The project is located on Berthoud Pass with a highest 7-day air temperature of 19°C (66°F), the
very cool temperature category. The 10-year ESALs used to design the overlay were 4.1 x 10°,
a medium ftraffic category. The end point stress should be 170 kPa (25 psl). The project was
constructed with the 170 kPa (25 psi) end point stress and had an optimum asphalt content of
5.8% at 4.0% air voids. The mix was considered reasonable by the CDOT maintenance and

engineering personnel.

6.7 Muddy Pass

The project is located from Muddy Pass to the east with a highest 7-day air temperature of 30°C
(86°F), the cool temperature category. The 10-year ESALs used to design the overlay were 3.3
x 10°, a medium traffic category. The end point stress should be 170 kPa (25 psi). The project
was constructed with the 170 kPa (25 psi) end point stress and had an optimum asphalt content
of 5.7% at 4.0% air voids. The mix was considered reasonable by the CDOT and contractor

personnel.
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6.8 Walden

The project is located from Walden to the -south with a highest 7-day air temperature of 28°C
(82°F), the cool temperature category. The 10-year ESALs used to design the overlay were in
the medium traffic category. The end point stress should be 170 kPa (25 psi). The project was
constructed with the 170 kPa (25 psi) end point stress and had an optimum asphalt content of
6.0% at 4.0% air voids. The mix was considered reasonable by the CDOT and contractor

personnel.

6.9 Basalt

The project is located around Basalt with a highest 7-day air temperature of 34°C (93°F), the
moderate temperature category. The 20-year ESALs used to design the overlay were 1.9 x 10°,
a high traffic category. The end point stress should be 520 kPa (75 psi). The project was
constructed with the 520 kPa (75 psi) end point stress and had an optimum asphalt content of
5.8% at 4.0% air voids. The mix was considered reasonable by the CDOT and contractor

personnel.

6.10 Wilkerson Pass

The project is located on Wilkerson Pass with a highest 7-day air temperature of 27°C (81°F), the
cool temperature category. The 10-year ESALs used to design the overlay were 3.2 x 10°, a
medium traffic category. The project was constructed with the 170 kPa (25 psi) end point stress
and had an optimum asphalt content of 5.9% at 4.0% air voids. The mix was considered
reasonable by the CDOT and contractor personnel.
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7.0 FIELD CORRELATIONS

Ideally, in 3 to 5 years the air voids in the wheel path of the pavement should match the design
air voids. A study previously performed by Aschenbrener (1) correlated the laboratory compacted
air voids with the air voids in the wheel path. The correlation of the air voids in the wheel path
with the laboratory compacted air voids is shown in Table 16. For the high trafficked pavements,
the zorrelation of air voids in the wheel path with laboratory compacted voids is shown in Fig. 4.
The variables used in Table 16 are defined as:

Y = air voids (%) from the sample recompacted in the Texas gyratory,

X = air voids (%) in the wheel! path, and

r* = coefficient of determination.

Table 16. Correlation of Air Voids in the Wheel Path with Recompacted Samples for
Different Traffic Categories and Laboratory Compactive Efforts.

Traffic T.G. End Point Regression | r?
Category Stress, kPa (psi) Equation
Medium 620 (90) Y=12X+0.6 0.68
Medium 1030 (150) Y=14X+1.3 0.63
| tgn | s2000 | y=1ix-01 | e78 |
High | 1030 (150) Y =09X+1.2 0.36

For an ideal relationship, the slope should equal 1.0 and the intercept should equal 0.0. For a
perfect relationship, the coefficient of determination, r?, should equal 1.0. For traffic in the high
category, an end point stress of 620 kPa (90 psi) is close to ideal (the slope equals 1.1 and
intercept is 0.1) and close to perfect (the r* is 0.78) as shown in Fig. 4.

