APPLICATION OF STANDARD PLANS

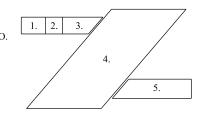
This book is a compilation of Standard Plans prepared by the Colorado Department of Transportation for use on CDOT construction projects. Others who use the CDOT Standard Plans do so at their own risk.

These Standard Plans are essential contract documents as described in subsection 105.09 of the CDOT Standard Specifications for Road and Bridge Construction book.

Standard Plans that are applicable to a specific project will be identified on the project plans and will not be physically attached to those plans. The designer who specifies any of these Standard Plans for a specific project accepts the responsibility of determining their applicability. Additional information concerning the Standards Plans are available in the CDOT Standard Specifications for Road and Bridge Construction book.

Standard Plans adopted or revised subsequent to the adoption of this book will be listed on the index of the project plans and will be physically included in the plans. The New and Revised Standards Plans may be accessed on the CDOT website here: https://www.codot.gov/business/designsupport/standard-plans.

These Standard Plans are adopted for use as of July 31, 2019.


PHOTO CREDITS:

FRONT COVER 1. GAME RAMP | CDOT, COLORADO PARKS & WILDLIFE, ECO RESOLUTIONS | 2016 | STATE HIGHWAY 9, KREMMLING, CO.

) COLORFUL COLORADO SIGN INSTALLATION | CDOT | 2019 | JULESBURG, CO.

JLEVARD BRIDGE OVER COLFAX AVENUE | CDOT | 2011 | DENVER, CO


5. DENVER PANORAMIC | STEPHEN MARTINEZ - CDOT | 2019 | DENVER. CO

BACK COVER

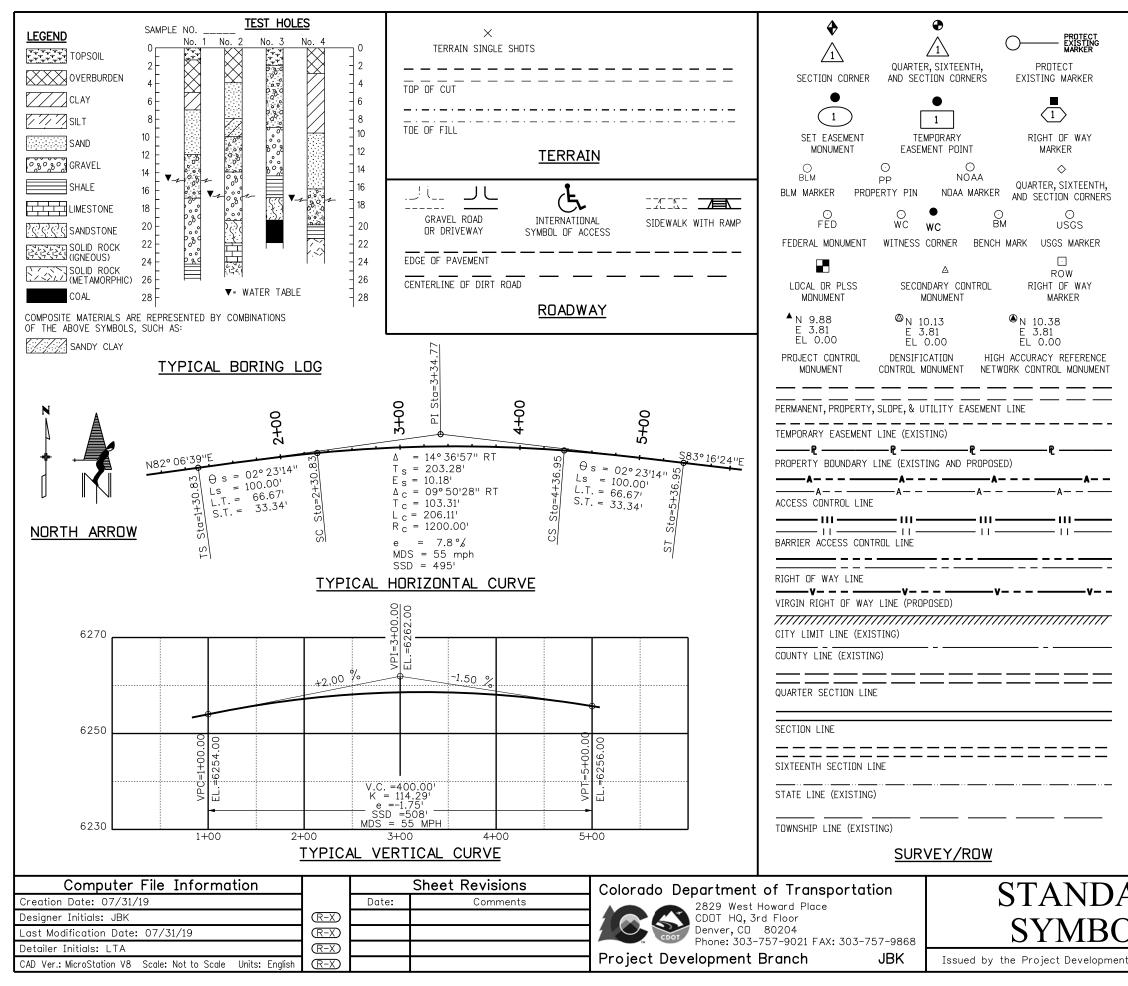
6. HANGING LAKE TUNNELS, WEST | STEPHEN MARTINEZ - CDOT | 2015 | 1-70, GLENWOOD CANYON, CO

Computer File Information			Sheet Revisions	Colorado Department of Transportation	
Creation Date: 07/31/19		Date:	Comments	2829 West Howard Place	APPLICAL
Designer Initials: JBK	(R-X)			CDDT HQ, 3rd Floor	
Last Modification Date: 07/31/19	R-X			Denver, CD 80204 Phone: 303-757-9021 FAX: 303-757-9868	STANDARD
Detailer Initials: LTA	R-X				
CAD Ver.: MicroStation V8 Scale: Not to Scale Units: English	R-X			Project Development Branch JBK	Issued by the Project Developmen

PLAN <u>NUMBER</u>	M STANDARD PAGE <u>TITLE</u> <u>NUMBER</u>
□ M-100-1	STANDARD SYMBOLS (3 SHEETS)1-3
□ M-100-2	ACRONYMS AND ABBREVIATIONS (4 SHEETS)4-7
□ M-203-1	APPROACH ROADS8
□ M-203-2	DITCH TYPES9
□ M-203-11	SUPERELEVATION CROWNED AND DIVIDED HIGHWAYS10-12 (3 SHEETS)
□ M-203-12	SUPERELEVATION STREETS (2 SHEETS)13-14
□ M-206-1	EXCAVATION AND BACKFILL FOR STRUCTURES15-16 (2 SHEETS)
□ M-206-2	EXCAVATION AND BACKFILL FOR BRIDGES (2 SHEETS)17-18
□ M-208-1	TEMPORARY EROSION CONTROL (11 SHEETS)19-29
□ M-210-1	MAILBOX SUPPORTS (2 SHEETS)
□ M-214-1	NURSERY STOCK DETAILS
□ M-216-1	SOIL RETENTION COVERING (2 SHEETS)
□ M-412-1	CONCRETE PAVEMENT JOINTS (5 SHEETS)
□ M-510-1	STRUCTURAL PLATE PIPE H-20 LOADING
□ M-601-1	SINGLE CONCRETE BOX CULVERT (CAST-IN-PLACE)41-42 (2 SHEETS)
□ M-601-2	DOUBLE CONCRETE BOX CULVERT (CAST-IN-PLACE)43-44 (2 SHEETS)
□ M-601-3	TRIPLE CONCRETE BOX CULVERT (CAST-IN-PLACE)45-46 (2 SHEETS)
□ M-601-10	HEADWALL FOR PIPES47
□ M-601-11	TYPE "S" SADDLE HEADWALLS FOR PIPE
□ M-601-12	HEADWALLS AND PIPE OUTLET PAVING
□ M-601-20	WINGWALLS FOR PIPE OR BOX CULVERTS (2 SHEETS)50-51
□ M-603-1	METAL PIPE (4 SHEETS)52-55
□ M-603-2	REINFORCED CONCRETE PIPE56
□ M-603-3	PRECAST CONCRETE BOX CULVERT57
□ M-603-4	CORRUGATED POLYETHYLENE PIPE (AASHTO M294)58 AND POLYPROPYLENE PIPE (AASHTO M330)
□ M-603-5	POLYVINYL CHLORIDE (PVC) PIPE (AASHTO M304)59
□ M-603-6	STEEL REINFORCED POLYETHYLENE60 AND POLYPROPYLENE PIPE (AASHTO M330)
□ M-603-10	CONCRETE AND METAL END SECTIONS61
□ M-603-12	TRAVERSABLE END SECTIONS AND SAFETY GRATES62-64 (3 SHEETS)
□ M-604-10	INLET, TYPE C65
□ M-604-11	INLET, TYPE D
□ M-604-12	CURB INLET TYPE R (2 SHEETS)67-68
□ M-604-13	CONCRETE INLET TYPE 1369
□ M-604-20	MANHOLES (3 SHEETS)70-72
□ M-604-25	VANE GRATE INLET (5 SHEETS)73-77
□ M-605-1	SUBSURFACE DRAINS

PLAN <u>NUMBER</u>	M STANDARD <u>TITLE</u>	PAGE <u>NUMBER</u>	PLAN <u>NUMBER</u>
□ M-606-1	MIDWEST GUARDRAIL SYSTEM TYPE 3 W-BEAM 31 INCHES (19 SHEETS)	79-97	□ S-612-1 □ S-613-1
□ M-606-13	GUARDRAIL TYPE 7 F-SHAPE BARRIER (4 SHEETS))	□ S-614-1
□ M-606-14	PRECAST TYPE 7 CONCRETE BARRIER (3 SHEETS))	□ S-614-2
□ M-606-15	GUARDRAIL TYPE 9 SINGLE SLOPE BARRIER (11 SHEETS)		□ S-614-3
□ M-607-1	WIRE FENCES AND GATES (3 SHEETS)	116–118	□ S-614-4
□ M-607-2	CHAIN LINK FENCE (3 SHEETS)		□ S-614-5
□ M-607-3	BARRIER FENCE	122	🗖 S-614-6
□ M-607-4	DEER FENCE, GATES, AND GAME RAMPS (5 SHEETS)123-127	
□ M-607-10	PICKET SNOW FENCE	128	🗖 S-614-8
□ M-607-15	RDAD CLOSURE GATE (9 SHEETS)		🗖 S-614-9
□ M-608-1	CURB RAMPS (10 SHEETS)		🗖 S-614-10
□ M-609-1	CURBS, GUTTERS, AND SIDEWALKS (4 SHEETS)	148-151	🗖 S-614-11
□ M-611-1	CATTLE GUARD (2 SHEETS)		🗖 S-614-12
□ M-611-2	DEER GUARD (2 SHEETS)		🗖 S-614-14
□ M-614-1	RUMBLE STRIPS (3 SHEETS)	156-158	🗖 S-614-20
□ M-614-2	SAND BARREL ARRAYS (2 SHEETS)	159-160	D S-614-21
□ M-615-1	EMBANKMENT PROTECTOR TYPE 3	161	
□ M-615-2	EMBANKMENT PROTECTOR TYPE 5	162	D S-614-22
□ M-616-1	INVERTED SIPHON		🗖 S-614-40
□ M-620-1	FIELD LABORATORY CLASS 1	164	🗖 S-614-40A
□ M-620-2	FIELD LABORATORY CLASS 2 (2 SHEETS)		
□ M-620-11	FIELD OFFICE CLASS 1	167	🗖 S-614-41
□ M-620-12	FIELD OFFICE CLASS 2	168	🗖 S-614-42
□ M-629-1	SURVEY MONUMENTS (2 SHEETS)	169–170	□ S-614-43

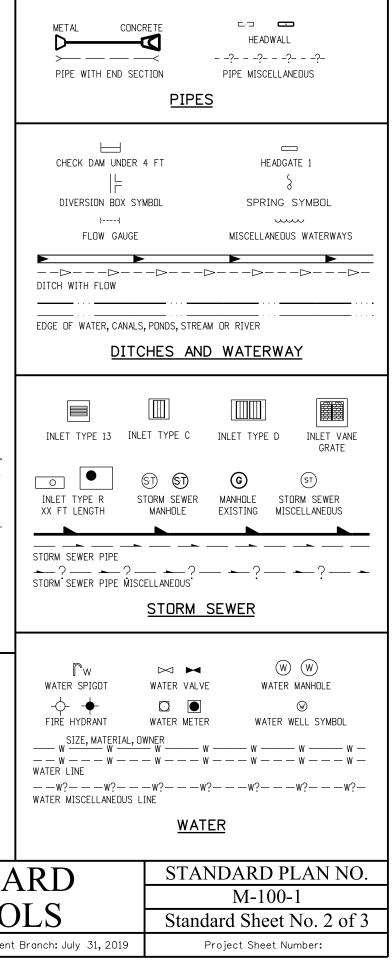
COLORADO DEPARTMENT OF TRANSPORTATION TABLE OF CONTENTS M&S STANDARDS JULY 31, 2019

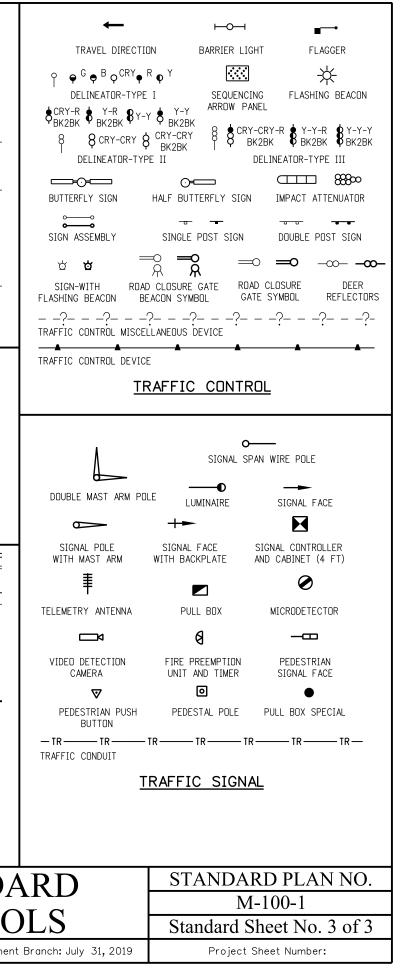

🗖 S-612-1	DELINEATOR INSTALLATIONS (8 SHEETS)
🗖 S-613-1	RDADWAY LIGHTING (8 SHEETS)179-186
D S-614-1	TYPICAL GROUND SIGN PLACEMENT (2 SHEETS)
D S-614-2	CLASS I SIGNS
🗖 S-614-3	CLASS II SIGNS190
S-614-4	CLASS III SIGNS (3 SHEETS)
□ S-614-5	BREAK-AWAY SIGN SUPPORT DETAILS194-195 FOR CLASS III SIGNS (2 SHEETS)
□ S-614-6	CONCRETE FOOTINGS AND SIGN ISLANDS
🗖 S-614-8	TUBULAR STEEL SIGN SUPPORT DETAILS (7 SHEETS)198-204
🗖 S-614-9	PEDESTRIAN PUSH BUTTON POST ASSEMBLY (2 SHEETS). 205-206
🗖 S-614-10	MARKER ASSEMBLY INSTALLATIONS 207
S-614-11	MILEPOST SIGN DETAIL FOR HIGH SNOW AREAS
D S-614-12	STRUCTURE NUMBER INSTALLATION (2 SHEETS) 209-210
🗖 S-614-14	FLASHING BEACON AND SIGN INSTALLATIONS (4 SHEETS). 211-214
🗖 S-614-20	TYPICAL POLE MOUNT SIGN INSTALLATIONS215
□ S-614-21	CONCRETE BARRIER SIGN POST INSTALLATIONS216-217 (2 SHEETS)
🗖 S-614-22	TYPICAL MULTI-SIGN INSTALLATIONS218
□ S-614-40	TYPICAL TRAFFIC SIGNAL 30'-75'DOUBLE MAST ARMS219-223 65'-75'SINGLE MAST ARMS (5 SHEETS)
□ S-614-40A	ALTERNATIVE TRAFFIC SIGNAL224-227 25'-55' SINGLE MAST ARMS (4 SHEETS)
🗖 S-614-41	TEMPORARY SPAN WIRE SIGNALS (13 SHEETS)228-240
🗖 S-614-42	CABINET FOUNDATION DETAIL (4 SHEETS)241-244
S-614-43	TRAFFIC LOOP AND MISCELLANEOUS SIGNAL DETAILS245-252 (8 SHEETS)
🗖 S-614-44	PEDESTAL POLE SIGNALS (2 SHEETS)253-254
🗖 S-614-50	STATIC SIGN MONOTUBE STRUCTURES (12 SHEETS)255-266
🗖 S-614-60	DYNAMIC SIGN MONOTUBE STRUCTURES (14 SHEETS)267-280
🗖 S-627-1	PAVEMENT MARKINGS (9 SHEETS)281-289
S-630-1	TRAFFIC CONTROLS FOR HIGHWAY CONSTRUCTION290-313 (24 SHEETS)
□ S-630-2	BARRICADES, DRUMS, CONCRETE BARRIERS (TEMP)
🗖 S-630-3	FLASHING BEACON (PORTABLE) DETAILS
D S-630-4	STEEL SIGN SUPPORT (TEMPORARY) INSTALLATION316-317 DESIGN (2 SHEETS)
🗖 S-630-5	PORTABLE RUMBLE STRIPS (TEMPORARY) (2 SHEETS) 318-319
🗖 S-630-6	EMERGENCY PULL-OFF AREA (TEMPORARY)
□ S-630-7	ROLLING ROADBLOCKS FOR TRAFFIC CONTROL

Computer File Information			Sheet Revisions	Colorado Department of Transportation	TARLE
Creation Date: 07/31/19		Date:	Comments	2829 West Howard Place	
Designer Initials: JBK	(R-X)			CDDT HQ, 3rd Floor	
Last Modification Date: 07/31/19	R-X			Denver, CD 80204 Phone: 303-757-9021 FAX: 303-757-9868	I CONTER
Detailer Initials: LTA	R-X)				
CAD Ver.: MicroStation V8 Scale: Not to Scale Units: English	(R-X)			Project Development Branch JBK	Issued by the Project Development

S STANDARD <u>TITLE</u>

PAGE <u>NUMBER</u>




GENERAL NOTES

EXCEPT AS NOTED WIT	HOWN AS SCREENED WEIGHT (LIGHT GRAY SCALE), H THE WORD (EXISTING). PROPOSED OR NEW ULL WEIGHT WITHOUT SCREENING, EXCEPT AS O (PROPOSED).			
FEATURES INVOLVED OF AT VARIOUS SCALES. N	NTENDED TO EXPLAIN THE VARIOUS TOPOGRAPHIC N THE DESIGN PLAN SHEETS WHICH ARE PREPARED IOTES ARE ADDED WHERE NECESSARY TO CLARIFY) IS PROVIDED IN THE PLANS FOR SYMBOLS NOT IRD SYMBOLS SHEETS.			
3. GUARDRAIL, CURB AND C TYPE GIVEN BY NOTE.	GUTTER, ETC., ARE REPRESENTED BY A SYMBOL WITH			
BACK OF CURB				
FLOW LINE (F)				
CURB AND GUTTER-TYPE	2.4 DR 6			
GUTTER				
CURB CUT				
jjjjjjjjjjjj				
CORB, GOTTER OR OTHER	RB AND GUTTER			
CORB, GOTTER OR OTHER				
CORB, GOTTER OR OTHER	<u>RB AND GUTTER</u>			
CORB, GOTTER OR OTHER	<u>RB AND GUTTER</u>			
	<u>RB AND GUTTER</u>			
	RB AND GUTTER			
	RB AND GUTTER			
GUARDRAIL -TYPE 4 OR 7	RB AND GUTTER O <t< td=""></t<>			
GUARDRAIL -TYPE 4 OR 7				
GUARDRAIL-TYPE 5 OR H,				
GUARDRAIL-TYPE 3 OR H	RB AND GUTTER Image: Color of the color o			
GUARDRAIL-TYPE 3 OR H	RB AND GUTTER Image: Color of the color o			
GUARDRAIL-TYPE 3 OR H	RB AND GUTTER ND ANCHOR O			
GUARDRAIL-TYPE 3 OR H	RB AND GUTTER O O ND ANCHOR GUARD POST O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O			
GUARDRAIL EI GUARDRAIL EI GUARDRAIL-TYPE 3 OR 6 GUARDRAIL-TYPE 4 OR 7 GUARDRAIL-TYPE 5 OR H. GUARDRAIL-TYPE 5 OR H. GUARDRAIL-TYPE 3A DOUG CABLE BARRIER	RB AND GUTTER ND ANCHOR GUARD POST O <			
GUARDRAIL-TYPE 3 OR H	RB AND GUTTER ND ANCHOR O			
GUARDRAIL EI GUARDRAIL EI GUARDRAIL-TYPE 3 OR 6 GUARDRAIL-TYPE 4 OR 7 GUARDRAIL-TYPE 5 OR H. GUARDRAIL-TYPE 5 OR H. GUARDRAIL-TYPE 3A DOUG CABLE BARRIER	RB AND GUTTER ND ANCHOR O			

ROCK, MASONRY OR MECHANICALLY STABILIZED WALL (FACE)				D ENVIRONMENTAL CONCERN SITE	EROSION LOG
BRIDGE CURB ————————————————————————————————————			5002750222750		
BRIDGE RAIL-TYPE 3A	-xxxxxxxxxx		ROCK CHECK CO DAM	DNCRETE WASHDUT STRUCTURE	DROP INLET EROSION PROTECTION
FLOW LINE CBC	-################-		TEMPORARY BERM	SOIL RETENTION BLANKET	PIPE INLET EROSION PROTECTION
???????????? STRUCTURES MISCELLANEOUS STRUCTURE			RIGID INLET	STORM DRAIN	
				NLET PROTECTION	EROSION CHECK
I	-//////////-		EROSION LOG DITCH CHECK	SILT DIKE	SEDIMENT TRAP/ DEWATERING STRUCTURE
STRUCTURE (PRIMARY) (SECONDARY)	— PF		EXISTING WETLAND	TEMPORARY	STABILIZED CONSTRUCTION
FOUNDATION OR PAD (CONCRETE OR BLOCK)	SF SFSFSF	— SF — — — SF — — — SF — — — SF	PATTERNLDALDA	SLOPE DRAIN	ENTRANCE
BUILDING STRUCTURES	DEBRIS FENCE		LIMITS OF DISTRUBED AREA		
RR TELEGRAPH POLE RR SWITCH RR GUY POLE					
RR SIGNALS WITH DR WITHOUT GATE RR CROSS BUCK SIGN	DECIDUOUS TRE	⊢ 1	HAZARDOUS WASTE SITE	000	~~~~~
RR SIGNAL CONTROLLER CABINET RR MISCELLANEOUS SYMBOL	CONIFEROUS TREES	E CONIFEROUS SHRUB	NOXIOUS WEED	/IRONMENTA	FLOW ARROW
BOULDER UNDER 6FT GEOLOGY MISC SYMBOL MINESHAFT SYMBOL			SA SA SANITARY SEWER MANHO SIZE, MATERIAL, OWNE	MISC	SANITARY SEWER SELLANEOUS SYMBOL
	TREES GROVE	HEDGE OR SHRUB GROVE	SANITARY SEWER PIPE	_ →	► → — — ► — → — —
BOULDER FIELD OR ROCK OVERHANG	EDGE OF WETLANDS		→? → ? → ? → SANITARY SEWER PIPE MISC		
		CAPING	<u>SAN</u>	NITARY SEV	<u>VER</u>
Computer File InformationDaCreation Date: 07/31/19DaDesigner Initials: JBKR=X	Sheet Revisions te: Comments	Colorado Department	Howard Place		STAND
Last Modification Date: 07/31/19R-XDetailer Initials: LTAR-X		Project Development	rd Floor 80204 757–9021 FAX: 303–757–98 Branch JBk		SYMBO
CAD Ver.: MicroStation V8 Scale: Not to Scale Units: English R=X				Issued b	y the Project Developmer

Image: Constraint of the marker gas meter gas meter gas meter in the marker gas meter gas meter gas meter in the marker gas meter gas meter in the marker gas meter gas meter in the marker gas meter g	
OR AIR VENT LOW PRESSURE HIGH PRESSURE LIGHTING TELEPHONE MANHOLE COMBINATION © © • • • • • • •	MARKER IN POLE-POWER
GAS MISCELLANEOUSGAS LIGHTGAS VALVE HIGH OR LOW PRESSUREGAS VALVE HIGH OR LOW PRESSURETELEPHONE MISCELLANEOUSCOMBINATION $- C C C C C C C C C C C C C C C C$	T T T T T T T T F0 F0 T0 F0 F0 T0 F0 F0 T OH T . T OH T .
Image: Constraint of the constraint	ITS ITS
Image: Constraint of the addition of the additi	
Image: Composition of the product o	L SYMBOL OF ACCESS
Computer File Information Sheet Revisions Colorado Department of Transportation Creation Date: 07/31/19 Date: Comments Designer Initials: JBK R-X Comments Last Modification Date: 07/31/19 R-X Comments Detailer Initials: LTA R-X Comments	STAND SYMB

А

AAC	Aluminum Arch Culvert
AADT	Annual Average Daily Traffic
ABC	Aggregate Base Course
Abut	Abutment
ACM	Asbestos Containing Materials
ADA	Americans with Disabilities Act
AD T	Average Daily Traffic
AE	Architect-Engineer, Architecture, Engineering
AEC	Architecture, Engineering and Construction
AGA	American Gas Association
Alt	Alternate
API	American Petroleum Institute
APL	Approved Products List
Approx	Approximate
APWA	American Public Works Association
AQCC	Air Quality Control Commission
ARE	Additional Requested Element (Design/Build Terminology)
AREMA	American Railway Engineering & Maintenance-of-Way Association
AHSTA	Ahead Station
ARA	Asphalt Rejuvenating Agent
ASBI	American Segmental Bridge Institute
ASD	Allowable Stress Design
ASOP	American Society of Photogrammetry
ASR	Alkali Silica Reactivity
ASSE	American Society of Sanitary Engineering, American Society of Safety Engineers
Asst	Assistant
ATB	Asphalt Treated Base
ATM	Active Traffic Management
AUTS	Actual Ultimate Tensile Strength

В

Bk to Bk	Back to Back
BEI	By EqualIncrements
BM	Bench mark
BPF	Blows per Foot
BAFO	Best and FinalOffer
Bbl	Barrels
BC	Bolt Circle
Beg	Begin
Bk	Back
Bldg	Building
BLM	Bureau of Land Management

Blvd	Boulevard
BMP	Best Management Practice
BNSF	Burlington Northern & Santa Fe Railroad
Bott	Bottom
BP	Bearing Pressure
Brg	Bearing
Bk Sta	Back Station
BT	Beginning of Transition
Btwn	Between

С

СМ

Ģ	Centerline
C&G	Curb and Gutter
СА	Concrete Arch
CAC	Concrete Arch Culvert
CAD	Computer Aided Design, Computer Aided Drafting
CADD	Computer Aided Design and Drafting
CBC	Concrete Box Culvert
CBG	Concrete Box Girder
CBGC	Concrete Box Girder Continuous
CBGCP	Concrete Box Girder Continuous Prestressed
CBGP	Concrete Box Girder Prestressed
CBGS	Concrete Box Girder Segmented
CBR	California Bearing Ratio
CCR	Code of Colorado Regulations, as amended
CDTPG	Concrete Double-Tee Prestressed Girder
CE	Construction Engineering
CF	Cubic Feet
CFS	Cubic Feet per Second
CG	Center of Gravity
CHP	Colorado Highway Patrol
CI	Cast Iron or Concrete on Rolled I-Beam
CIC	Concrete on Rolled I-Beam Continuous
CICK	Concrete on Rolled I-Beam Continuous & Composite
CICKP	Concrete on Rolled I-Beam Continuous & Composite Prestressed
CIK	Concrete on Rolled I-Beam Composite
CIKP	Concrete on Rolled I-Beam Composite Prestressed
CIP	Cast-in-Place or Cost in Place
CIR	Cold In-Place Recycling
Clr	Clear
cm	Centimeters

CMAQ	Congestion Mitigation Air Quality
СМР	Corrugated Metal Pipe
СМИ	Concrete Masonry Unit 2
COC	Certificate of Compliance
Col	Column 3
Comp	Composite
Conc	Concrete
Conn	Connection
Const	Construction
Const Jt	Construction Joint
Cont	Continuous
Corr	Corrugated
CPE	Corrugated Polyethylene Pipe
CPG	Concrete Prestressed Girder (Precast)
CPGC	Concrete Prestressed Girder Continuous (Precast)
СРТ	Corrugated Polyethylene Tubing
CR	County Road
CRF	Concrete Rigid Frame
CS	Curve to Spiral, Commercial Standard, Concrete Slab
CSC	Concrete Slab Continuous
CSG	Concrete Slab & Girder (Poured in Place)
CSGC	Concrete Slab & Girder Continuous (Poured in Place)
CSGCP	Concrete Slab & Girder Continuous Prestressed (Poured in Place)
CSGP	Concrete Slab & Girder Prestressed (Poured in Place)
Csk	Countersunk
CSL	Cross Hole Sonic Logging
CSP	Corrugated SteelPipe or Concrete Slab Prestressed
CSPC	Concrete Slab Prestressed Continuous
СТВ	Cement Treated Base
CTR	Certified Test Reports
Ctr	Center
СҮ	Cubic Yards
CZ	Clear Zone

)
D	Degree of Curvature, or Densit	У
DB	Design Build	
DAS	Deformed Anchor Stud	
dB	decibels	
DBA	Deformed Bar Anchor	
Dbl	Double	

Computer File Information			Sheet Revisions	Colorado Department of Transportation	
Creation Date: 07/31/19		Date:	Comments	2829 West Howard Place	ACKONII
Designer Initials: JBK	R-X			CDDT HQ, 3rd Floor	
Last Modification Date: 07/31/19	R-X			Denver, CD 80204 Phone: 303-757-9021 FAX: 303-757-9868	ABBREVI
Detailer Initials: LTA	R-X				
CAD Ver.: MicroStation V8 Scale: Not to Scale Units: English	(R-X)			Project Development Branch JBK	Issued by the Project Developr

Corrugated Metal

GENERAL NOTES

- ABBREVIATIONS SHOULD BE UPPER AND LOWER CASE LETTERS EXCEPT WHERE ALL UPPER CASE LETTERS ARE REQUIRED. Const Jt = Construction Joint
- 2. ACRONYMS SHALL BE ALL UPPER CASE LETTERS. CBC = Concrete Box Culvert
- 3. ABBREVIATIONS SHALL BE USED ONLY WHEN THE WORDS CANNOT BE COMPLETELY SPELLED OUT DUE TO MULTIPLE FACTORS, SUCH AS A LACK OF SPACE ON THE SHEET.

Deg,°F, °C,	Degrees (Thermal) - Degrees Fahrenheit, Degrees Celsius
Dgn	Design or MicroStation Drawing
DH	Design Height or Avg height for qty calculations
DHV	Design Hour Volume
DHW	Design High Water
DI	Ductile Iron
Dia	Diameter
DNR	Department of Natural Resources
DOW	Division of Wildlife (Colorado)
DRCOG	Denver Regional Council of Governments
DTD	Division of Transportation Development (CDDT)
DTM	Digital Terrain Model
Dwg	AutoCAD Drawing

(C)
(Ľ)

e.g.	Exempli Gratia (For Example)
EA	Environmental Assessment
EATB	Emulsified Asphalt Treated Base
EB	Eastbound
EF	Each Face
Elev	Elevation
Engr	Engineer
EPA	Environmental Protection Agency
EPDM	Ethylene Propylene Diene Monomer-class rubber
Eq	Equal
ESAL	Equivalent Single Axle Load
Est	Estimate
ET	Ending of Transition
EVT	Event Point (InRoads Terminology)
EW	Each Way
E	Expansion Bearing
Exc	Excavation
Exp Jt	Expansion Joint
E×t	Exterior

MS AND STANDARD PLAN NO. M-100-2 IATIONS Standard Sheet No. 1 of 4 ppment Branch: July 31, 2019 Project Sheet Number:

F

F	Fixed Bearing
FL	Flow Line
FAA	Federal Aviation Administration
FASB	Foamed Asphalt Stabilized Base
FCM	Fracture Critical Member
FDR	Full Depth Reclamation
Fed	Federal
FEMA	FederalEmergency Management Agency
FES	Flared End Section
FF	Far Face or Front Face
Fig	Figure
Fin	Finished
FI	Floor
Flg	Flange
FM	Factory Mutual
FMM	Field Materials Manual
FPM	Feet Per Minute
FPS	Feet Per Second
FRA	Federal Railroad Administration
Freq	Frequency
FRP	Fiber Reinforced Polymer
FS	Planned Finish Surface
Ft	Feet
Ft Kip	Foot Kips
Ft Lb	Foot Pounds
FTA	Federal Transit Administration
Ftg	Footing
FWD	Falling Weight Deflectometer

G

Ga	Gage or Gauge
Gal	Gallons
Galv	Galvanized
Gd	Guided expansion bearing
Gir,G	Girder
GIS	Geographical Information System
GL	Girt Line
GPM	Gallons Per Minute
GPS	Global Positioning System
GRI	Geosynthetic Research Institute
GRS	Geosynthetic Reinforced Soil
GSI	Geosynthetic Institute

	Н
HAS	Headed Anchor Stud
HAZMAT	Hazardous Materials
НС	Horizontal Clearance
HCL	Horizontal Control Line
НСМ	Highway Capacity Manual
Hd	Head
HDPE	High Density Polyethylene
HDPP	High Density Polypropylene
Hex Hd	Hexagonal Head
HID	High Intensity Discharge (Lamps)
HIR	Hot In-Place Recycling
HLMR	Highload Multi-Rotational
НМА	Hot Mix Asphalt
Horiz	Horizontal
HOV	High-Occupancy Vehicle
HP	Horsepower
HPC	High Performance Concrete
HS	High Strength
Ht	Height
НW	High Water
Hwy	Highway
Hyd	Hydraulic

Ι

ICEA	Insulated Cable Engineers Association
ID	Inside Diameter
IMP	Incident Management Plan
In. Kips	Inch Kips
In. Lb.	Inch Pounds
In.	Inches
Incl	Included
Int	Interior
Inv	Invert
IRI	International Roughness Index
ISO	International Organization for Standards
ITAA	Information Technology Association of America
ITS	Intelligent Transportation System
IVHS	Intelligent Vehicle Highway System

	J
JB JPCP Jt	Junction Box Jointed Plain Concrete Pavement Joint
	К
Kip KSF KSI KW	Thousand Pounds kips per square foot Kips per square inch Kilowatt
	L
L Lb/Ft Lb/SY Lb-Ft LCCA LED LEED	Length, Angle (steel) Pounds pound per foot Pounds per square yard pound foot Life Cycle Cost Analysis Light Emitting Diode Leadership in Energy and Environmental Design

Linear Feet

Liquid Limit

Left

Luminaire

Load Factor Design

Lime Treated Base

Linear Low-Density Polyethylene

Lump Sum or Length of Spiral

Load and Resistance Factor Design

Required Long Term Design Strength

LF

LFD

LL LLDPE

LRFD

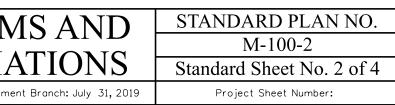
LS

Lt

LTB

LTDS

Lum


М
Meters
Mobile Attenuator
Maintenance
Minimum Average Roll Value
Material
Maximum
Migratory Bird Treaty Act

Computer File Information			Sheet Revisions	Colorado Department of Transportation	ACRONYN
Creation Date: 07/31/19		Date:	Comments	2829 West Howard Place	
Designer Initials: JBK	R-X			CDDT HQ, 3rd Floor	
Last Modification Date: 07/31/19	R-X)			Denver, CD 80204 Phone: 303-757-9021 FAX: 303-757-9868	ABBREVIA
Detailer Initials: LTA	R-X				
CAD Ver.: MicroStation V8 Scale: Not to Scale Units: English	R-X			Project Development Branch JBK	Issued by the Project Developme

MFBM	Thousand Foot Board Measure
Mfg	Manufactured or Manufacturer
MHT	Method of Handling Traffic
Mi	Mile
Min	Minimum
Misc	Miscellaneous
mm	Millimeters
MP	Milepost
MPH	Miles Per Hour
M _R	Resilient Modulus
MR	Modulus of Rupture

Ν

NAD	North American Datum
NAVD	North American Vertical Datum
NB	Northbound, Total Number of Blocks
N _{DES}	Recommended SuperPave™ Gyratory Design Revolution
NDT	Nondestructive Testing
NECA	National Electrical Contractors Association
NEPA	National Environmental Policy Act
NESC	National Electric Safety Code
NF	Near Face
NFPA	National Fire Protection Association
NGS	National Geodetic Survey
NGVD	National Geodetic Vertical Datum of 1929
NHS	National Highway System
NICET	National Institute for Certification of Engineering Technologies
NIP	Nail in Place
NMAS	Nominal Maximum Aggregate Size
No	Number
Nom	Nominal
NPDES	National Pollutant Discharge Elimination System
NPT	National Pipe Thread
NS	Near Side
NTCIP	National Transportation Communications for ITS Protocol
NTP	Notice to Proceed
NTS	Not to Scale

Ο

DC	Dn Center
OD	Outside Diameter
DGFC	Open Grade Friction Course
DJT	On-the-Job Trainee or On-the-Job Training
Opp Hand	Opposite Hand
oz	Dunces

Ρ

PC	Point of Curve
PCA	Portland Cement Association
PCBC	Concrete Box Culvert Precast
PCC	Point of Compound Curve
PCCP	Portland Cement Concrete Pavement
PDA	Pile Driving Analyzer
PE	Preliminary Engineering, or ProfessionalEngineer or Permanent Easement
Ped	Pedestrian
PG	Profile Grade or Performance Grade
PGL	Profile Grade Line
PI	Point of Intersection
PL, PI	Plate
PLS	ProfessionalLand Surveyor
PM	Project Manager
PMBB	Plant Mix Bituminous Base
PMBP	Plant Mix Bituminous Pavement
PMSC	Plant Mix Seal Coat
POC	Point on Curve
POSS	Point of Slope Selection
POT	Point on Tangent
PPE	Personal Protective Equipment
PRC	Point of Reverse Curve
Proj	Project or Projection
psf	Pounds per square foot
psi	Pounds per square inch
PT	Point of Tangent
PTFE	Polytetrafluoroethylene
PTI	Post-Tensioning Institute
PUC	Public Utilities Commission
PVC	Poly Vinyl Chloride (pipe), Point of Vertical Curve
PVI	Point of Vertical Intersection
Pvmt	Pavement
PVT	Point of Vertical Tangency

Q

- Peak Discharge or Flow Volume Quality Assurance Quality Control QMP Quality Management Plan
 - Qualified Manufacturers List

Q

QA

QC

QML

R

R	Radius
RA	Rubble Arch
RAC	Rubble Arch Culvert
rad	radians
RAP	Reclaimed Asphalt Pavement
RAS	Reclaimed Asphalt Shingles
RC	Reverse Crown
RCC	Roller Compacted Concrete
RCP	Reinforced Concrete Pipe
RCPC	Reinforced Concrete Pipe Culvert
Rdwy	Roadway
RE	Resident Engineer or Railroad Easement
Ref	Reference
Reinf	Reinforcing
Rem	Remove or Removal
Repl	Replace
Req	Required
Rev	Revised, Revision
RG	Riveted Plate Girder
RGC	Riveted Plate Girder Continuous
RL	Reinforcement Length
RME	Region Materials Engineer
rpm	Revolutions Per Minute
RSC	Rigid Steel Conduit
RSS	Reinforced Soil Slope
Rt	Right
RTD	Region Transportation Director or Regional Transportation District
RWIS	Road Weather Information System

S Steel Arch Steel Arch Culvert Sanitary Southbound Small Business Administration SteelBox Girder Steel Box Girder Continuous Spiral to Curve Schedule Spiral Curve Spiral Steel Deck Girder SteelDeck Girder with Floor Beam System SteelDeck Girder Continuous & Composite SteelDecks Institute SteelDeck Truss Sidewalk Section Square Feet State Highway Shoulder

State Historic Preservation Office

Strategic Highway Research Program

SA

SAC

San

SB

SBA

SBG

SBGC

SC

Sch

SCS

SDG

SDGC

SDGCK

SDI

SDT

Sdwk

Sect

SF

SH

Shldr

SHPO

SHRP

Sht

SIGN

SIGNB

SIGNC SIGND

Sim

SIP

SJI

SLT

SMA

SN

Spa

SpG Spl

Sq In

Sq Mi

Sq

Specs

Sheet

Similar

Overhead Sign

Stay in Place

SteelLow Truss

Structural Number

Spaces or Spaced

Specifications Specific Gravity

Square Inches

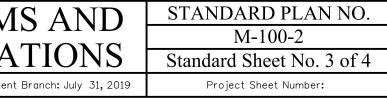
Square Miles

Splice

Square

Steel Joists Institute

Stone Matrix Asphalt


Overhead Sign-Butterfly Overhead Sign-Cantilever

Overhead Sign + Cantilever

ACRONYM
ABBREVIA
ssued by the Project Developmer

Computer File Information			Sheet Revisions	Colorado Department of Transportation	on	ACRONYM
Creation Date: 07/31/19		Date:	Comments	2829 West Howard Place		ACKONIW
Designer Initials: JBK	(R-X)			CDDT HQ, 3rd Floor		
Last Modification Date: 07/31/19	(R-X)			Denver, CD 80204 Phone: 303-757-9021 FAX: 303-757	7-0868	ABBREVIA
Detailer Initials: LTA	(R-X)					
CAD Ver.: MicroStation V8 Scale: Not to Scale Units: English	R-X			Project Development Branch	JBK	Issued by the Project Developmen

SRW	Segmental Retaining Walls
SSE	Steel Stringer-Earth Filled
SSM	Steel Stringer-Metal Plank Deck
SSMC	Steel Stringer-Metal Plank Deck Continuous
SSPC	Society for Protective Coatings
SSS	Steel Stringer-Timber Deck
SSSC	Steel Stringer-Timber Deck Continuous
ST	Spiral to Tangent
St	Straight or Street
Sta	Station
Std	Standard
STG	Steel Thru Girder
Str	Structure, Structural
STT	Steel Thru Truss
SUSP	Suspension Bridge
SY	Square Yards
Sym	Symmetrical

Т

T&B	Top and Bottom	UG
T&E	Threatened & Endangered Species	UNC
Т	Tons	UNCC
TAS	Threaded Anchor Stud	UNF
ТВС	Timber Box Culvert	UNO
ТС	Tangent to Curve	UPRR
TCD	Traffic Control Devices	UPS
TCP	Traffic Control Plan	USACE
TD	Timber Stringer (Untreated) Concrete Deck	USCS
TDH	Total Dynamic Head	USDA
Temp	Temporary or Temperature	USDOT
Thd	Thread	USFWS
THHN	Thermoplastic High Heat-resistant Nylon coated	USGS
	(Insulation designation for wire)	Util
THWN	Thermoplastic High Water-resistant Nylon coated (Insulation designation for wire)	UV
TIG	Tungsten Inert Gas (Welding)	
TLA	Timber Laminated Arch (Gluelam)	
TLS	Timber Laminated Stringer (Gluelam)	
TLT	Timber Low Truss	NC
ТМ	Timber Stringer (Untreated) MetalDeck	VC VCP
TMP	Transportation Management Plan	
Tot	Total	Veh
TPI	Threads per Inch	Vert VFA
TS	Tangent to Spiral, Timber Stringer (Untreated) Timber Deck	VMA
TSLAB	Timber Slab	VMS
TTC	Timber Culvert	Vol
TTD	Timber Stringer-Concrete Deck	VPC
ТТМ	Timber Stringer- Metal Deck	VPI
TTS	Timber Stringer- Timber Deck	VPT
ТТТ	Timber Thru Truss	
TUNC	Tunnel-Concrete Lined	
TUNR	Tunnel-Thru Rock-No Lining	
Тур	Typical	

U

Underground
Uniform National Coarse (screw thread)
Utility Notification Center of Colorado
Uniform National Fine (screw thread)
Unless Noted Otherwise
Union Pacific Railroad
Uninterruptible Power Supply
United States Army Corp of Engineers
Unified Soil Classification System
United States Department of Agriculture
United States Department of Transportation
United States Fish and Wildlife Service
US Geological Survey
Utility or Utilities
Ultraviolet

Vertical Curve Vitrified Clay Pipe Vehicle Vertical Voids Filled With Asphalt Voids in the Mineral Aggregate Variable Message Sign Volume Vertical Point of Curvature Vertical Point of Intersection Vertical Point of Tangency

V

W)		<u>SYMBOLS</u>
Water-Cement Ratio	400	#4 REBAR BENDING SHA
Retaining Wall	500	#5 REBAR BENDING SHAF
Westbound	600	#6 REBAR BENDING SHAF
Work Breakdown Structure	0	at
Wide Flange (Steel section)	&	and
Welded Girder	φø	Diameter
Welded Girder Continuous	°, ', ''	Degrees, Minutes, Seconds
Welded Girder Continuous & Composite	1 11 7	Feet, inches
Welded Girder Continuous,	#	Number or Pound
Composite Prestressed	E	Epoxy Coated Rebar
Welded Girder Composite	N	Non-Epoxy Coated Rebar
Welded Girder Composite Prestressed	(xx)	Girder Label
Weigh-In-Motion Station	\bigcirc	
Work Point	°F	Fahrenheit
Water Quality Control Division	°C	Celsius
(Colorado Department of Public Health and Environment)	\approx	Approximate
Wire Reinforcement Institute	#	Interstate Highway
Water Surface	(#)	US Highway
Weighted Structural Number	(#)	03 Highway
Weight		State Highway
Welded Wire Fabric, typically referred to very light gauge wire for crack control	#	
Welded Wire Reinforcement		