For the very high traffic and moderate temperature category, it is recommended to design at a

690 kPa (100 psi) end point stress. The recommendation compares favorably with the measured

air voids in the wheel path.
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Air Voids (%) in the Wheel Path
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Fig. 4. Air Voids in the Wheel Path Versus Alir Voids from Samples Recompacted in the
Texas Gyratory with a 620 kPa (90 psi) End Polnt Stress for the High Traffic Category.
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8.0 IMPLEMENTATION

The results of this research effort were presented to the Region Materials Engineers and a joint
task force of CDOT, paving contractor, and Industry representatives. The original findings of the
study were modified based on the experience of all the individuals who provided feedback. The
fina, recommendations are summarized below.

It ie recommended the state be divided into four high temperature categories and five traffic
categories. The traffic and high temperature environment recommendations are shown below.

Traffic Design ESALs CDOT Network
Category (%)
Low <3x10° 21.8
Medium 3x10°to 10° 34.4
High 10%to 3 x 10° 16.1
Very High 3x10°to 107 21.3
Very Very High >107 6.4
High Temperature Highest 7-Day Avg. CDOT Network
Region Max. Air Temperature (%)
Hot > 36°C 14.7
(SE and West) (> 97°F)
Moderate 32 to 36°C 57.2
(Denver, Plains and West) (90 to 97°F)
Cool 27 to 31°C : 139
(Mountains) (81 to 88°F)
Very Cool < 27°C 14.2
(High Mountains) (< 81°F)
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The resulting 4x4 matrix (pius the very, very high traffic) will have a unique Texas gyratory desig'n
and stability. The recommended end point stresses are shown below in psi (1 psi = 6.895 kPa).

Traffic High Temperature
Very Cool Cool Moderate | Hot
Low 25 25 25 50
Medium 25 25 50 75
High 25 50 75 | 100
Very High 50 75> 100 125
Very Very High 125 ||

The recommended minimum Hveem stability values and voids filled with asphalt (VFA) are shown

below.

End Point Stress Minimum _ VFA
kPa (psi) Stability (%)
860 (125) | 42 65-75
690 (100) | 42 65-75
520 (75) 39 65-78
340 (50 33 65-80
170 (25) 2 | 70-80
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The recommended minimum voids in the mineral aggregate (VMA) requirements are shown

below.
Minimum VMA Specifications?
Nominal Maximum Design Air Voids
Size' ,
mm (In) 3.0% 4.0% 5.0%
37.5 (1-1/2) 10.0 11.0 12.0
25.0 (1) 11.0 12.0 ~13.0
19.0 (3/4) 12.0 13.0 14.0
12.5 (1/2) 13.0 140 15.0
9.5 (3/8) 14.0 15.0 18.0

' The Nominal Maximum Size is defined as one size larger
than the first sieve to retain more than 10%.

2 Interpolate specified VMA values for design air voids
between those listed.
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9.0 FUTURE RESEARCH

During the 1984 construction season, pavements should be selected for a void monitoring
program. The pavements should include all traffic and environmental categories. After monitoring
these pavements for 3 to 5 years, adjustments can be made to the end point stresses
recommended in this study.

10.0 REFERENCES

1. Aschenbrener, T. (1992), "Investigation of the Rutting Performance of Pavements in Colorado,"
Colorado Department of Transportation Research Report, CODOT-DTD-R-92-12, 63 pages.
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Appendix A

Summary of High Temperature Information
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Countles with Maostly High Air Temperatures (> 36°C or 97°F)

County 7-Day High Air
Temperatures

Baca : 36, 36, 36
Bent 37,39
Crowley
Fremont 37
Kiowa 37
Mesa 33, 36, 36, 36, 36, 36, 37
Otero 37, 38
Prowers 38, 38
Pueblo 31, 37,37
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Counties with Mostly Medlum Air Temperatures (32 to 36°C or 90 to 97°F)