	Y	
Yard		

W/C

WALL

WB

WBS

WF

WG

WGC

WGCK

WGCKP

WGK

WGKP

WIMS

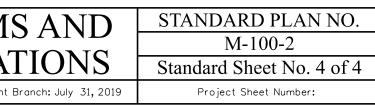
WQCD

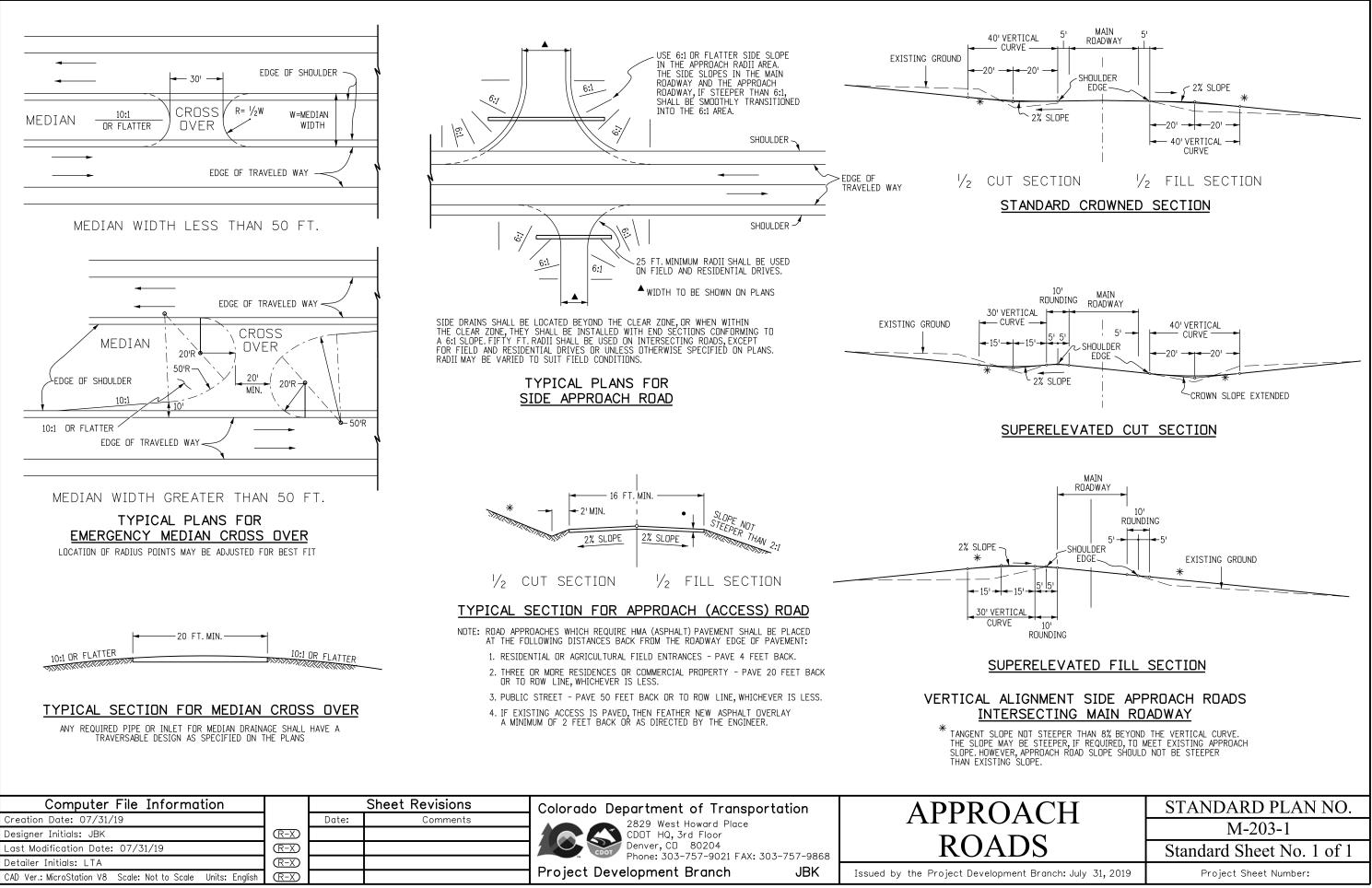
WP

WRI

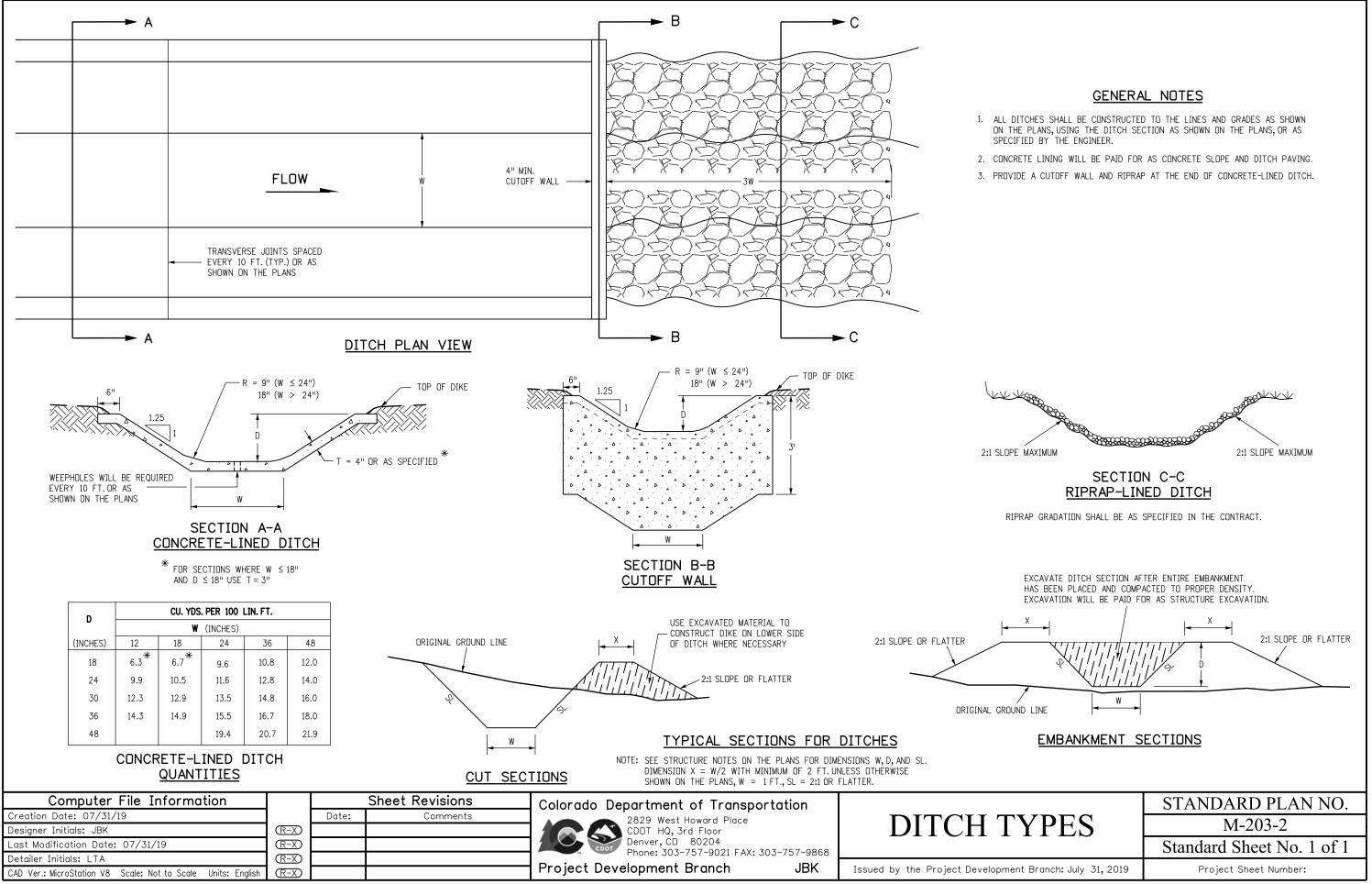
WS WSN

Wt


WWF

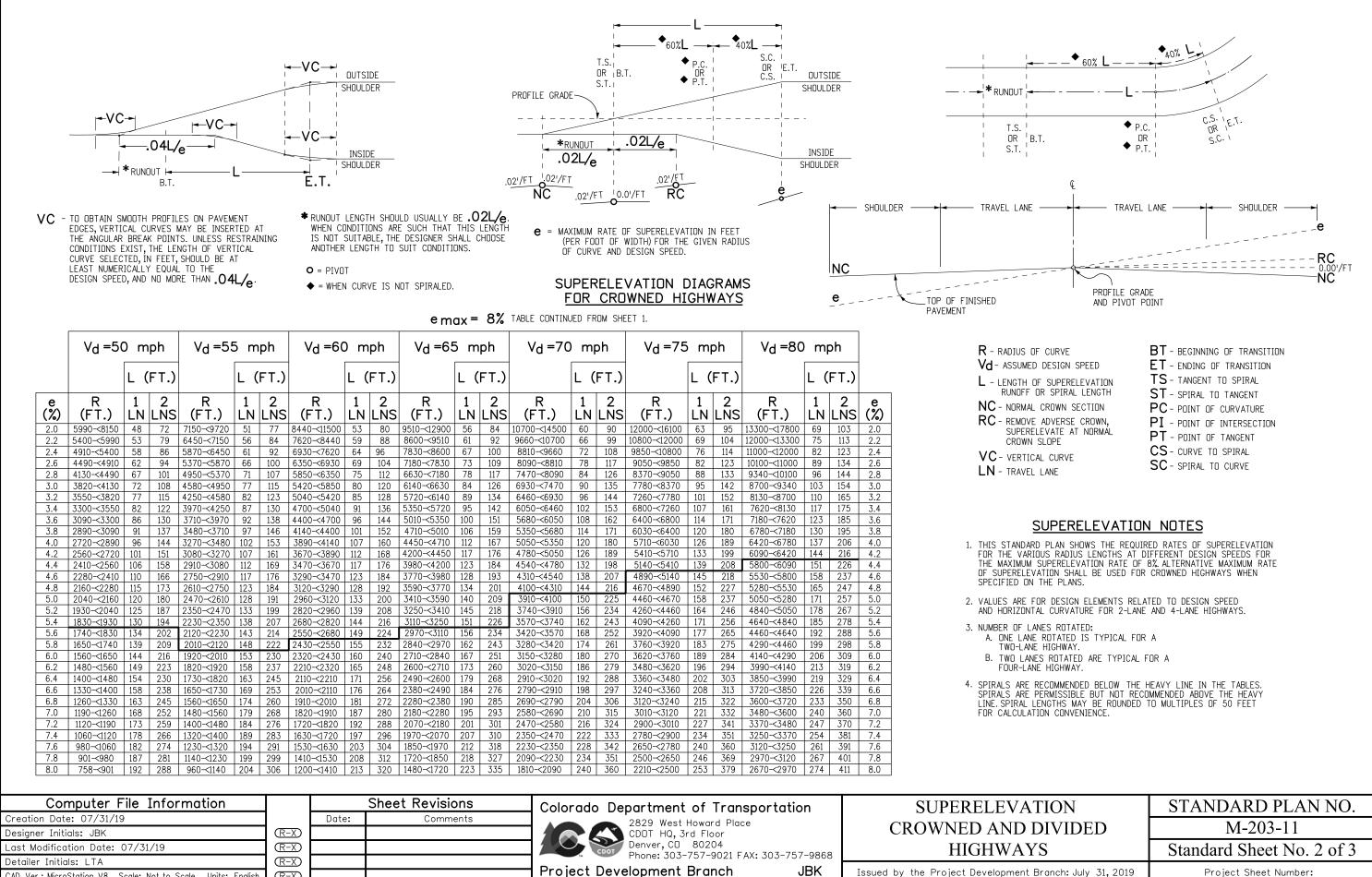

WWR

Υd

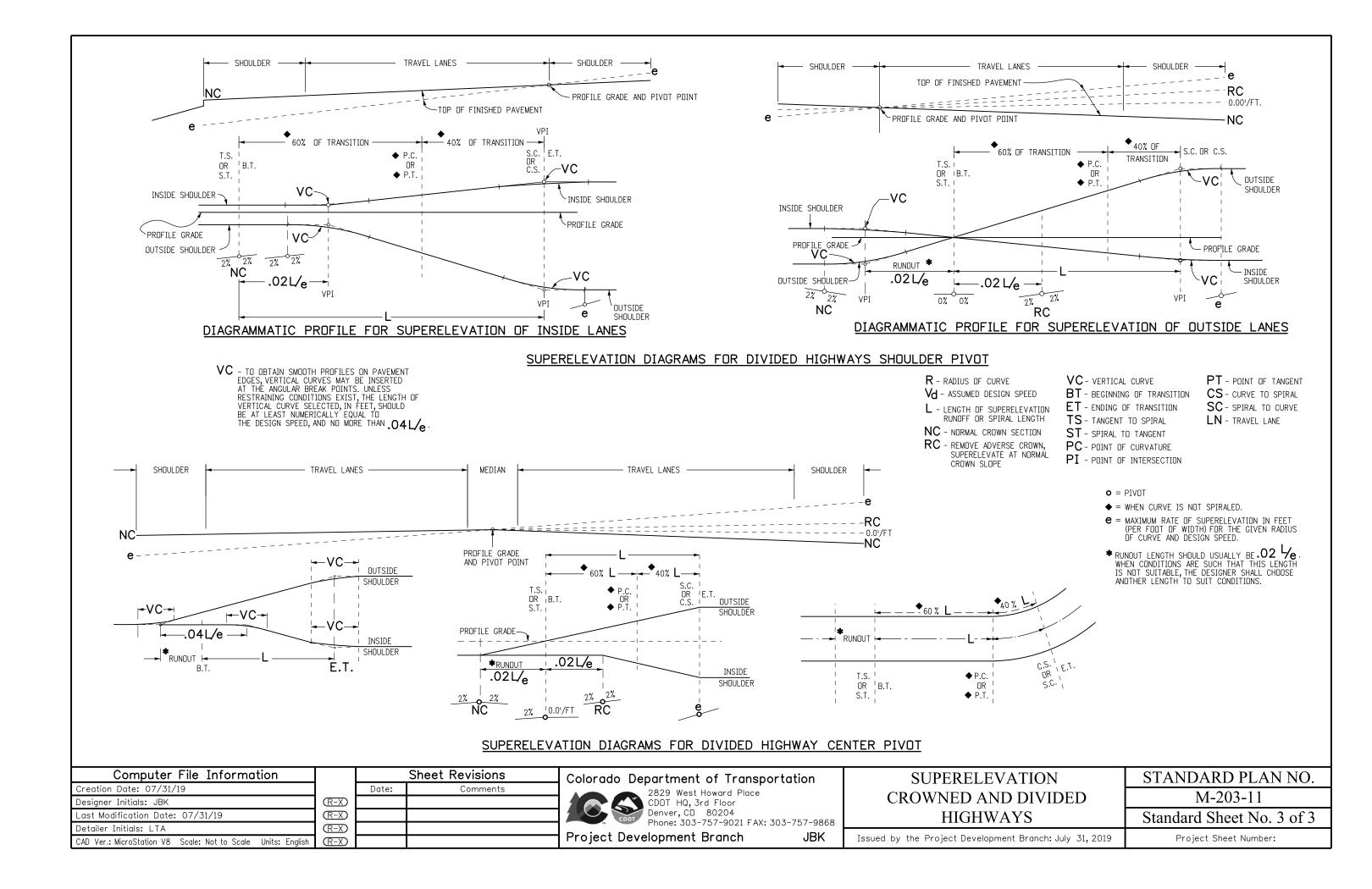

Computer File Information			Sheet Revisions	Colorado Department of Transport	ation	ACRONYM
Creation Date: 07/31/19		Date:	Comments	2829 West Howard Place		
Designer Initials: JBK	R-X			CDDT HQ, 3rd Floor		
Last Modification Date: 07/31/19	R-X			Denver, CD 80204 Phone: 303-757-9021 FAX: 303	757 0969	ABBREVIA
Detailer Initials: LTA	(R-X)					
C-D Ver.: MicroStation V8 Scale: Not to Scale Units: English	R-X			Project Development Branch	JBK	Issued by the Project Developmen

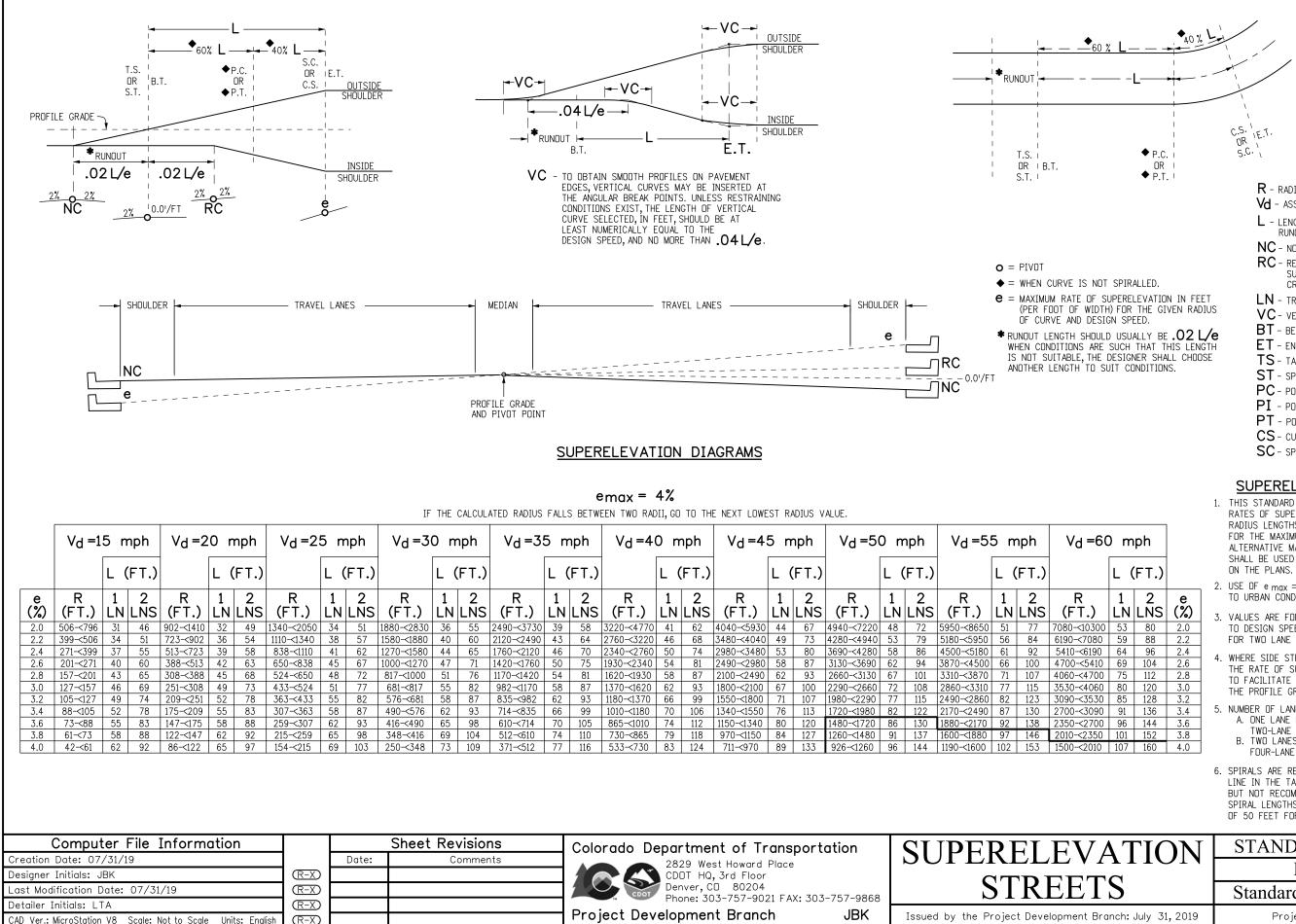
SY	MBO	LS

Issued	hv	tho	Project	Developme
ISSUEU	UV.	ule	Fruiect	Developine


$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	R I Z 1720-<2370 34 51 1550-<1720 38 57 1400-<1550 41 62 1280-<1400 45 67 1170-<1280 48 72 1070-<1170 51 77 985-<1070 55 82 911-<985 58 87 845-<911 62 93 784-<845 65 98 729-<784 69 103 678-<729 72 108 630-<678 75 113	R 1 2 (FT.) LN LNS 2370-<3240 36 55 3 2130-<2370 40 60 2 1930-<2130 44 65 2 1760-<1930 47 71 2 1610-<1760 51 76 2 1480-<1610 55 82 1 1270-<1370 62 93 1 1180-<1270 65 98 1 1030-<1100 73 109 1 955-<1030 76 115 1	R 1 2 I20-<4260 39 58 800-<3120 43 64 540-<2800 46 70 320-<2540 50 75 130-<2320 54 81 960-<2130 58 87 320-<1960 62 93 930-<1820 66 99 570-<1690 70 105 770-<1570 74 110 370-<1470 77 116 280-<1370 81 122	R I Z 3970-<5410 41 62 3570-<3970 46 68 3240-<3570 50 74 2960-<3240 54 81 2720-<2960 58 87 2330-<2510 66 99 2170-<2330 70 106 2020-<2170 74 112 1890-<2020 79 118 1770-<<1890 83 124	R 1 2	R 1 5990-<8150 48 5400-<5990 53 4910-<5400 58 4490-<4910 62 4130-<4490 67 3820-<4130 72 3550-<3820 77 3300-<3550 82 3090-<3300 86 2890-<3090 91	2 e 72 2.0 79 2.2 86 2.4 94 2.6 101 2.8 108 3.0 115 3.2 122 3.4 130 3.6 137 3.8
(FT.) LN LNS 190-<1640 32 49 1 070-<1190 36 54 1 959-<1070 39 58 1 372-<959 42 63 1 796-<872 45 68 1 730-<796 49 73 1 572-<620 58 88 5 502-<672 55 83 5 572-<620 58 88 5 530-<572 62 92 4 490-<530 65 97 4 453-<490 68 102 4 418-<453 71 107 384-<<418	(FT.) LN LNS 1720-<2370 34 51 1550-<1720 38 57 1400-<1550 41 62 1280-<1400 45 67 1170-<1280 48 72 1070-<170 51 77 985-<1070 55 82 911-<985 58 87 845-<911 62 93 784-<845 65 98 729-<784 69 103 678-<729 72 108 630-<678 75 113	(FT.) LN LNS 2370-<3240 36 55 3 2130-<2370 40 60 2 1930-<2130 44 65 2 1760-<1930 47 71 2 1610-<1760 51 76 2 1480-<1610 55 82 1 1370-<1480 58 87 1 1270-<1370 62 93 1 1180-<1270 65 98 1 1030-<1100 73 109 1 955-<1030 76 115 1	(FT.) LN LNS 120-<4260 39 58 800-<3120 43 64 540-<2800 46 70 320-<2540 50 75 130-<2320 54 81 960-<2130 58 87 320-<1960 62 93 930-<1820 66 99 570-<1690 70 105 470-<370 74 110 370-<1470 77 116	(FT.) LN LNS 3970-<5410 41 62 3570-<3970 46 68 3240-<3570 50 74 2960-<3240 54 81 2720-<2960 58 87 2510-<2720 62 93 2330-<2510 66 99 2170-<2330 70 106 2020-<2170 74 112 1890-<2020 79 118 1770-<<1890 83 124	(FT.) LN LNS 4930-<6710 44 67 4440-<4930 49 73 4030-<4440 53 80 3690-<4030 58 87 3390-<3690 62 93 3130-<3390 67 100 2900-<3130 71 107 2700-<2900 76 113 2520-<2700 80 120 2360-<2520 84 127	(FT.) LN I 5990-<8150 48 5400-<5990 53 4910-<5400 58 4490-<4910 62 4130-<4490 67 3820-<4130 72 3550-<3820 77 3000-<3550 82 3090-<3300 86 2890-<3090 91	NS (%) 72 2.0 79 2.2 86 2.4 94 2.6 101 2.8 108 3.0 115 3.2 122 3.4 130 3.6 137 3.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1550- 38 57 1400- 41 62 1280- 40 45 67 1170- 41 62 128 1070- 41 51 77 985- 51 77 985- 58 87 911- 985 58 87 845- 911 62 93 784-< 65 98 729- 729- 784 69 103 678- 729 72 108 630-< 678 75 113	2130-<2370	800-<3120 43 64 540-<2800 46 70 320-<2540 50 75 130-<2320 54 81 960-<2130 58 87 320-<1960 62 93 950-<1820 66 99 570-<1690 70 105 470-<1570 74 110 370-<1470 77 116	3570-<3970 46 68 3240-<3570 50 74 2960-<3240 54 81 2720-<2960 58 87 2510-<2720 62 93 2330-<2510 66 99 2170-<2330 70 106 2020-<2170 74 112 1890-<2020 79 118 1770-<<1890 83 124	4930-<6710	5990-<8150 48 5400-<5990 53 4910-<5400 58 4490-<4910 62 4130-<4490 67 3820-<4130 72 3550-<3820 77 3300-<3550 82 3090-<3300 86 2890-<3090 91	79 2.2 86 2.4 94 2.6 101 2.8 108 3.0 115 3.2 122 3.4 130 3.6 137 3.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1550- 38 57 1400- 41 62 1280- 40 45 67 1170- 41 62 128 1070- 41 51 77 985- 51 77 985- 58 87 911- 985 58 87 845- 911 62 93 784-<	2130-<2370 40 60 2 1930-<2130	800-<3120	3570-<3970	4440-<4930	5400-<5990 53 4910-<5400 58 4490-<4910 62 4130-<4490 67 3820-<4130 72 3550-<3820 77 3300-<3550 82 3090-<3300 86 2890-<3090 91	86 2.4 94 2.6 101 2.8 108 3.0 115 3.2 122 3.4 130 3.6 137 3.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1280-<1400	1760-<1930 47 71 2 1610-<1760	320-<2540	2960-<3240	3690-<4030	4490-<4910	94 2.6 101 2.8 108 3.0 115 3.2 122 3.4 130 3.6 137 3.8
796-<872 45 68 1 730-<796	1170-<1280 48 72 1070-<1170	1610- 176 2 1480- 55 82 1 1370- 1480 58 87 1 1270- 1370 62 93 1 1180- 1270 65 98 1 1100- 1180 69 104 1 1030- 73 109 1 955- 1030 76 115 1	130- 2320 54 81 960- 58 87 320- 1960 62 93 690- 1820 66 99 570- 1690 70 105 470- 1570 74 110 370-<	2720-<2960 58 87 2510-<2720	3390-<3690 62 93 3130-<3390	4130-<4490 67 3820-<4130 72 3550-<3820 77 3300-<3550 82 3090-<3300 86 2890-<3090 91	101 2.8 108 3.0 115 3.2 122 3.4 130 3.6 137 3.8
730-<796 49 73 1 572-<730	1070- 51 77 985- 1070 55 82 911- 985 58 87 845- 911 62 93 784-<	1480-<1610 55 82 1 1370-<1480	960- 58 87 320- 1960 62 93 690- 1820 66 99 570- 105 105 470- 74 110 370- 74 116	2510-<2720	3130-<3390	3820-<4130 72 3550-<3820	108 3.0 115 3.2 122 3.4 130 3.6 137 3.8
572 78 52 520 55 83 572 55 83 572 58 88 530 572 62 92 490 530 65 97 453 448 71 107 384 75 112	985-<1070 55 82 911-<985	1370- 1480 58 87 1 1270- 1370 62 93 1 1180- 1270 65 98 1 1100- 1180 69 104 1 1030- 73 109 1 955- 1030 76 115 1	320-<1960 62 93 590-<1820	2330-<2510 66 99 2170-<2330	2900-<3130 71 107 2700-<2900	3550-<3820	1153.21223.41303.61373.8
620-<672 55 83 572-<620	911-<985 58 87 845-<911	1270-<1370 62 93 1 1180-<1270	690-<1820 66 99 570-<1690	2170-<2330	2700-<2900 76 113 2520-<2700 80 120 2360-<2520 84 127	3300-<3550 82 3090-<3300 86 2890-<3090 91	1223.41303.61373.8
572-<620 58 88 530-<572	845-<911 62 93 784-<845	1180-<1270 65 98 1 1100-<1180	570-<1690 70 105 470-<1570	2020-<2170 74 112 1890-<2020	2520-<2700 80 120 2360-<2520 84 127	3090-<3300 86 2890-<3090 91	130 3.6 137 3.8
530-<572 62 92 490-<530	784-<845 65 98 729-<784	1100-<1180 69 104 1 1030-<1100	470-<1570 74 110 370-<1470 77 116	1890-<2020791181770-<1890	2360-<2520 84 127	2890-<3090 91	137 3.8
490-<530 65 97 453-<490	729-<784 69 103 678-<729	1030-<1100 73 109 1 955-<1030 76 115 1	370-<1470 77 116	1770-<1890 83 124	2220-2360 80 133	2720-22000	
453-<490 68 102 418-<453 71 107 384-<418 75 112	678-<729 72 108 630-<678	955-<1030 76 115 1	80-<1370 81 122			1 ZIZU ZOUU 90	144 4.0
418-<453 71 107 384-<418 75 112	630-<678 75 113	893-<955 80 120 1		1660-<1770 87 130	2080-<2220 93 140	2560-<2720 101	151 4.2
384-<418 75 112	EDE (070 70 400		200-<1280 85 128	1560-<1660 91 137	1960-<2080 98 147	2410-<2560 106	158 4.4
10 1701 70 117	585-<630 79 118	834-<893 84 125 1	130-<1200 89 134	1470-<1560 95 143	1850-<1960 102 153	2280-<2410 110	166 4.6
	542-<585 82 123	779-<834 87 131 1	060-<1130 93 139	1390-<1470 99 149	1750-<1850 107 160	2160-<2280 115	173 4.8
314-<349 81 122	499-<542 86 129		991-<1060 97 145	1310-<1390 103 155	1650-<1750 111 167		180 5.0
	457-<499 89 134	676-<727 95 142	929-<991 101 151	1230-<1310 108 161	1560-<1650 116 173		187 5.2
<u>·58-<284 88 131</u>	420-<457 93 139		370-<929 105 157	1160-<1230 112 168	1480-<1560 120 180	1830-<1930 130	194 5.4
		582-<62/ 102 153			1390-<1480 124 187	1/40-<1830 134	202 5.6
216-<236 94 141	<u>558-<58/ 99 149</u>	542-582 105 158			1320-<1390 129 193	1650-<1/40 139	209 5.8
199-<210 9/ 146	332-<358 103 154	200-<542 109 164		905-<1030 124 186	1250-<1320 133 200	1000-<1050 144	216 6.0
		472-<506 115 169			1110 <1180 142 217	1480-<1560 149	223 6.2
<u>.70-<164</u> 104 106	267-<306 IIU 103 267-<287 113 170				1050-(110 147 220	1400-<1400 154	230 6.4 238 6.6
146-<157 110 165	248 - 267 117 175				990 - 1050 151 227		245 6.8
135-<146 114 170	231-<248 120 180	360-<386 127 191	518 - < 553 135 203	716-<761 145 217	933-<990 156 233	1190-<1260 168	252 7.0
						1120-<1190 173	259 7.2
115-<125 120 180	198-<214 127 190	312-<336 135 202		628-<672 153 230	822-<878 164 247	1060-<1120 178	266 7.4
		287-<312 138 207		583-<628 157 236			274 7.6
	164-<182 134 201	261-<287 142 213	380-<417 151 226	533-<583 161 242			281 7.8
76-<94 130 195	134-<164 137 206	214-<261 145 218	314-<380 155 232	444-<533 166 248	587-<701 178 267	758-<901 192	288 8.0
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	58~284 88 131 420~457 93 139 627~676 98 147 870~929 105 157 1160~1230 112 168 1480~1560 120 180 1830~1930 130 36~258 91 136 387~420 96 144 582~627 102 153 813~870 108 163 1090~1160 116 174 1390~1480 124 187 1740~1830 134 99~216 97 146 332~358 103 154 506~542 109 164 713~761 116 174 965~1030 124 186 1250~1320 133 200 1560~1650 144 84~199 101 151 308~332 106 159 472~506 113 169 669~713 120 180 909~965 128 192 1180~1250 138 207 1480~1560 149 170~148 141 166 857~909 132 199 1110~1180 142 213 1400~1480 154 154 154 155 155 155

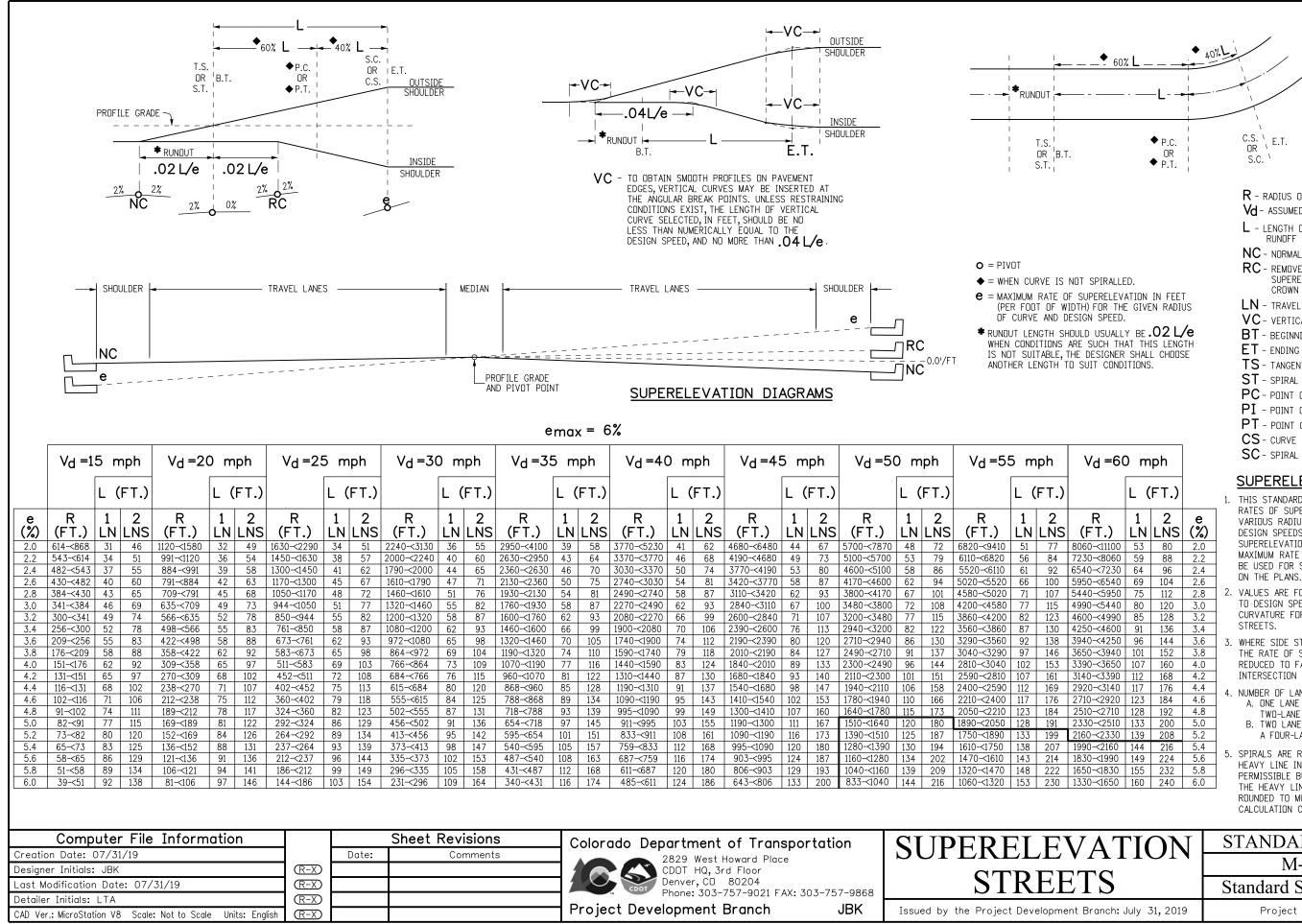
emax = 8% TABLE CONTINUES ON SHEET 2.


SUPERELEVATION NOTES


- 1. THIS STANDARD PLAN SHOWS THE REQUIRED RATES OF SUPERELEVATION FOR THE VARIOUS RADIUS LENGTHS AT DIFFERENT DESIGN SPEEDS FOR THE MAXIMUM SUPERELEVATION RATE OF 8% ALTERNATIVE MAXIMUM RATE OF SUPERELEVATION SHALL BE USED FOR CROWNED HIGHWAYS WHEN SPECIFIED ON THE PLANS.
- 2. VALUES ARE FOR DESIGN ELEMENTS RELATED TO DESIGN SPEED AND HORIZONTAL CURVATURE FOR 2-LANE AND 4-LANE HIGHWAYS.
- NUMBER OF LANES ROTATED:
 A. ONE LANE ROTATED IS TYPICAL FOR A TWO-LANE HIGHWAY.
 B. TWO LANES ROTATED ARE TYPICAL FOR A EULID LANES ROTATED ARE TYPICAL FOR A FOUR-LANE HIGHWAY.
- 4. SPIRALS ARE RECOMMENDED BELOW THE HEAVY LINE IN THE TABLES. SPIRALS ARE PERMISSIBLE BUT NOT RECOMMENDED ABOVE THE HEAVY LINE. SPIRAL LENGTHS MAY BE ROUNDED TO MULTIPLES OF 50 FEET FOR CALCULATION CONVENIENCE.
- **e** = superelevation rate
- **R** RADIUS OF CURVE
- Vd ASSUMED DESIGN SPEED
- L LENGTH OF SUPERELEVATION RUNOFF OR SPIRAL LENGTH
- LN TRAVEL LANE

ATION	STANDARD PLAN NO.
O DIVIDED	M-203-11
AYS	Standard Sheet No. 1 of 3
ent Branch: July 31, 2019	Project Sheet Number:

Computer File Information			Sheet Revisions	Colorado Department of Transpor	tation	SUPERELEV
Creation Date: 07/31/19		Date:	Comments	2829 West Howard Place		
Designer Initials: JBK	(R-X)			CDDT HQ, 3rd Floor		CROWNED AN
Last Modification Date: 07/31/19	R-X			Denver, CD 80204 Phone: 303-757-9021 FAX: 30		HIGHW
Detailer Initials: LTA	R-X					
CAD Ver.: MicroStation V8 Scale: Not to Scale Units: English	(R-X)			Project Development Branch	JBK	Issued by the Project Developm

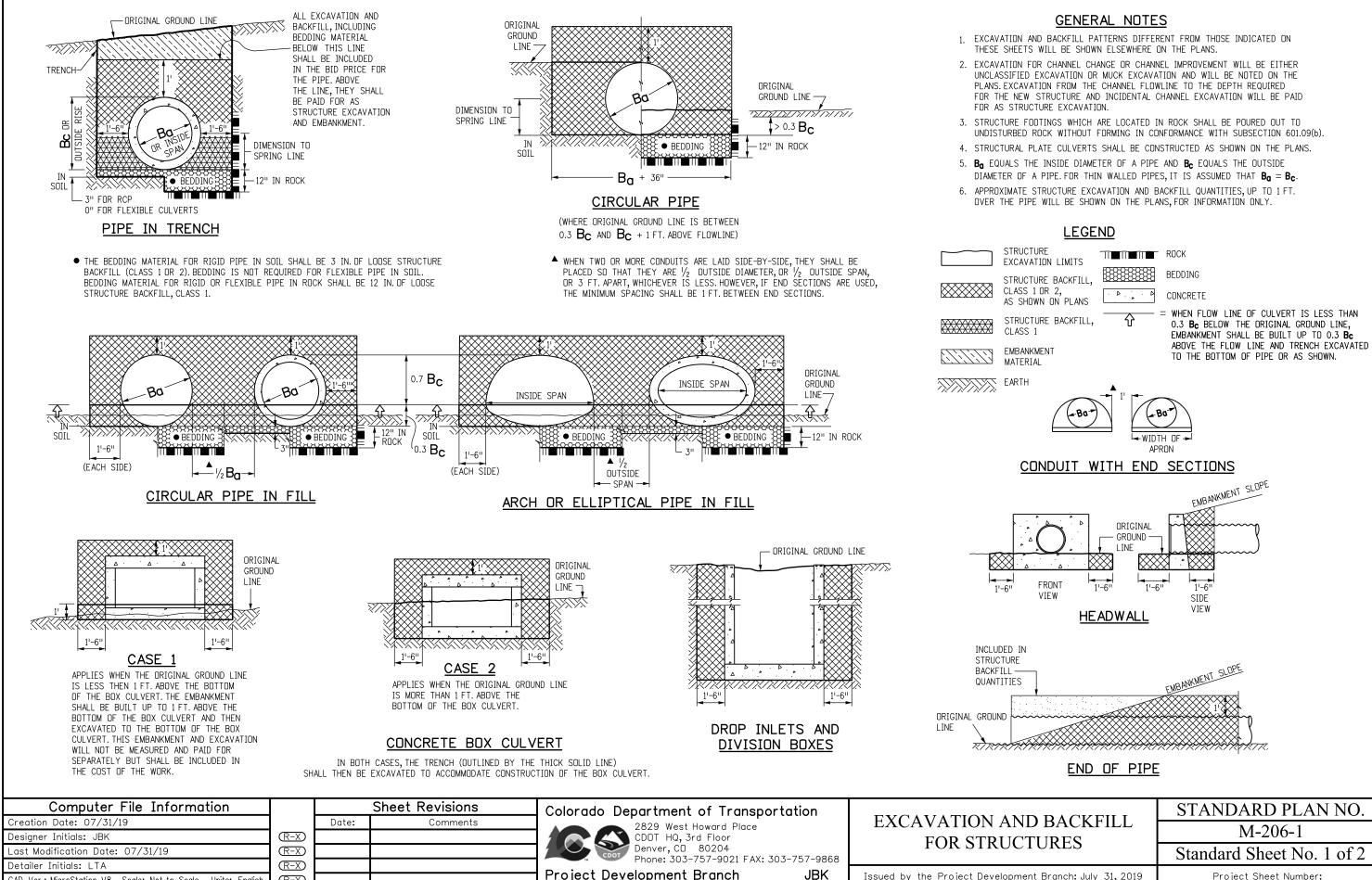

d=60 mph							
	L ((FT.)					
र T.)	1 LN	2 LNS	e (%)				
<10300	53	80	2.0				
<7080	59	88	2.2				
-<6190	64	96	2.4				
-<5410	69	104	2.6				
-<4700	75	112	2.8				
-<4060	80	120	3.0				
-<3530	85	128	3.2				
-<3090	91	136	3.4				
-<2700	96	144	3.6				
-<2350	101	152	3.8				
-<2010	107	160	4.0				

- **R** RADIUS OF CURVE
- Vd ASSUMED DESIGN SPEED
- LENGTH OF SUPERELEVATION RUNOFF OR SPIRAL LENGTH
- NC NORMAL CROWN SECTION
- RC REMOVE ADVERSE CROWN, SUPERELEVATE AT NORMÁL CROWN SLOPE
- LN TRAVEL LANE
- VC VERTICAL CURVE
- **BT** BEGINNING OF TRANSITION
- **ET** ENDING OF TRANSITION
- TS TANGENT TO SPIRAL
- ST SPIRAL TO TANGENT
- PC POINT OF CURVATURE
- **PI** POINT OF INTERSECTION
- **PT** POINT OF TANGENT
- CS CURVE TO SPIRAL
- SC SPIRAL TO CURVE

SUPERELEVATION NOTES

- 1. THIS STANDARD PLAN SHOWS THE REQUIRED RATES OF SUPERELEVATION FOR THE VARIOUS RADIUS LENGTHS AT DIFFERENT DESIGN SPEEDS FOR THE MAXIMUM SUPERELEVATION RATE OF 4%. ALTERNATIVE MAXIMUM RATE OF SUPERELEVATION SHALL BE USED FOR STREETS WHEN SPECIFIED
- 2. USE OF $e_{max} = 4\%$ SHOULD BE LIMITED TO URBAN CONDITIONS.
- 3. VALUES ARE FOR DESIGN ELEMENTS RELATED TO DESIGN SPEED AND HORIZONTAL CURVATURE FOR TWO LANE AND FOUR LANE STREETS.
- 4. WHERE SIDE STREETS OR ROADS INTERSECT. THE RATE OF SUPERELEVATION MAY BE REDUCED TO FACILITATE A SMOOTH INTERSECTION OF THE PROFILE GRADES.
- 5. NUMBER OF LANES ROTATED: A. ONE LANE ROTATED IS TYPICAL FOR A TWO-LANE HIGHWAY.
 - B. TWO LANES ROTATED ARE TYPICAL FOR A FOUR-LANE HIGHWAY.
- 6. SPIRALS ARE RECOMMENDED BELOW THE HEAVY LINE IN THE TABLES. SPIRALS ARE PERMISSIBLE BUT NOT RECOMMENDED ABOVE THE HEAVY LINES SPIRAL LENGTHS MAY BE ROUNDED TO MULTIPLES OF 50 FEET FOR CALCULATION CONVENIENCE.

VATION	STANDARD PLAN NO. M-203-12	
ETS	Standard Sheet No. 1 of 2	
ent Branch: July 31, 2019	Project Sheet Number:	

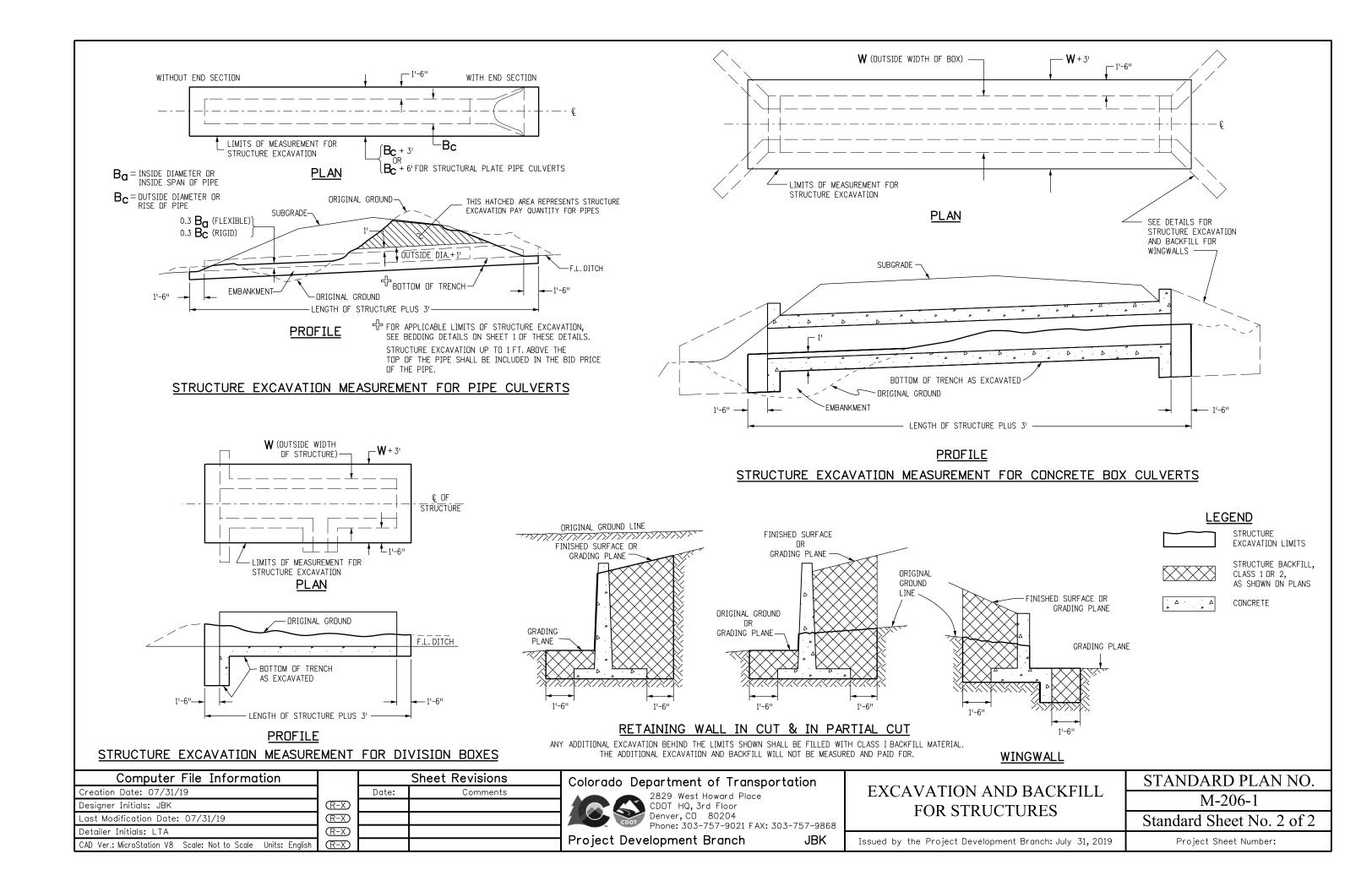

V _d =60	ph		
	L (FT.)	
R (FT.)	1 LN	2 LNS	e (%)
8060-<11100	53	80	2.0
7230-<8060	59	88	2.2
6540-<7230	64	96	2.4
5950-<6540	69	104	2.4 2.6
5440-<5950	75	112	2.8
4990-<5440	80	120	3.0
4600-<4990	85	128	3.2
4250-<4600	91	136	3.4
3940-<4250	96	144	3.6
3650-<3940	101	152	3.8
3390-<3650	107	160	4.0
3140-<3390	112	168	4.2
2920-<3140	117	176	4.4
2710-<2920	123	184	4.6
2510-<2710	128	192	4.8
2330-<2510	133	200	5.0
2160-<2330	139	208	5.2
1990-<2160	144	216	5.4
1830-<1990	149	224	5.6
1650-<1830	155	232	5.8
1330-<1650	160	240	6.0