County 7-Day High Air
Temperatures

Adams 35
Arapahoe 34
Boulder 27,34, 34
Cheyenne 36, 37
Delta 33, 33, 33, 36
Denver 33, 33, 34
Douglas 33
Eagle 33
Elbert 33, 34
El Paso 25, 29, 33, 33
Garfield 34, 34, 34
Huerfano 33
Jefferson 30, 32, 33, 34
Kit Carson 36, 36, 36
Larimer 27, 28, 32, 33
Las Animas 27, 33, 33, 34, 37
Lincoln 33, 34, 36
Logan 36
Moffat 32, 32, 34, 36
Montezuma 33, 33, 33
Montrose 32, 34, 36, 37
Morgan 36
Philllps 36
Rio Blanco 32, 32, 36
Sedgwick 36, 37
Washington 35, 36
Weld 34, 35, 35, 36
Yuma 35, 36, 37




Counties with Mostly Low Air Temperatures (27 to 31°C or 81 to 88°F)

County | 7-Day High Air
Temperatures

Alamosa 29, 30
Archuleta 31
Chaftee 30, 31
Conejos ' ) 29
Costlila 31
Custer 30
Dolores 27,33
Jackson | 27, 28
La Plata 29, 30, 32, 33
Ouray 29
Park : 27,27, 27, 29
Rio Grande - 28, 29, 29 -
Routt 27, 30, 32
San Miguel 27,31
Saguache 29
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Countles with Mostly Very Low Alr Temperatures (<27°C or <81°F)

County 7-Day High Air
Temperatures

Clear Creek 23, 27,29
Gilpin
Grand 19, 26, 26, 27, 29, 29
Gunnison | 24, 25, 27, 29, 29
Hinsdale 28
Lake 21,28, 24, 24
Mineral 21,27, 27
Pitkin 29, 29
San Juan 25
Summit 26, 29
Teller
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Appendix B

Summary of SHRP's Weather Data Base for Colorado
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SUPERPAVE DETERMINATION OF ASPHALT BINDER GRADE
Weather Database Used in SUPERPAVE Software

LOW TEMP - HIGH TEMP | TEMPERATURES BINDER ORADE | TEMPERATURES BINDER GRADE
. MAX | MAX | MIN | MIN : MAX | MAX | MIN | MIN
COUNTY_1D STATION LONG | LAT | ELEV | AVQ | STD /| AYG | SID | AIR a2y AR [ PVT | PO | HT [ LT | AR BT | AIR | £VT. | PO | HT | LT
LAS ANIMAS NORTH LAKE 105.05 3122 | 2684 2 [ 21 2 F] ¢ 2 27 PG | 02 Y] 3 | 2 K] KT PO | S8 m
SAN MIGUEL NORWOOD 10828 3113 | 214 2% 4 31 1 3 52 24 26 e | 2 2 1 s M BY; PO | &8 kY
OURAY OURAY . 10747 Bo | 291 B 3 » 1 -] 50 22 22 PO | 2 2 3 $2 28 28 PO | 2 28
ARCHULSETA PAGOSA SPRINGS 107.02 3727 | 2169 32 4 n 1 £ 52 32 32 PG | R 34 n 5 <0 40 |['po| 58 o
MESA PALISADE 10835 3902 | 1464 - | a7 ¢ 37 2 1] 5 17 .17 PG | 58 22 « & ‘28 8. | PO | 64 28
BL PASO ~ PALMER LAKE 10492 3012 | Zm 28 ‘ » 2 2 50 2% 2 PO | 82 a8 13 L1 BY) BY PO | 8 | M
DELTA PAONIA1 S 107.58 3847 | 1870 - 4 33 1 n s 22 . | ro |8 ) 35 s '3 -3 PO | s 34
MONTROSE PARADOX 1 £ 16895 137 | 1600 2 4 2 1 % 57 -2 .23 o | s 28 38 58 5N N PO | & b0
EI BERT PARKER § E 10445 3953 | 1928 -2 ¢ B X ] 1 n K] 28 2 | M| s 28 35 55 % 36 PO | 58 @
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Appendix C

Summary of Optimum Asphalt Contents on the Texas Gyratory
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Appendix D

Summary of the French Rutting Tester Results
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