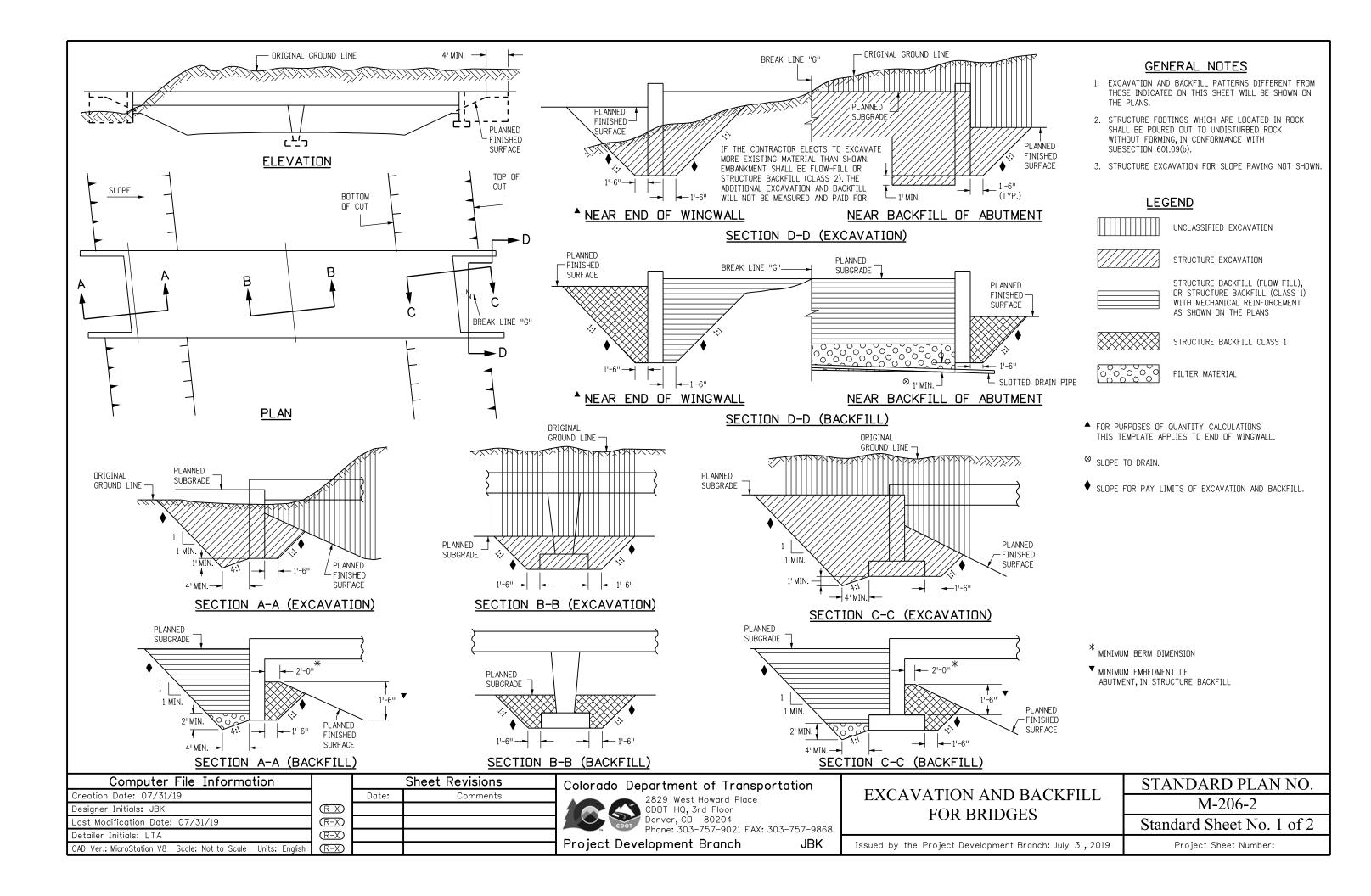
- **R** RADIUS OF CURVE
- Vd ASSUMED DESIGN SPEED
- L LENGTH OF SUPERELEVATION RUNOFF OR SPIRAL LENGTH
- NC NORMAL CROWN SECTION
- RC REMOVE ADVERSE CROWN, SUPERELEVATE AT NORMÁL CROWN SLOPE
- LN TRAVEL LANE
- VC VERTICAL CURVE
- **BT** BEGINNING OF TRANSITION
- ENDING OF TRANSITION
- TS TANGENT TO SPIRAL
- ST SPIRAL TO TANGENT
- **PC** POINT OF CURVATURE
- **PI** POINT OF INTERSECTION
- PT POINT OF TANGENT
- CS CURVE TO SPIRAL
- SC SPIRAL TO CURVE

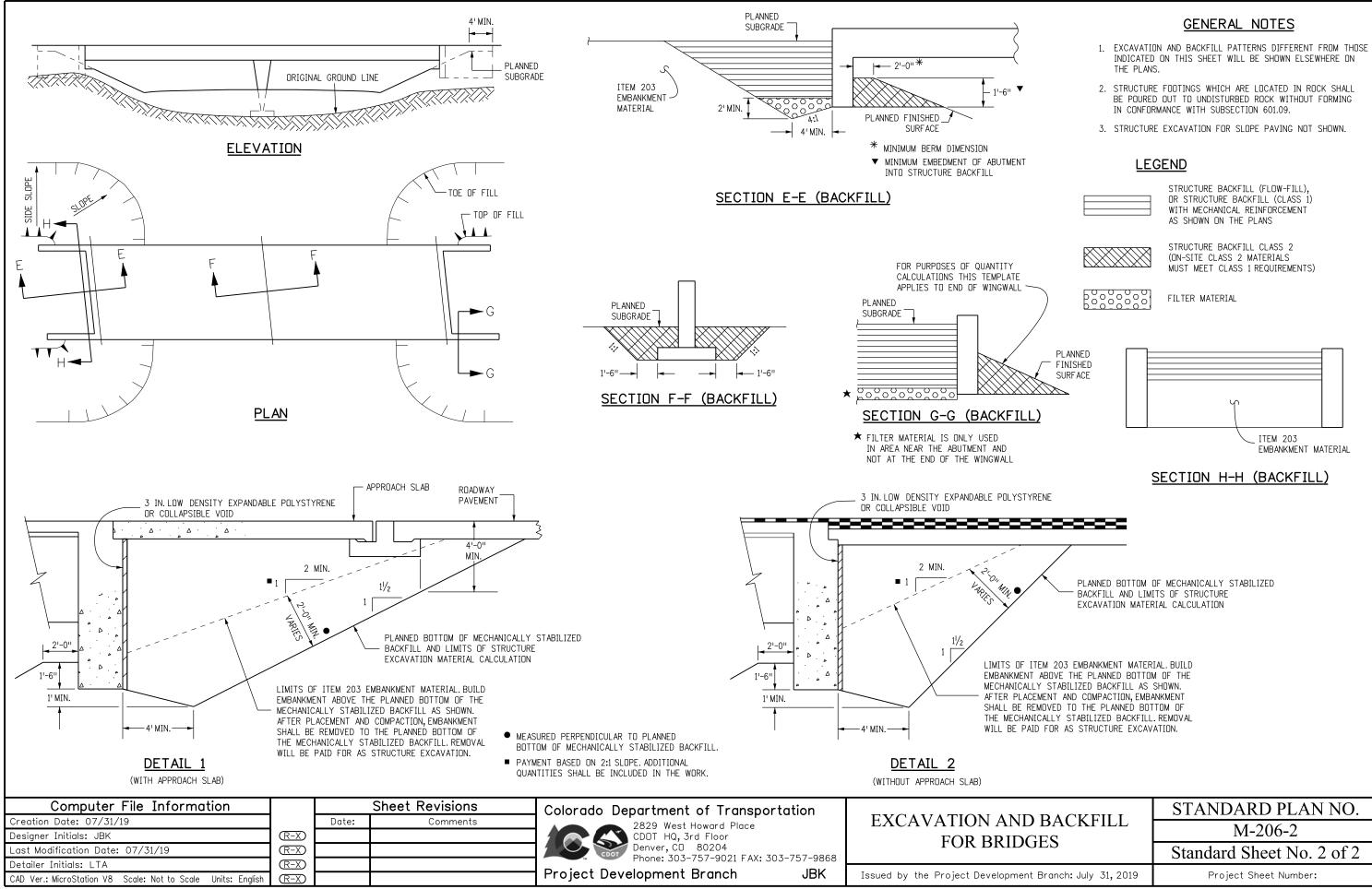
SUPERELEVATION NOTES

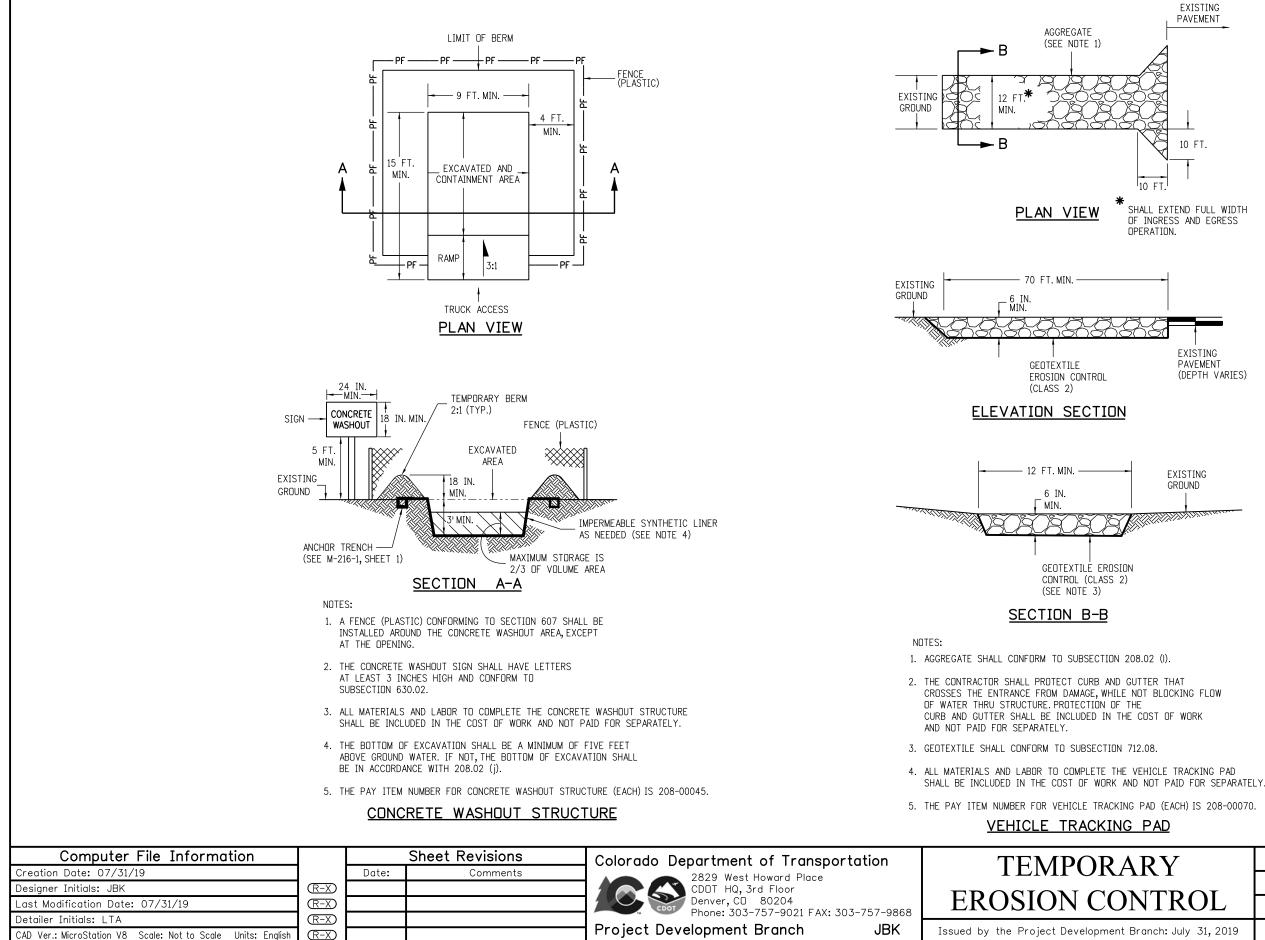
- 1. THIS STANDARD PLAN SHOWS THE REQUIRED RATES OF SUPERELEVATION FOR THE VARIOUS RADIUS LENGTHS AT DIFFERENT DESIGN SPEEDS FOR THE MAXIMUM SUPERELEVATION RATE OF 6%. MAXIMUM RATE OF SUPERELEVATION SHALL BE USED FOR STREETS WHEN SPECIFIED ON THE PLANS.
- 2. VALUES ARE FOR DESIGN ELEMENTS RELATED TO DESIGN SPEED AND HORIZONTAL CURVATURE FOR TWO LANE AND FOUR LANE
- 3. WHERE SIDE STREETS OR ROADS INTERSECT. THE RATE OF SUPERELEVATION MAY BE REDUCED TO FACILITATE A SMOOTH INTERSECTION OF THE PROFILE GRADES.
- 4. NUMBER OF LANES ROTATED: A. ONE LANE ROTATED IS TYPICAL FOR A TWO-LANE HIGHWAY B. TWO LANES ROTATED ARE TYPICAL FOR
 - A FOUR-LANE HIGHWAY.
- 5. SPIRALS ARE RECOMMENDED BELOW THE HEAVY LINE IN THE TABLES. SPIRALS ARE PERMISSIBLE BUT NOT RECOMMENDED ABOVE THE HEAVY LINES. SPIRAL LENGTHS MAY BE ROUNDED TO MULTIPLES OF 50 FEET FOR CALCULATION CONVENIENCE.

VATION	STANDARD PLAN NO.		
	M-203-12		
15	Standard Sheet No. 2 of 2		
ent Branch: July 31, 2019	Project Sheet Number:		

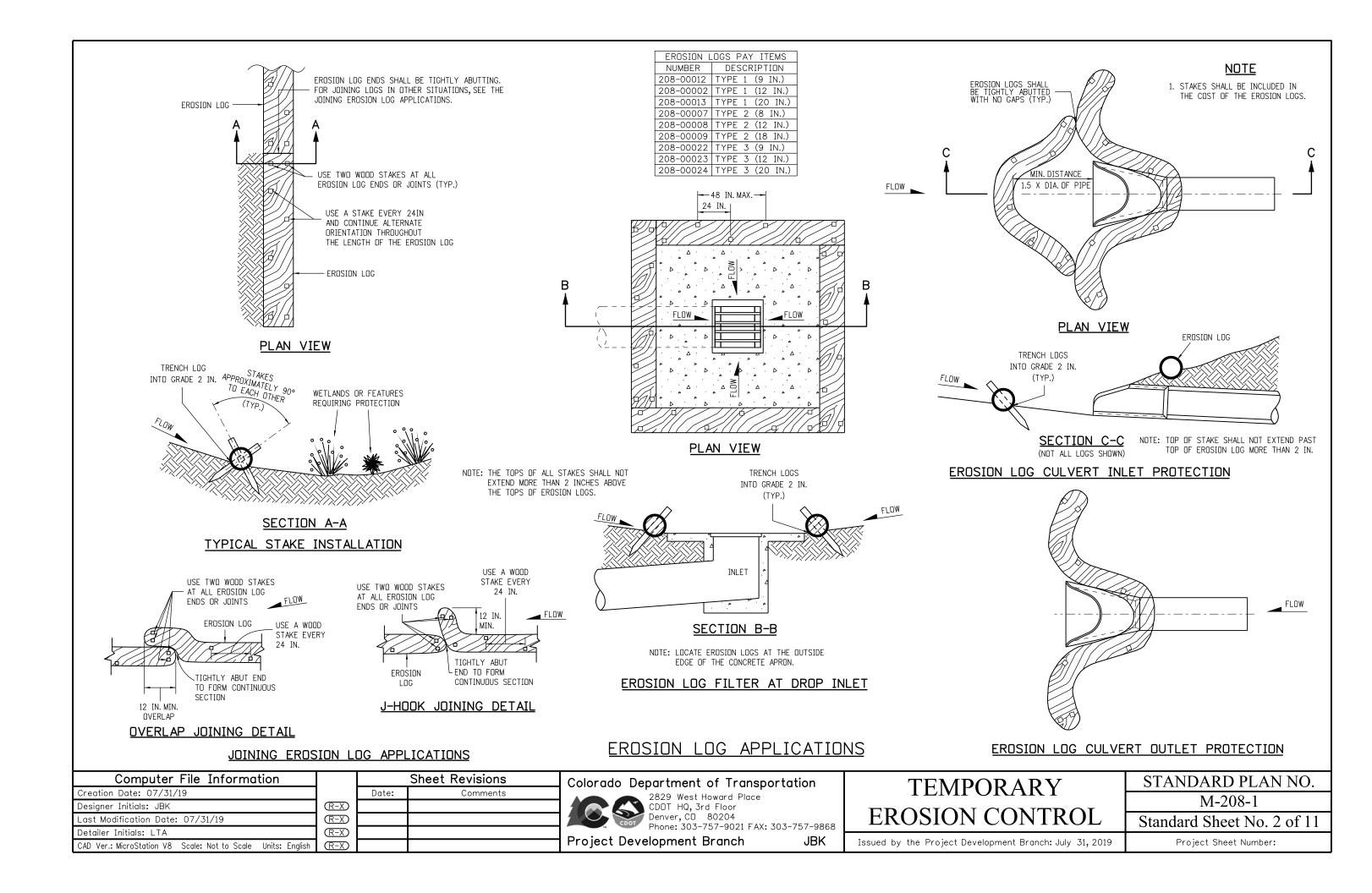


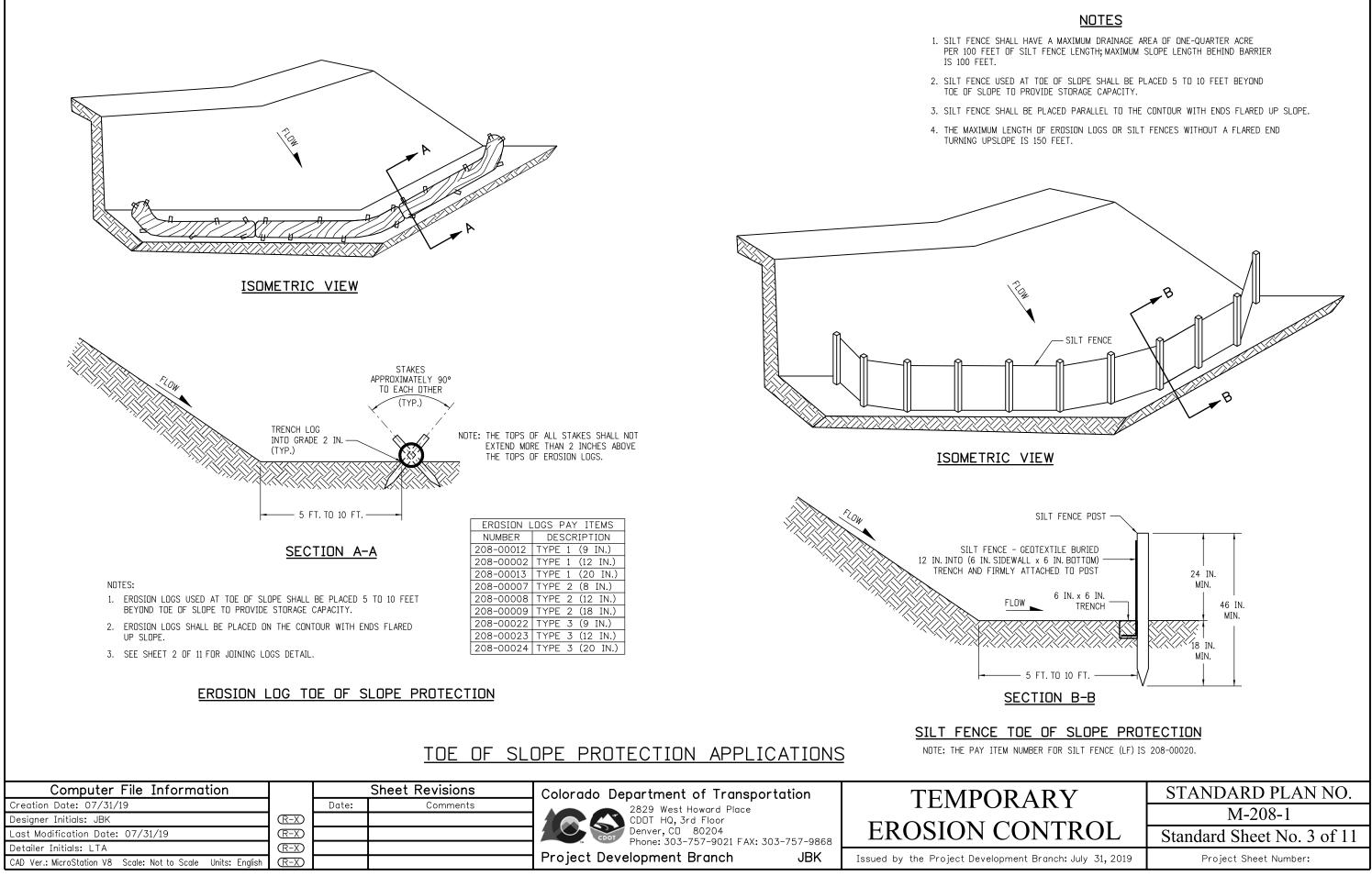

Project Development Branch

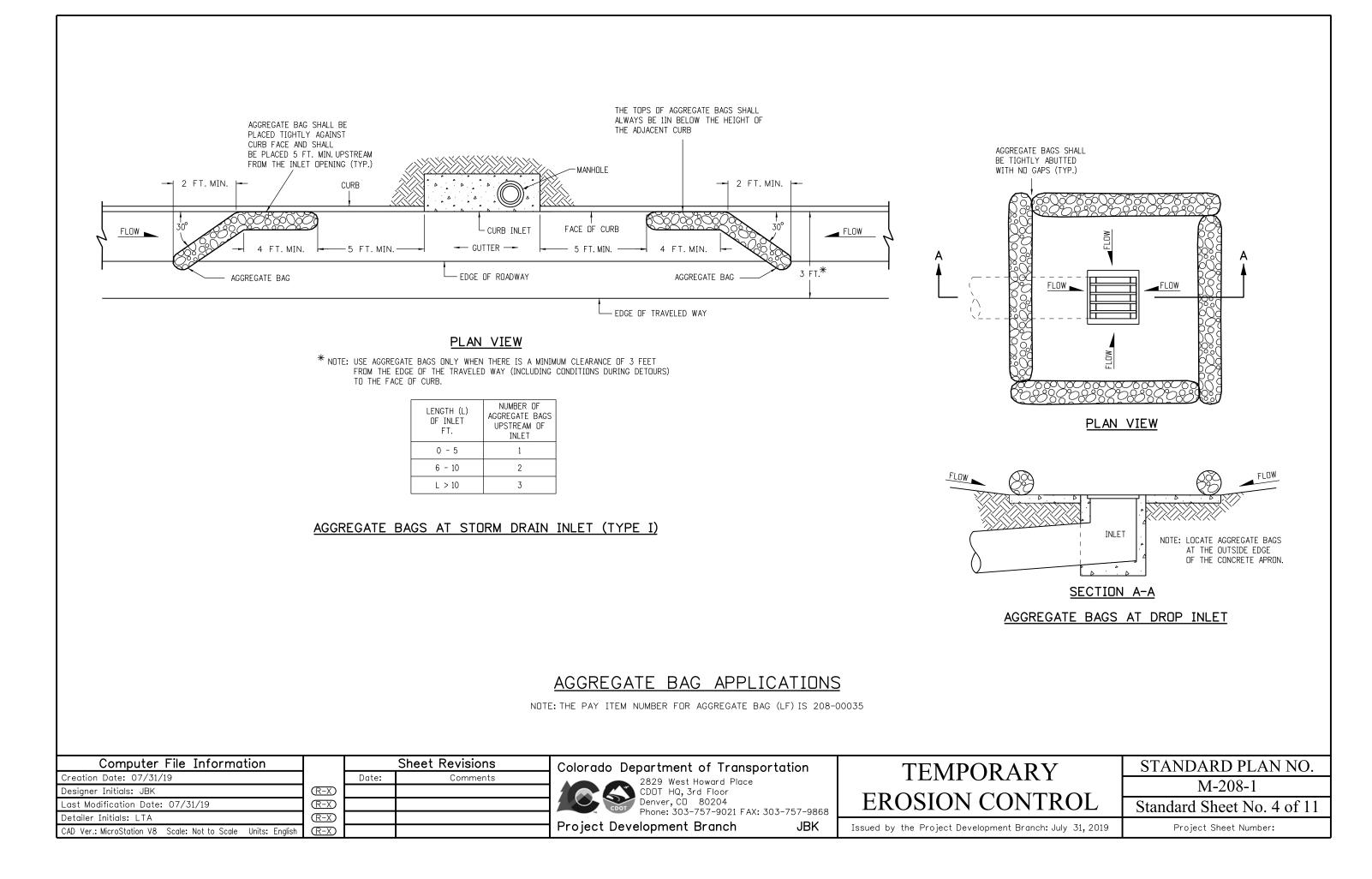

(R-X)

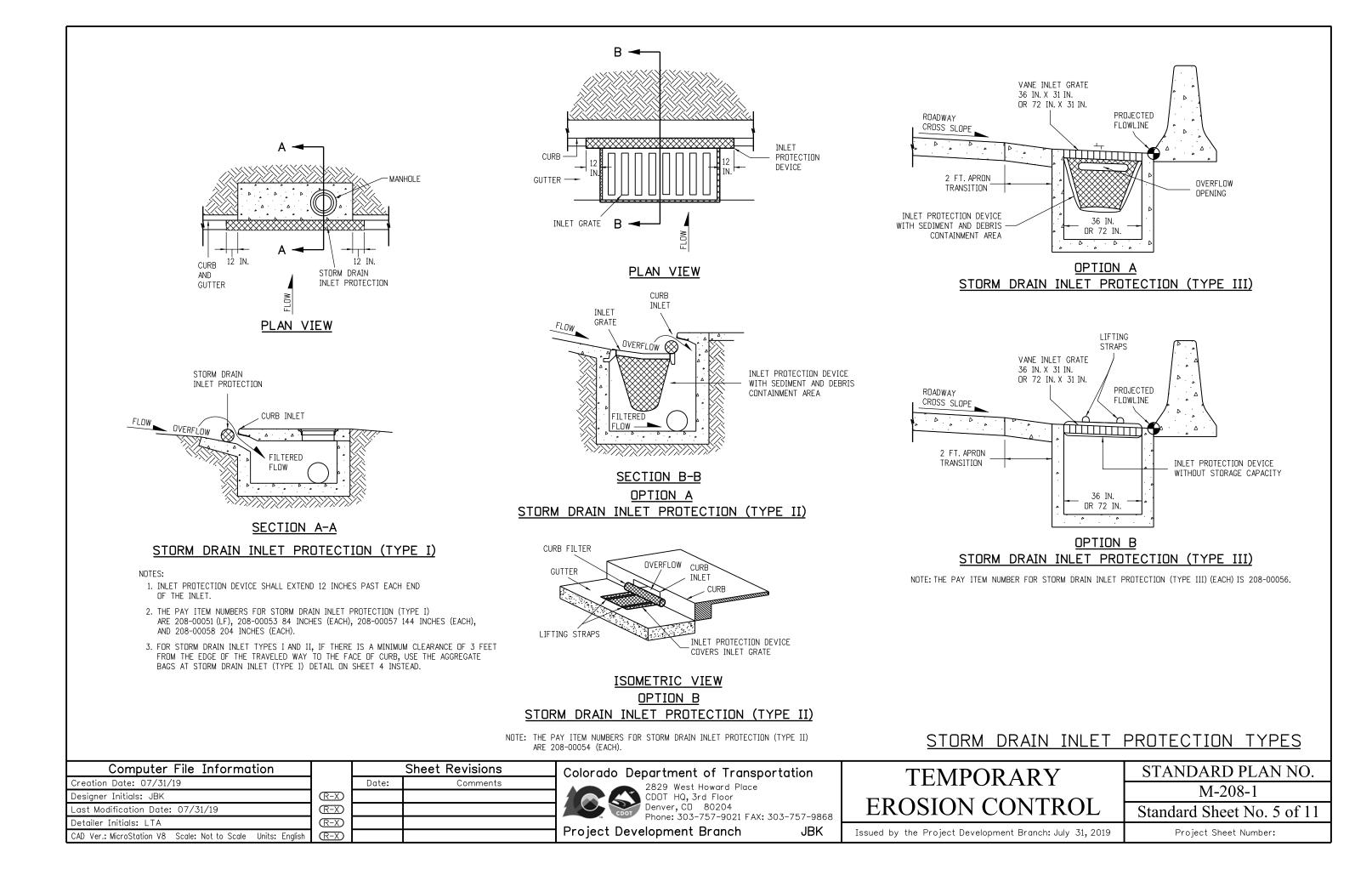

CAD Ver.: MicroStation V8 Scale: Not to Scale Units: English

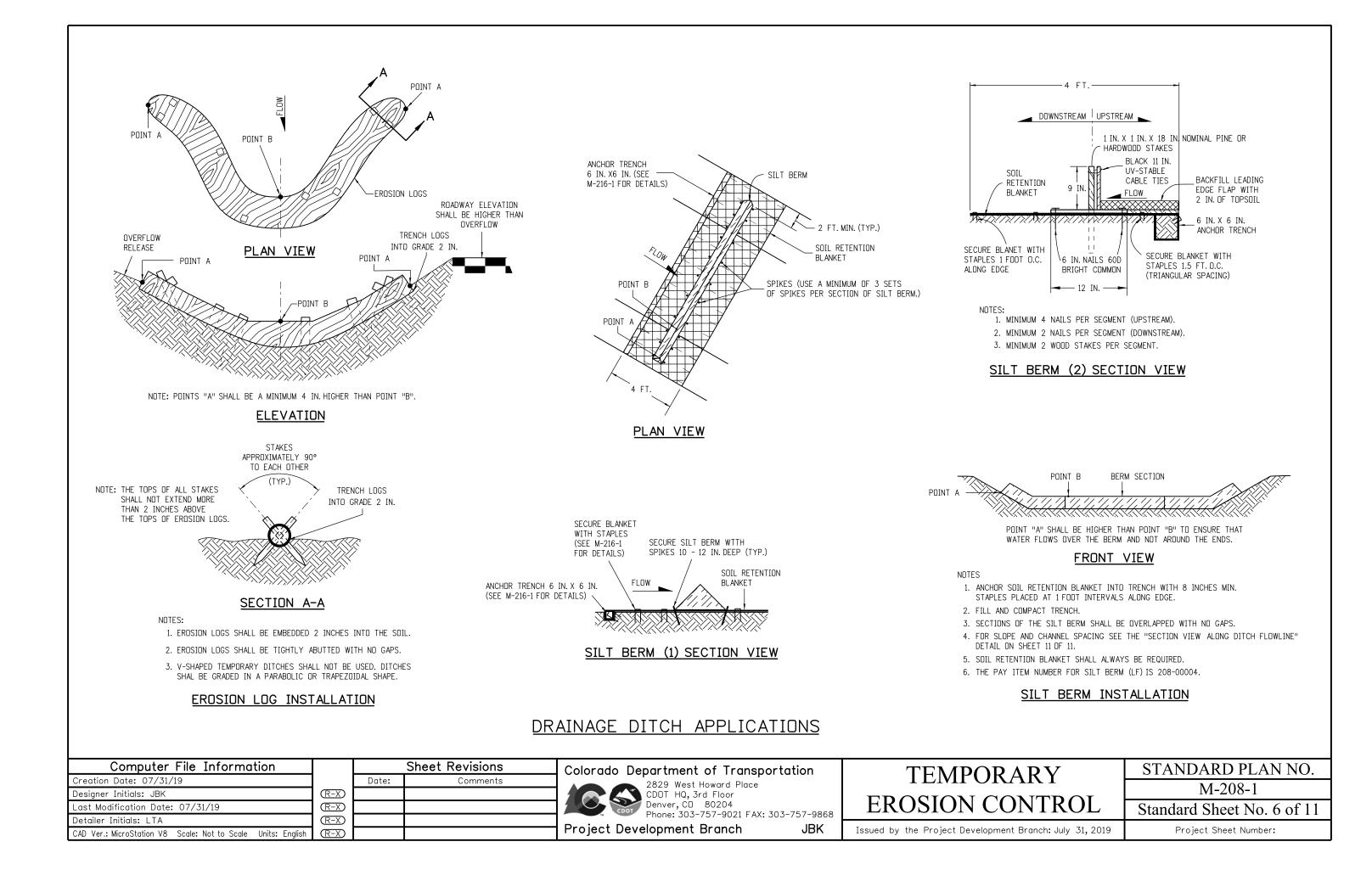
EXCAVATION AND BACKFILL	STANDARD PLAN NO.		
FOR STRUCTURES	M-206-1		
FOR STRUCTURES	Standard Sheet No. 1 of 2		
Issued by the Project Development Branch: July 31, 2019	Project Sheet Number:		

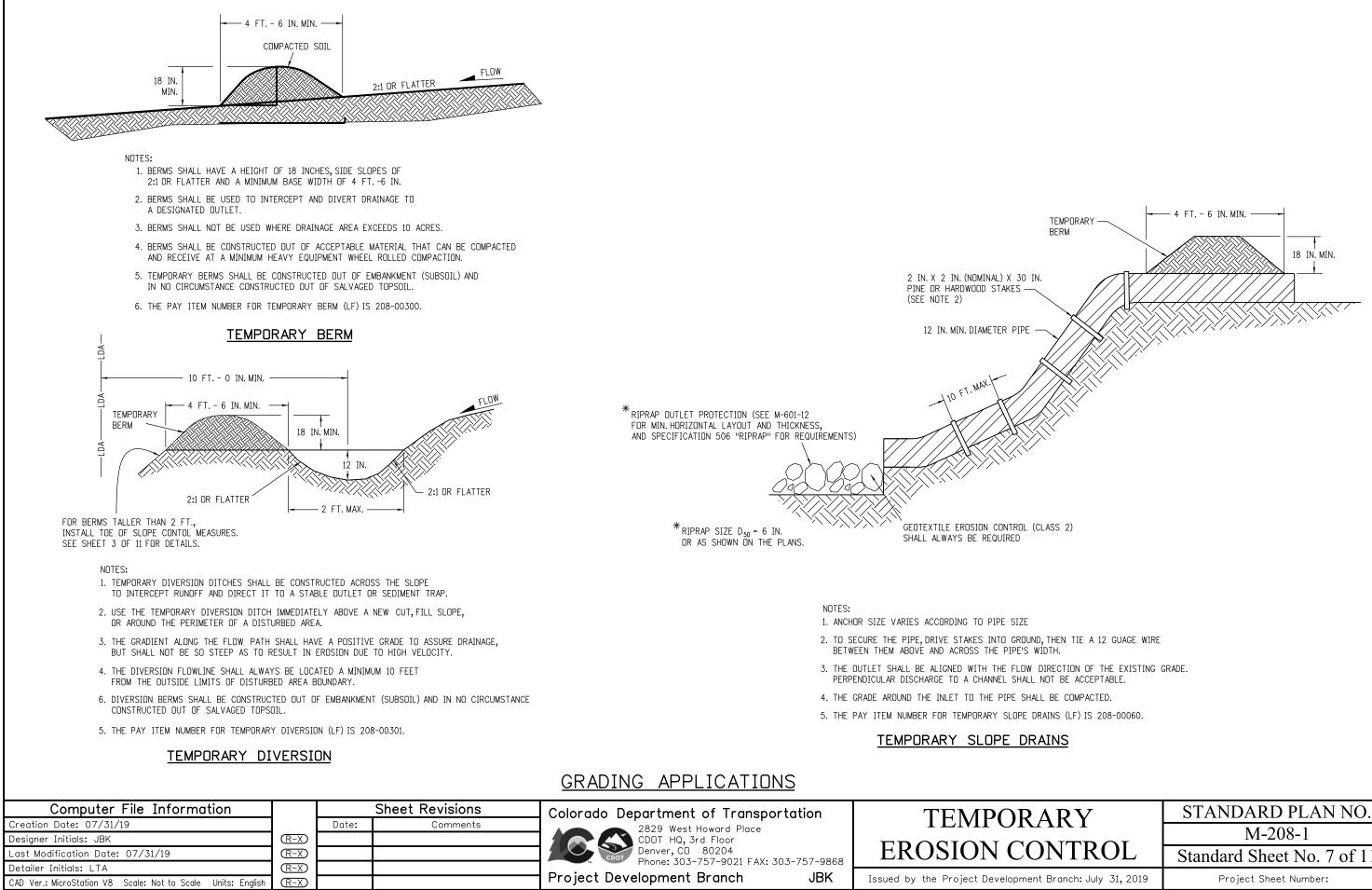


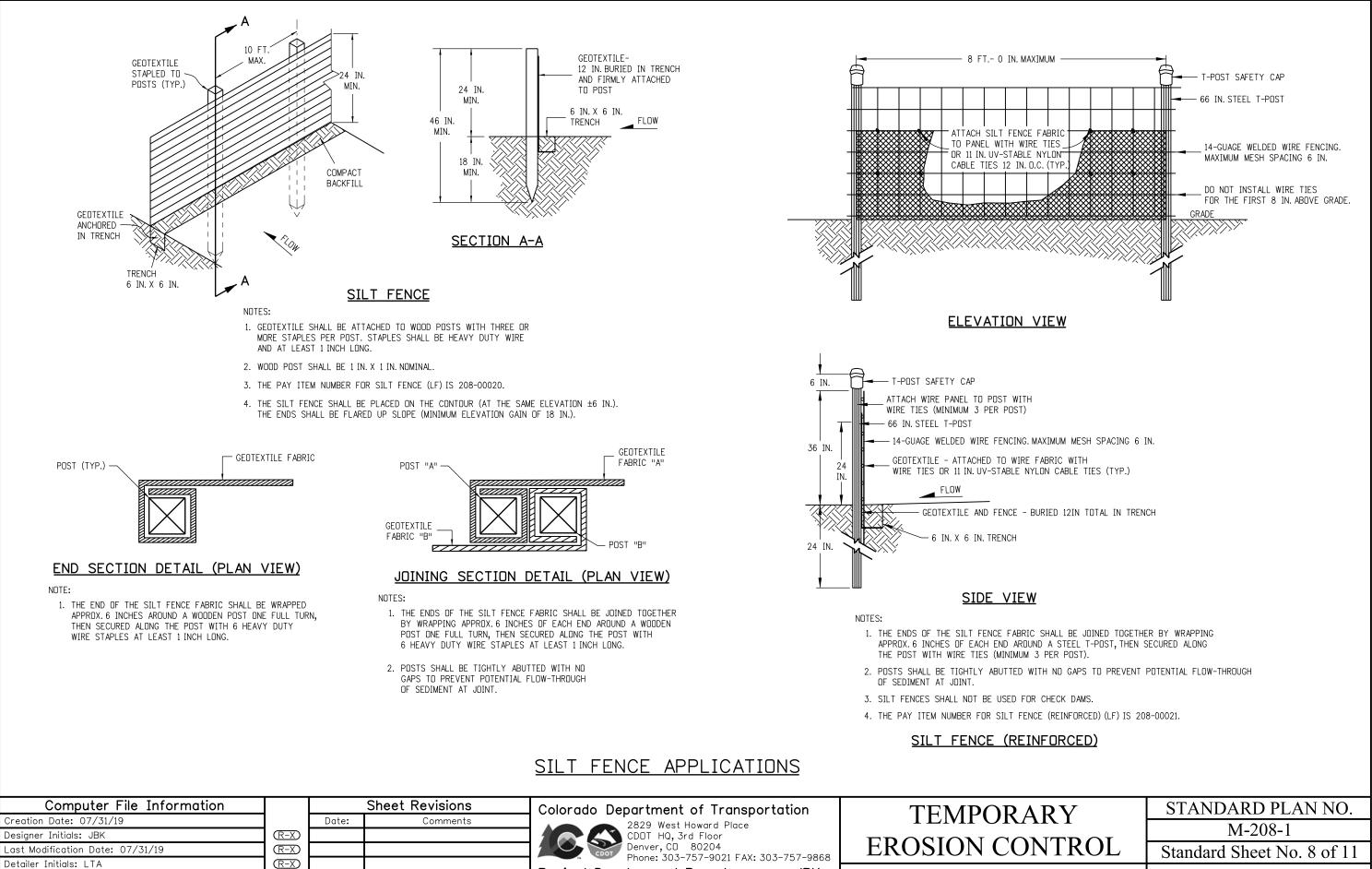





ARY	STANDARD PLAN NO.
ONTROL	M-208-1
	Standard Sheet No. 1 of 11
ent Branch: July 31, 2019	Project Sheet Number:

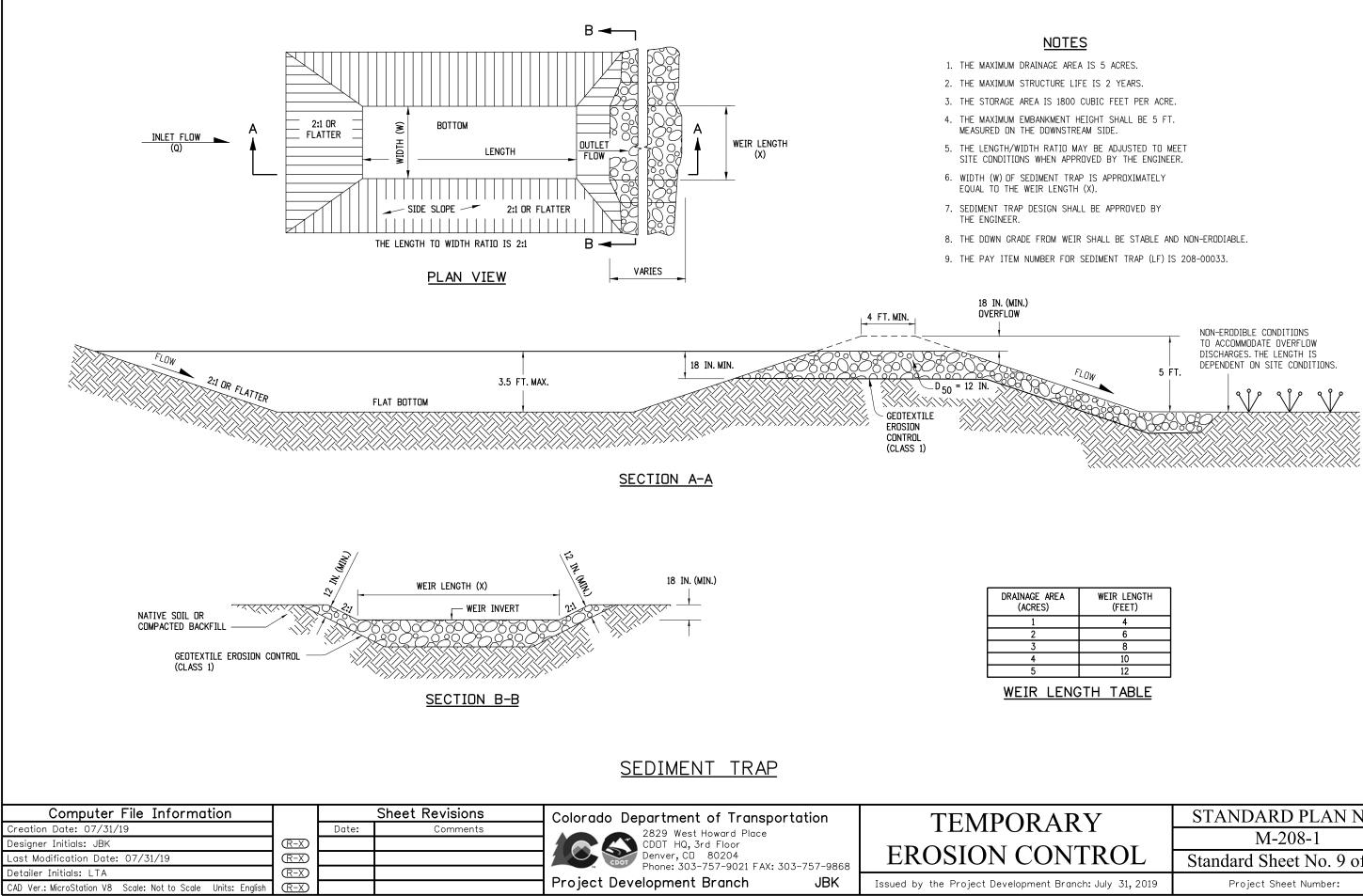

SHALL EXTEND FULL WIDTH OF INGRESS AND EGRESS





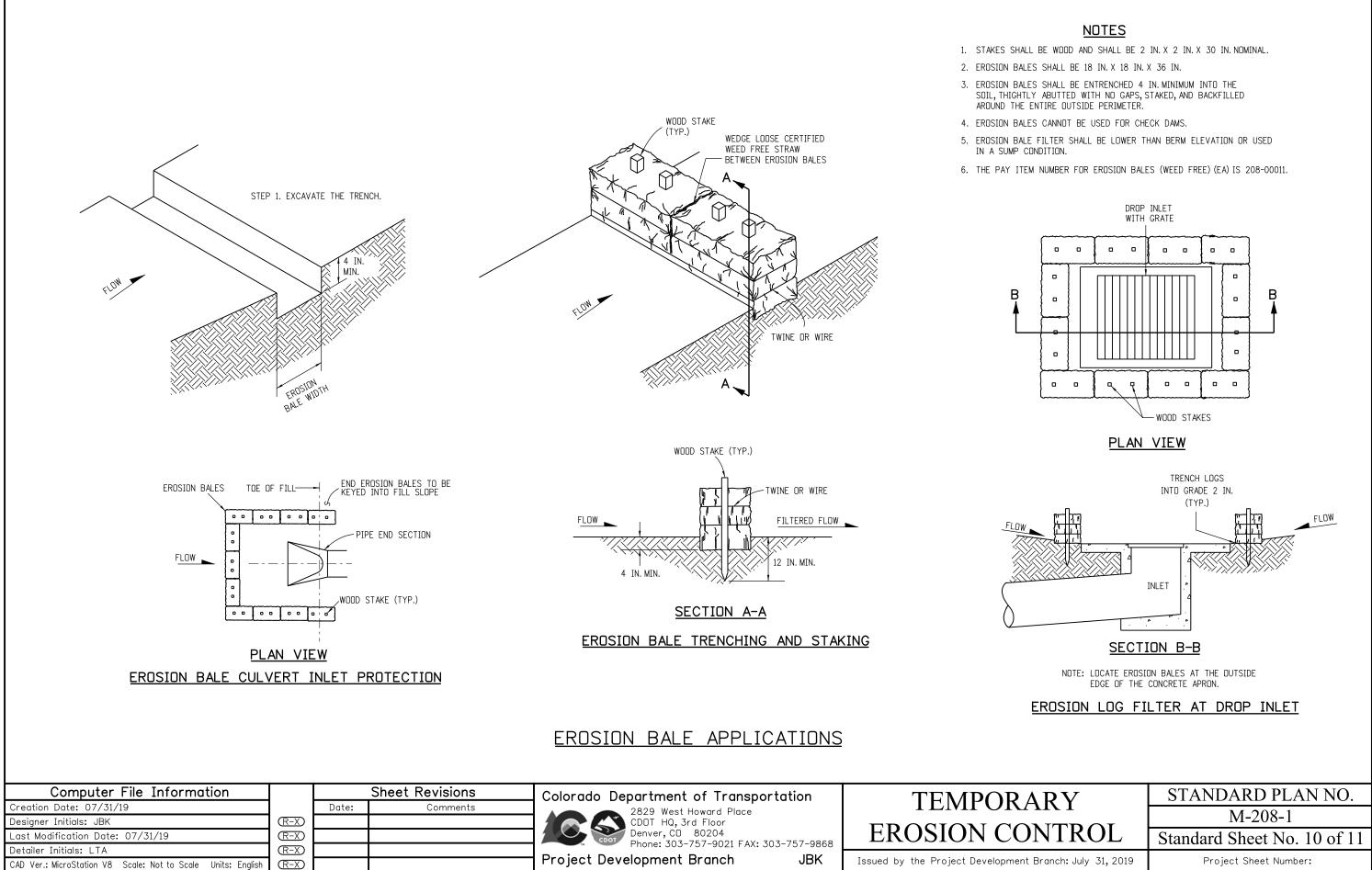
RARY	STANDARD PLAN NO.
	M-208-1
ONTROL	Standard Sheet No. 7 of 11
ent Branch: July 31, 2019	Project Sheet Number:

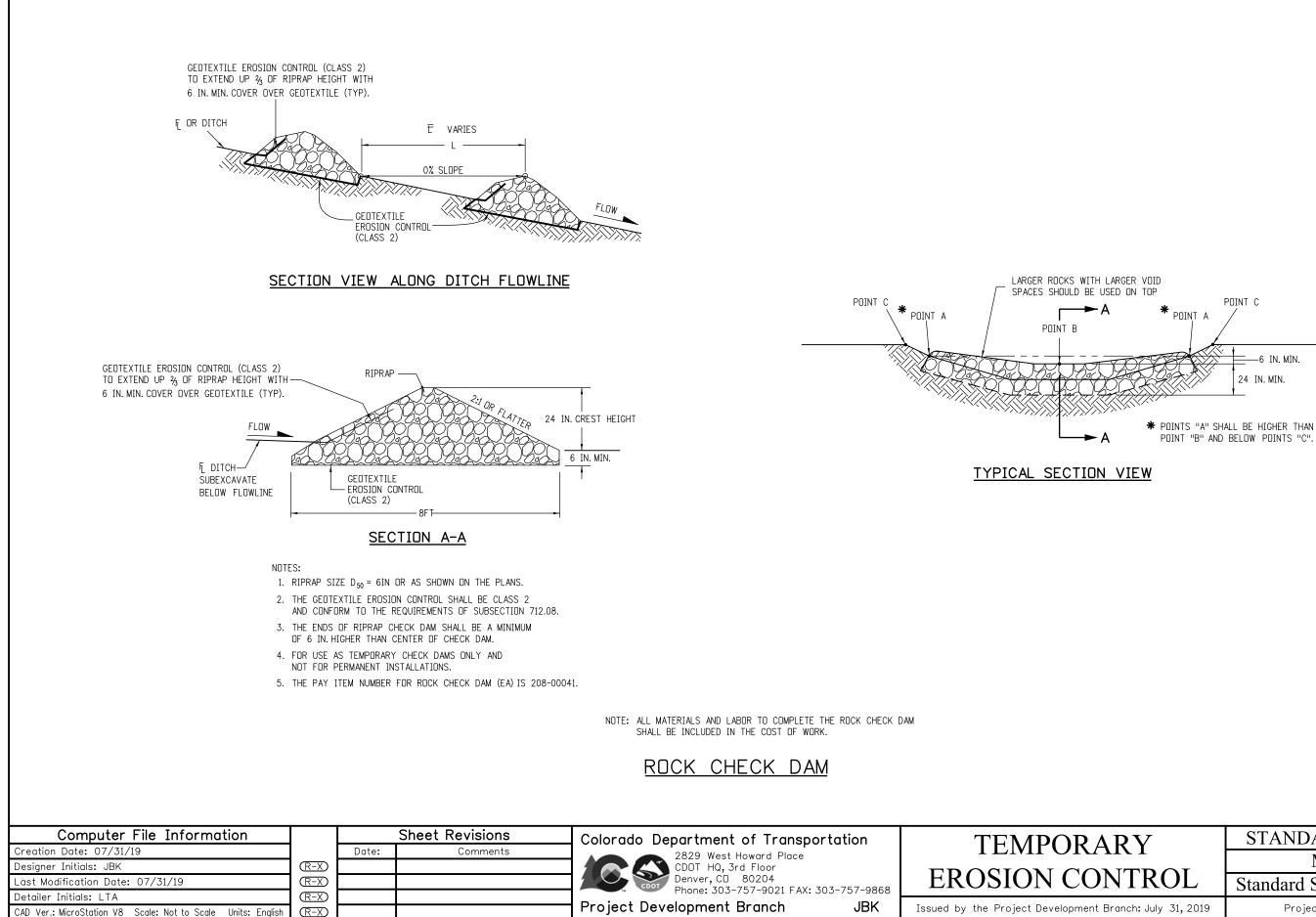
Project Development Branch

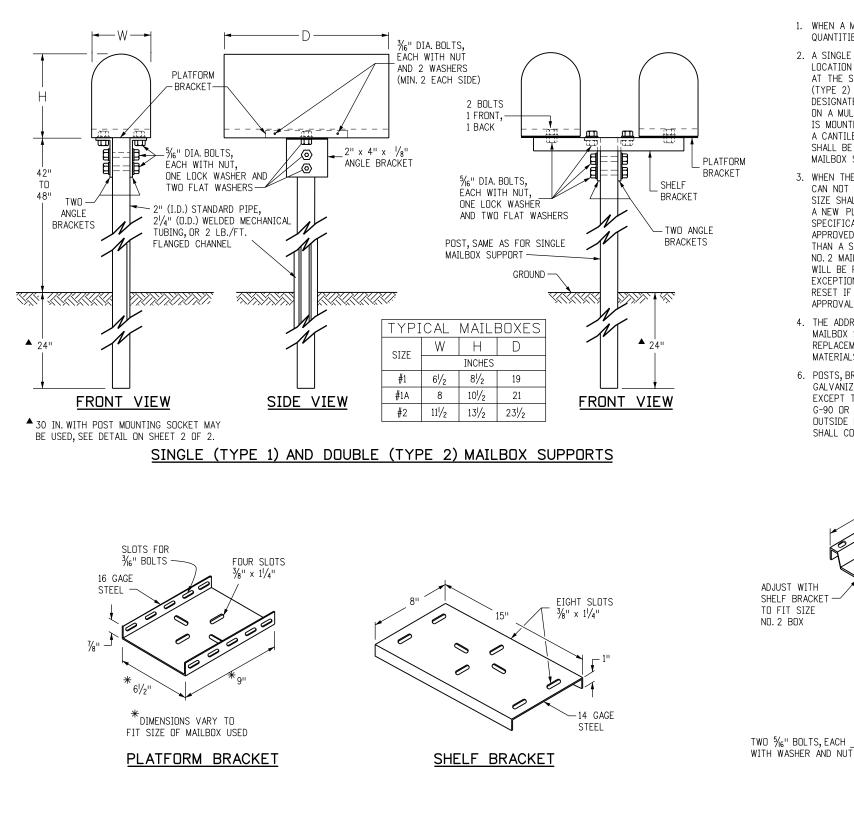

(R-X)

CAD Ver.: MicroStation V8 Scale: Not to Scale Units: English

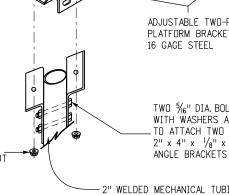
Issued by the Project Development Branch: July 31, 2019


Project Sheet Number:


JBK

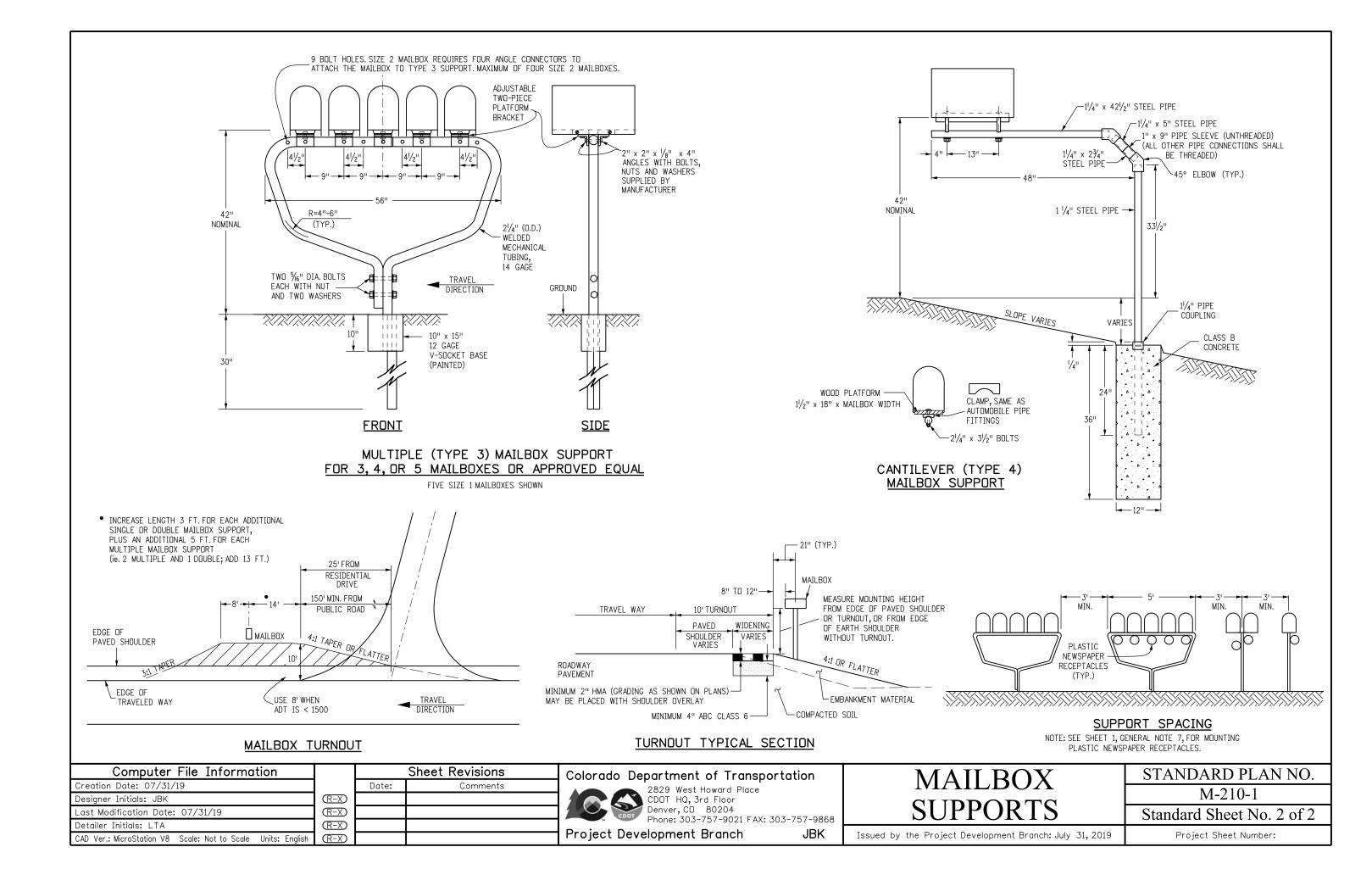

E AREA ES)	WEIR LENGTH (FEET)
	4
	6
	8
	10
	12

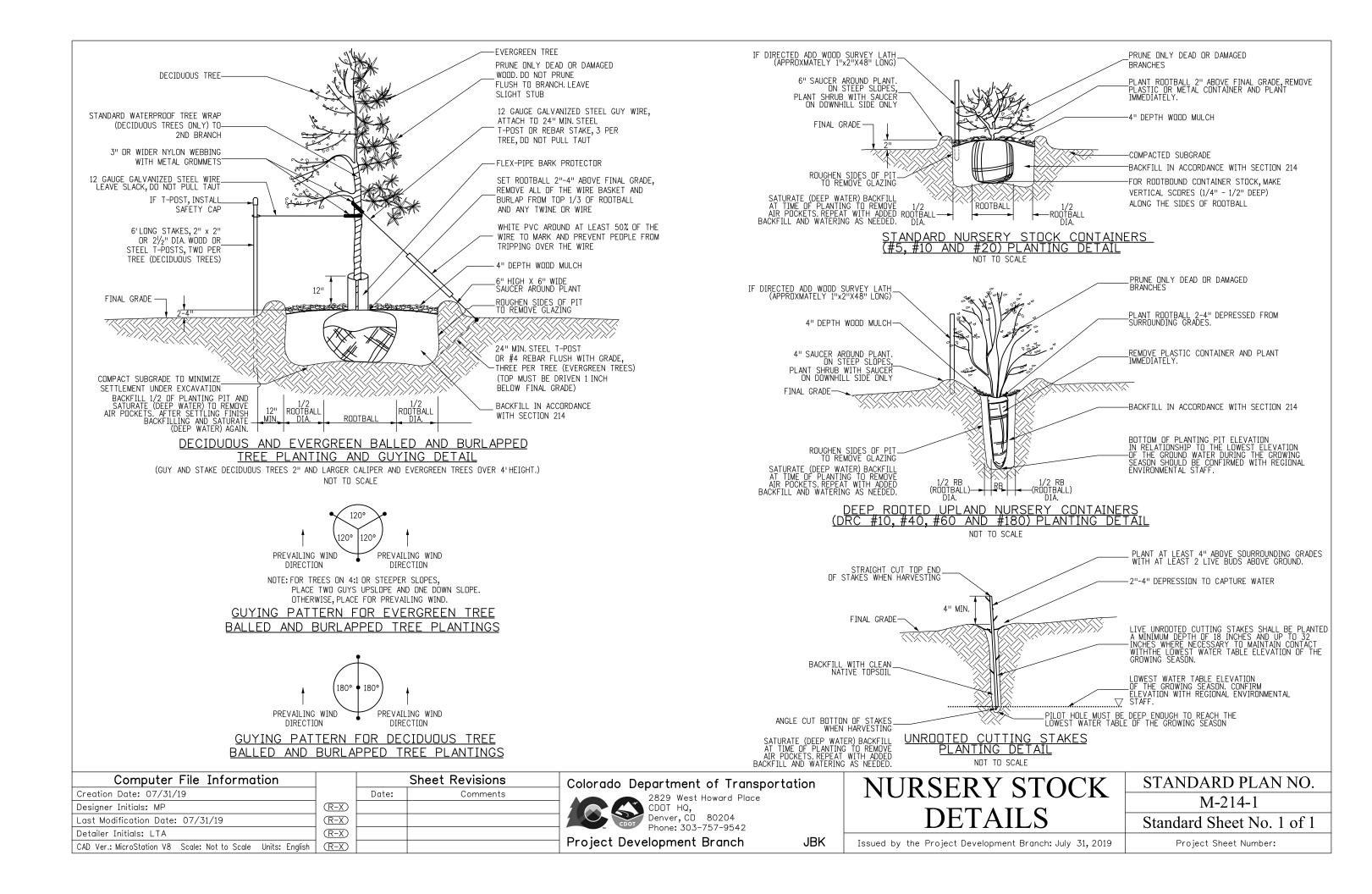
RARY	STANDARD PLAN NO.
ONTROL	M-208-1
	Standard Sheet No. 9 of 11
ent Branch: July 31, 2019	Project Sheet Number:

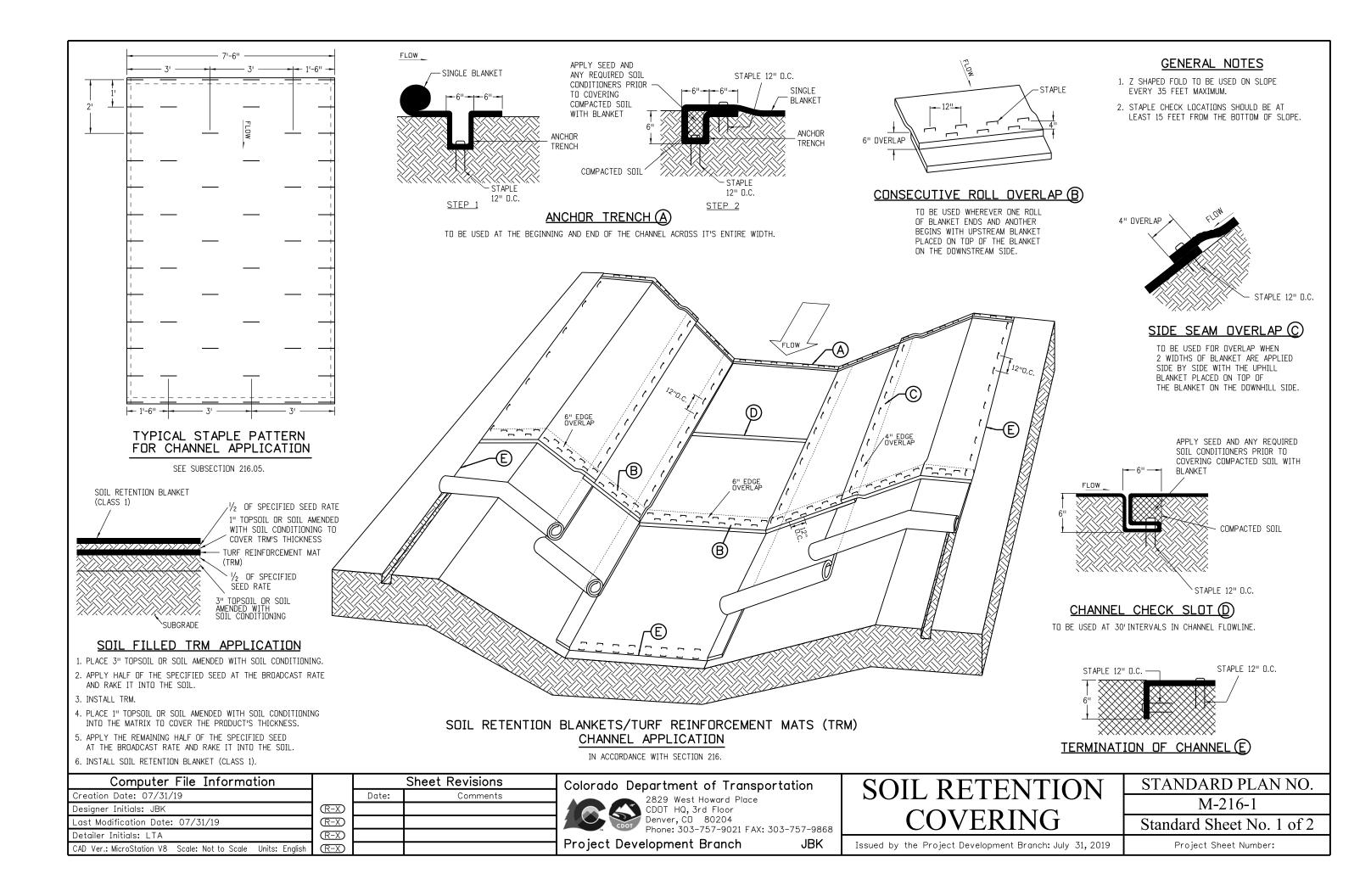


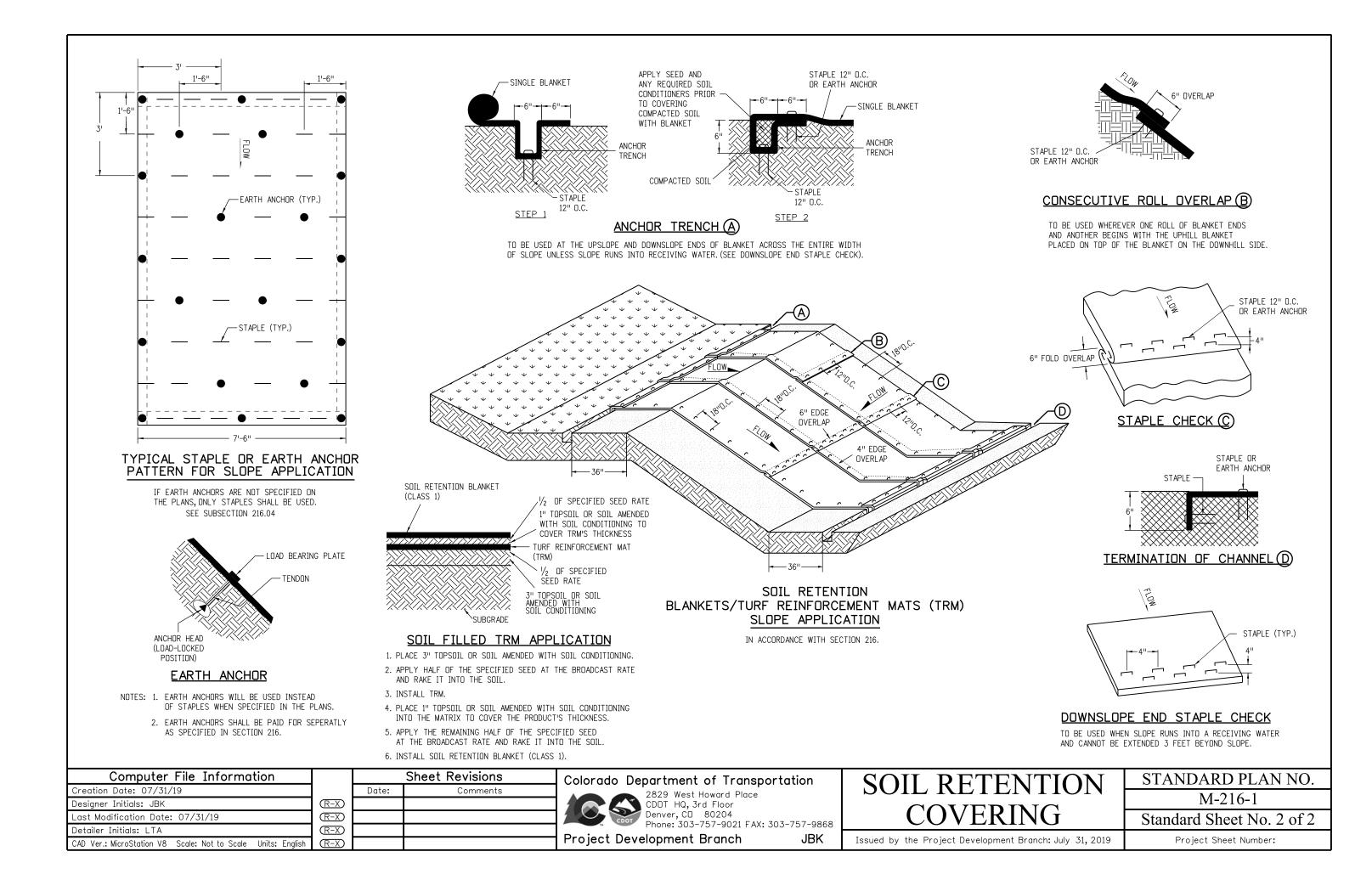
ARY	STANDARD PLAN NO.
ONTROL	M-208-1
	Standard Sheet No. 11 of 11
nt Branch: July 31, 2019	Project Sheet Number:

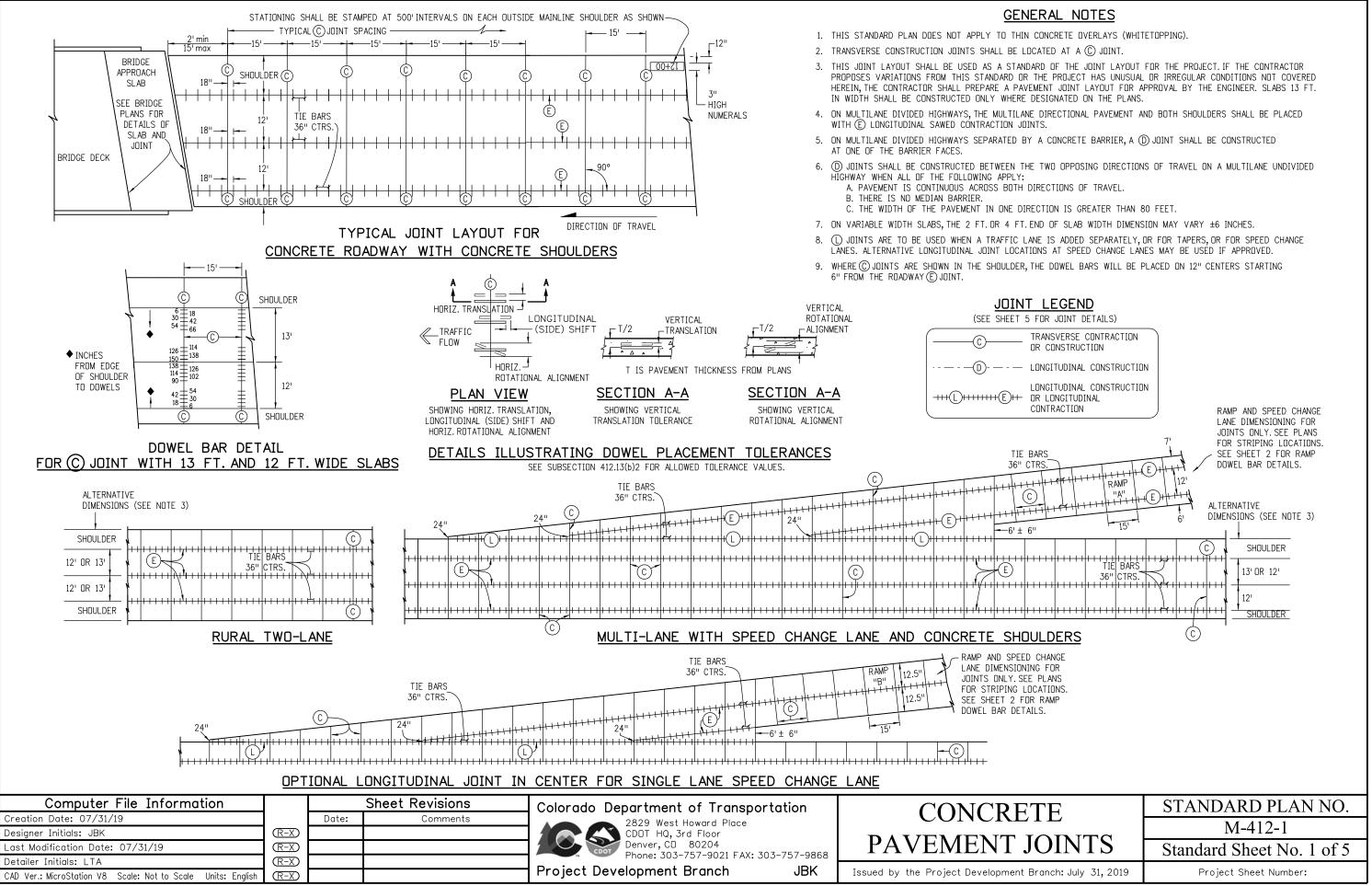
- 1. WHEN A MAILBOX TURNOUT IS REQUIRED, THE NECESSAR' QUANTITIES WILL BE SHOWN ON THE PLANS.
- 2. A SINGLE MAILBOX SHALL BE RESET AT THE FINAL DESI LOCATION ON A NEW TYPE 1 SUPPORT. TWO MAILBOXES F AT THE SAME LOCATION SHALL BE RESET ON ONE DOUBL (TYPE 2) SUPPORT OR ON TWO SINGLE (TYPE 1) SUPPOR DESIGNATED. THREE, FOUR, OR FIVE MAILBOXES SHALL BE ON A MULTIPLE (TYPE 3) SUPPORT. AN EXISTING MAILBOX IS MOUNTED ON A CANTILEVER SUPPORT SHALL BE RESE A CANTILEVER (TYPE 4) SUPPORT. ALL WORK AND MATER SHALL BE INCLUDED IN THE UNIT BID PRICE FOR "RESE MAILBOX STRUCTURE (TYPE _)".
- 3. WHEN THE ENGINEER DETERMINES THAT THE EXISTING M CAN NOT BE REUSED. A NEW METAL MAILBOX OF SIMILAR SIZE SHALL BE SUPPLIED AND ERECTED BY THE CONTRA A NEW PLASTIC MAILBOX CONFORMING TO POSTAL SERVE SPECIFICATIONS MAY BE USED AS AN ALTERNATIVE WHE APPROVED BY THE ENGINEER. AN EXISTING MAILBOX LAR THAN A SIZE NO. 2 SHALL BE REPLACED WITH A NEW SI NO. 2 MAILBOX. THE COST OF SUPPLYING THE NEW MAILE WILL BE PAID FOR IN ACCORDANCE WITH SUBSECTION 10 EXCEPTION: A CUSTOM BUILT, RURAL-TYPE MAILBOX MAY RESET IF THE MAILBOX OWNER OBTAINS PRIOR WRITTEN APPROVAL FROM THE POSTMASTER.
- 4. THE ADDRESS INFORMATION THAT APPEARED ON THE ORI MAILBOX SHALL BE PLACED ON THE APPROACH SIDE OF REPLACEMENT MAILBOX. SIZE AND STYLE OF LETTERING MATERIALS ARE SUBJECT TO THE ENGINEER'S APPROVAL.
- 6. POSTS, BRACKETS, AND ALL MOUNTING HARDWARE SHALL GALVANIZED IN CONFORMANCE WITH AASHTO M 232 AND EXCEPT THE WELDED MECHANICAL TUBING COATING SHAL G-90 OR EQUIVALENT CONFORMING TO ASTM A 525. A 2 OUTSIDE DIAMETER, 14 GAGE WELDED MECHANICAL TUBING SHALL CONFORM TO THE REQUIREMENTS OF ASTM A 513.

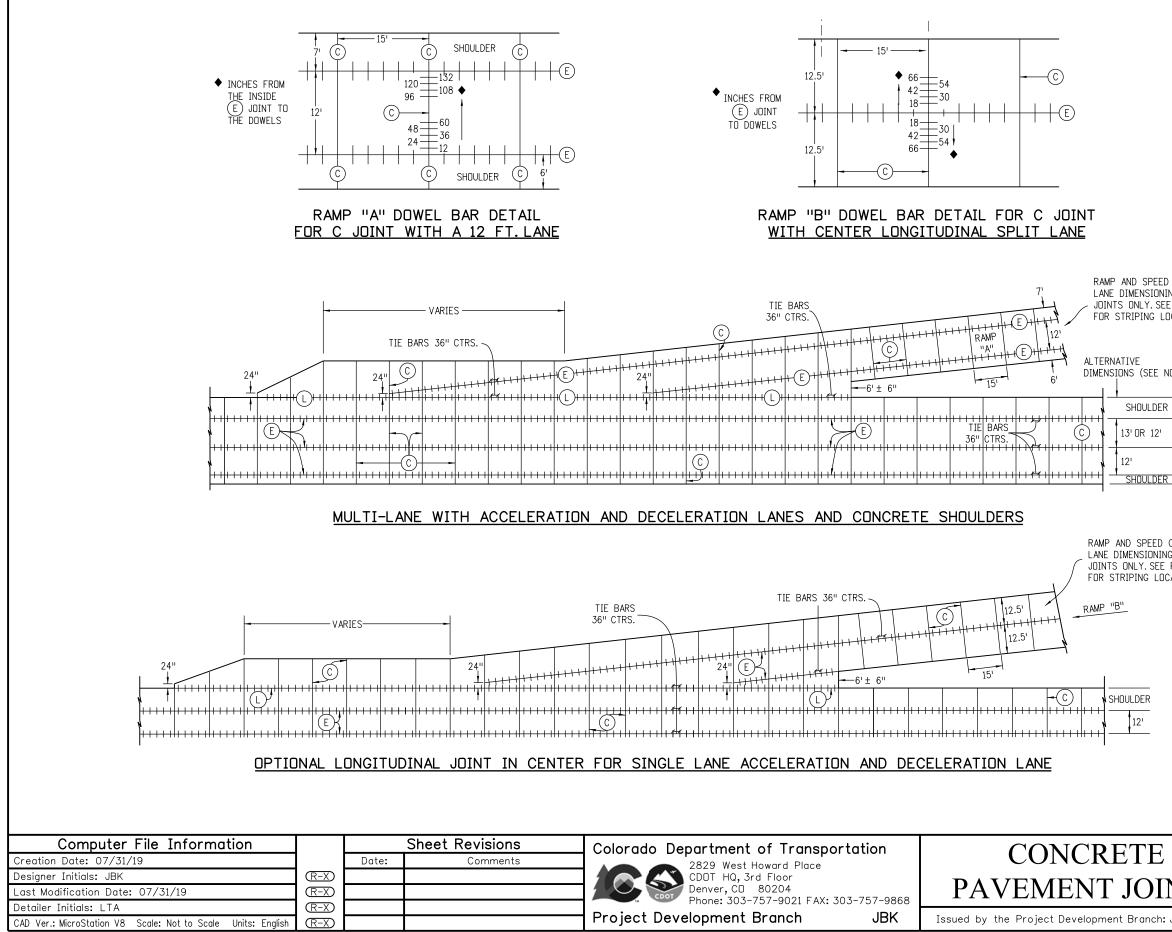

- 8" 61/21


SINGLE AND DOUBLE

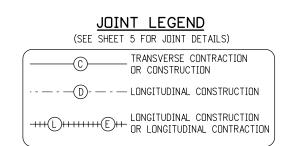

Computer File Information		Sheet Revisions		Colorado Department of Transportation		
Creation Date: 07/31/19		Date:	Comments	2829 West Howard Place	cution	MAILB
Designer Initials: JBK	(R-X)			CDDT HQ, 3rd Floor		
Last Modification Date: 07/31/19	(R-X)			Denver, CD 80204 Phone: 303-757-9021 FAX: 30	7 757 0969	SUPPO
Detailer Initials: LTA	(R-X)					
CAD Ver.: MicroStation V8 Scale: Not to Scale Units: English	(R-X)			Project Development Branch	JBK	Issued by the Project Developmer

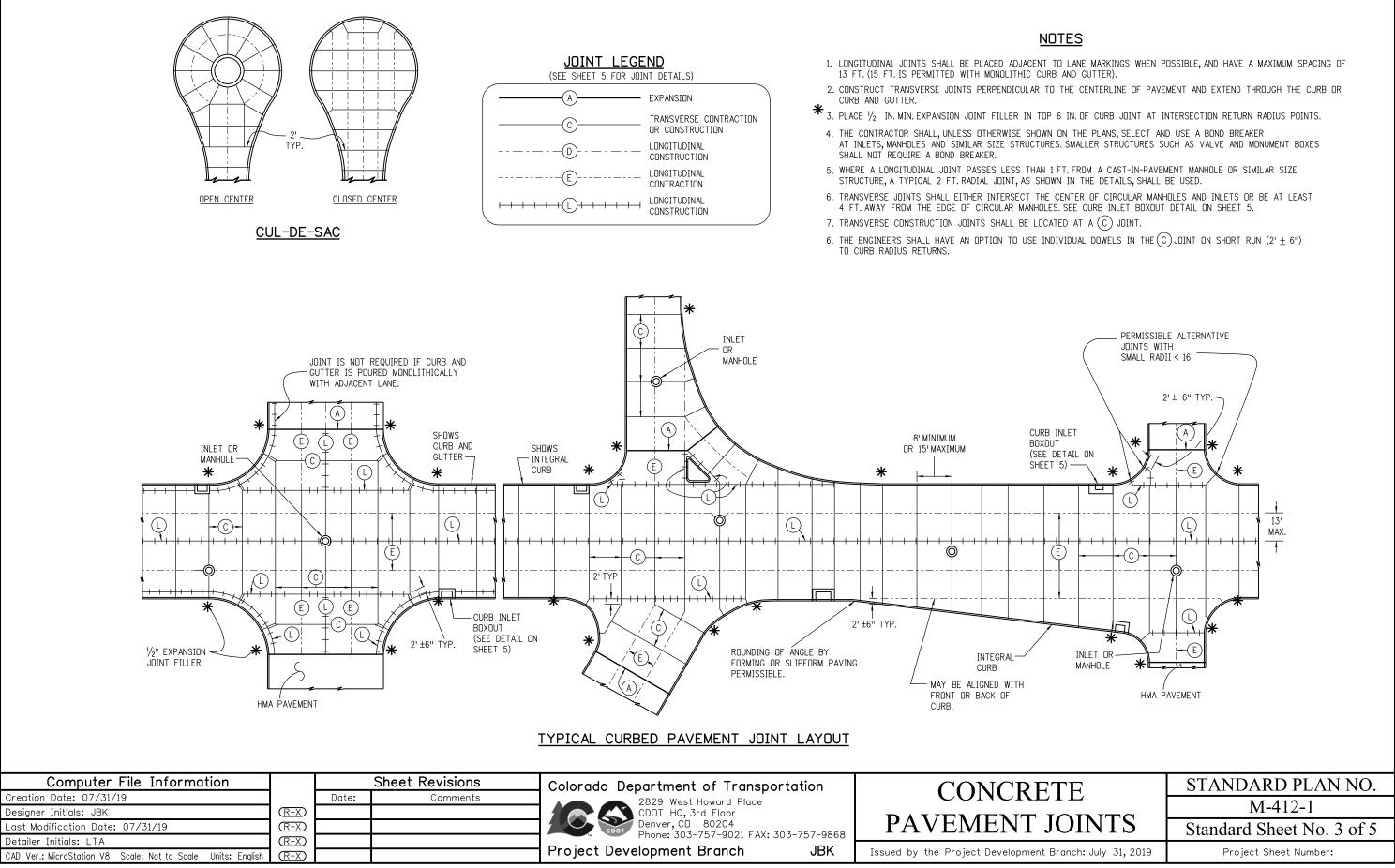

GENERAL NOTES

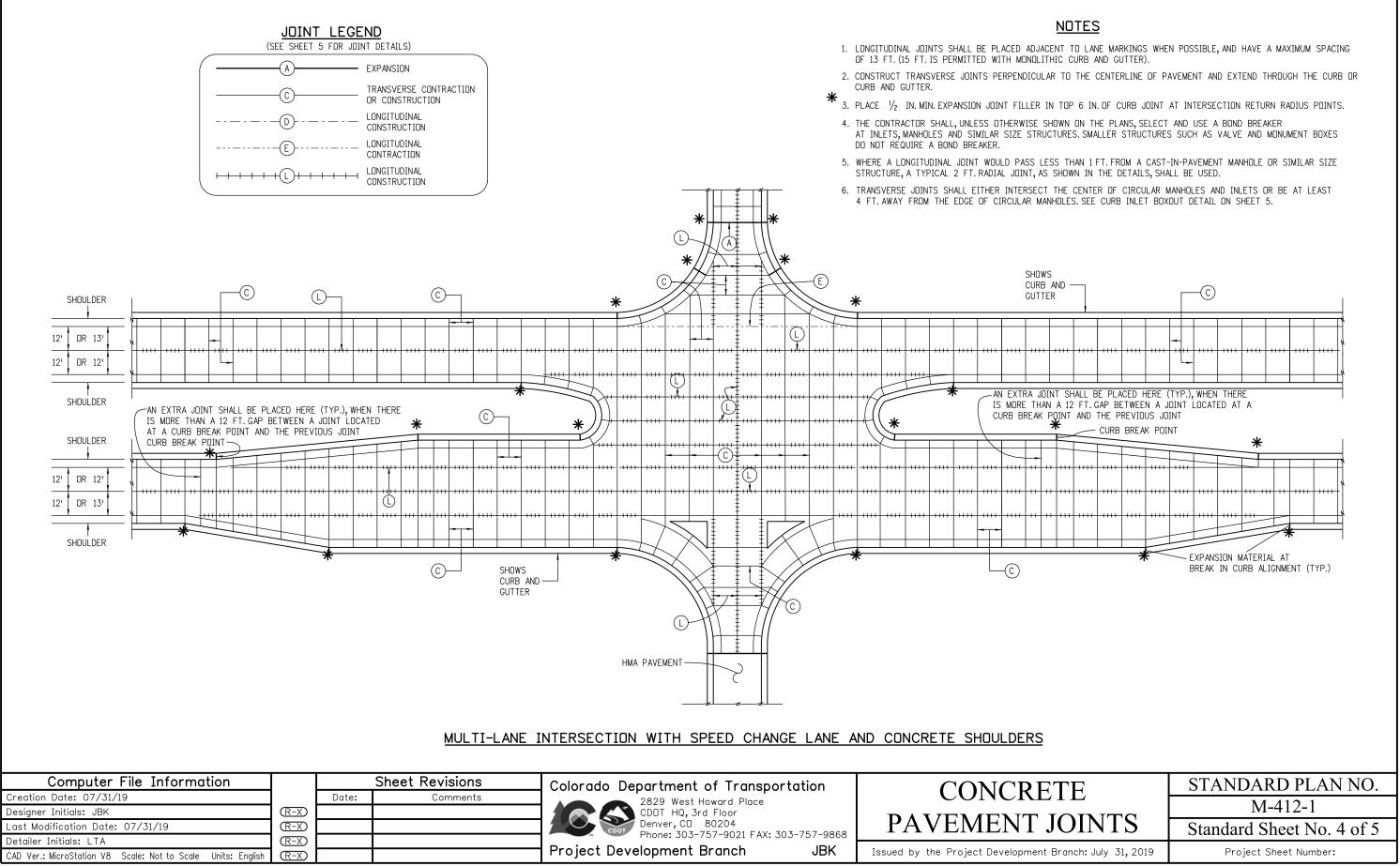

FINAL DESIGNATED	BOLT HOLES, SLOT COMPONENTS MAY	S OF ANGLES, PLATFORM AND SHELF BRACKETS, S AND MULTIPLE MAILBOX SUPPORT VARY FROM THOSE SHOWN OR IMPLIED HEREIN PONENTS WILL FIT TOGETHER PROPERLY.
E 1) SUPPORTS AS S SHALL BE RESET TING MAILBOX THAT ALL BE RESET ON AND MATERIALS	7. PLASTIC NEWSPAF THE MAILBOX ON SHALL BE MOUNTE GALVANIZED U-BO APPROVED BY THI	PRENEWS WILL FIT FOLL FILL FILL FILL FILL FILL FILL FILL
EXISTING MAILBOX OF SIMILAR THE CONTRACTOR.	SHALL BE LOCATE MAILBOX SHALL BI THE HEIGHT SHAL	URB AND GUTTER, THE MAILBOX SUPPORT D IN THE GROUND SO THE FRONT OF THE E 8 IN. TO 12 IN. BACK FROM THE CURB FACE. L BE 42 IN. TO 48 IN. MEASURED FROM THE WE TO THE BOTTOM OF THE MAILBOX.
POSTAL SERVICE RNATIVE WHEN MAILBOX LARGER TH A NEW SIZE E NEW MAILBOX JBSECTION 109.04(b).	. ON ROADS WITH S MAILBOX SUPPORT THE SIDEWALK.TH WITH OR SLIGHTL	DEWALK ATTACHED TO CURB AND GUTTER, THE SHALL BE LOCATED IN THE GROUND BEHIND E FRONT OF THE MAILBOX SHALL BE IN LINE Y BEHIND THE EDGE OF THE SIDEWALK. THE SHALL BE 42 IN. TO 48 IN. ABOVE THE
ON THE ORIGINAL	. THE GROUND SURF FIRM, UNDISTURBE SOIL. THE SUPPOR	ROUNDING THE MAILBOX SUPPORTS SHALL BE O GROUND,OR WELL COMPACTED REGRADED TS ARE NORMALLY DRIVEN,BUT THEY MAY DUG HOLE WITH WELL COMPACTED BACKFILL.
CH SIDE OF THE LETTERING AND 11 S APPROVAL.	. PROPRIETARY MAI APPROVED PRODUC	LBOX SUPPORT SYSTEMS LISTED ON THE COOT TS LIST WILL BE ACCEPTED AS EQUIVALENT
WARE SHALL BE I M 232 AND M 111, CDATING SHALL BE M A 525. A 2 IN. NICAL TUBING ASTM A 513.	ALTERNATIVES.	
	1000	
SLOTS FOR ¾" DIA. ⁄BOLTS WITH WASHERS AND NUTS		
JUSTABLE TWO-PIECE ATFORM BRACKET GAGE STEEL		14 GAGE STEEL SHELF BRACKET
	₩	FOUR 5%" BOLTS, EACH WITH WASHER AND NUT
WO 56" DIA.BOLTS,EACH ITH WASHERS AND NUT O ATTACH TWO " x 4" x 1/8" x 4" NGLE BRACKETS		
ECHANICAL TUBING	¢	TWO %" BOLTS, EACH WITH WASHER AND NUT
OUBLE MAILBO	X SUPPORT	S_ALTERNATIVE
ILBOX		STANDARD PLAN NO.
PPORTS		M-210-1 Standard Sheet No. 1 of 2
Development Branch	-	Project Sheet Number:

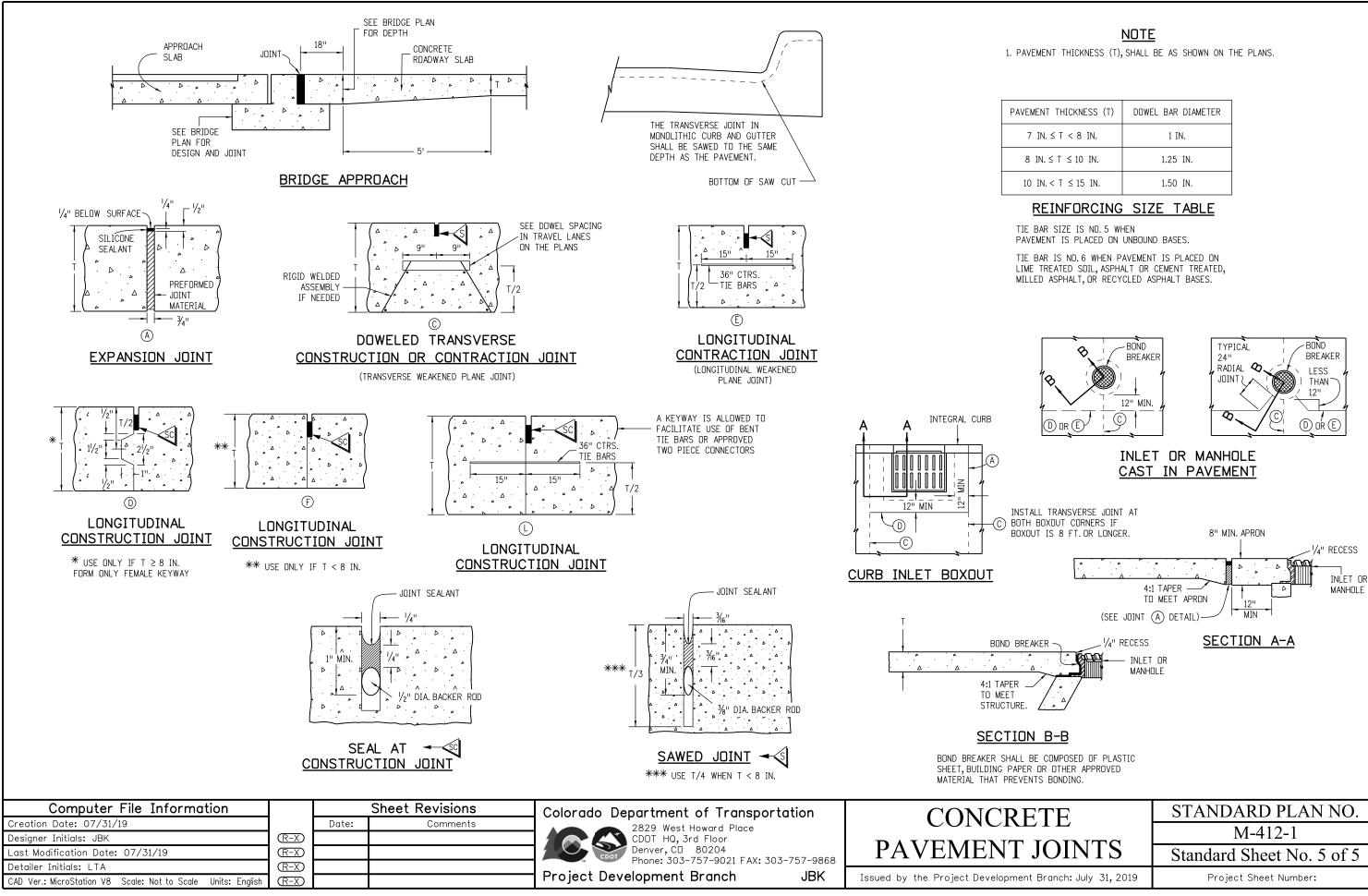


 TRANSVERSE CONTRACTION OR CONSTRUCTION
 LONGITUDINAL CONSTRUCTION
LONGITUDINAL CONSTRUCTION

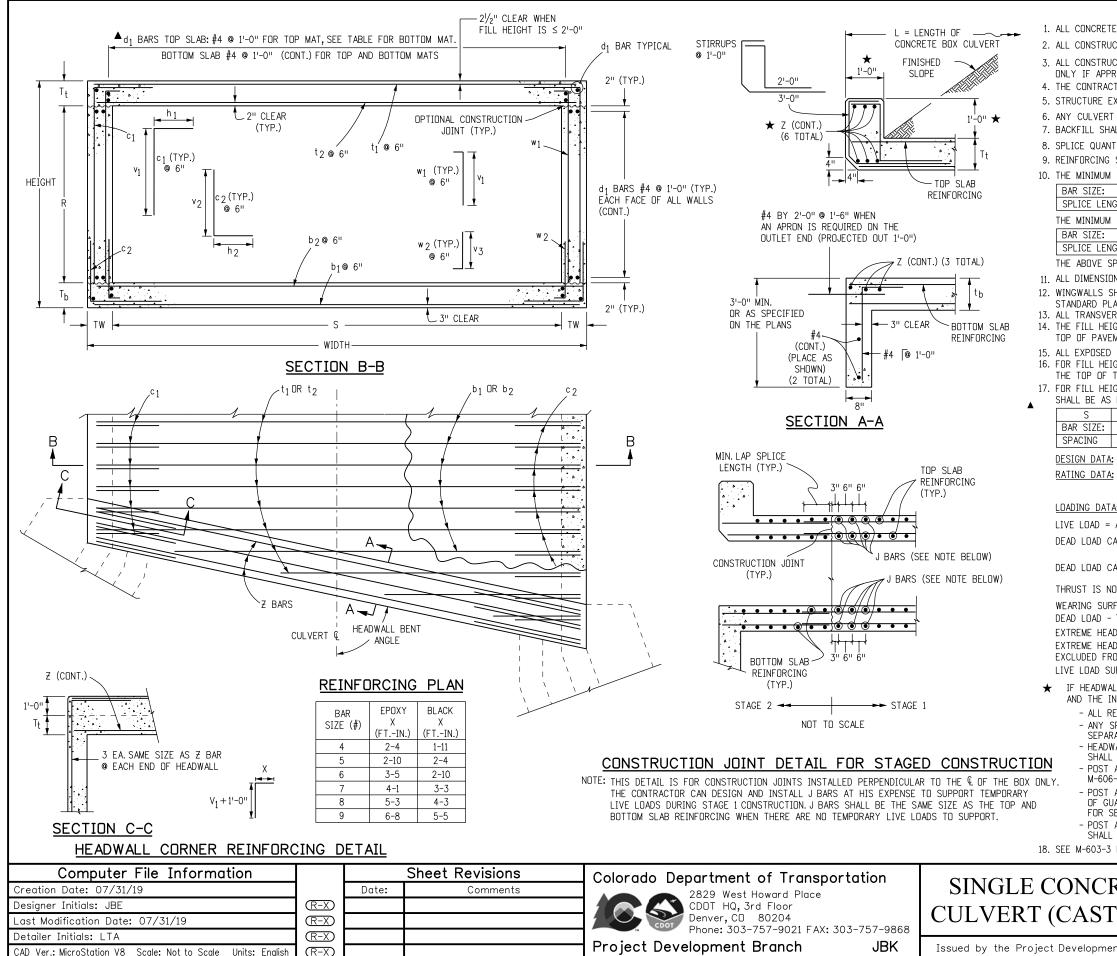

ETE	STANDARD PLAN NO.					
	M-412-1					
JOINTS	Standard Sheet No. 2 of 5					
ent Branch: July 31, 2019	Project Sheet Number:					


SHOULDER 12'


RAMP AND SPEED CHANGE LANE DIMENSIONING FOR JOINTS ONLY. SEE PLANS FOR STRIPING LOCATIONS.


DIMENSIONS (SEE NOTE 3)

RAMP AND SPEED CHANGE LANE DIMENSIONING FOR JOINTS ONLY. SEE PLANS FOR STRIPING LOCATIONS.

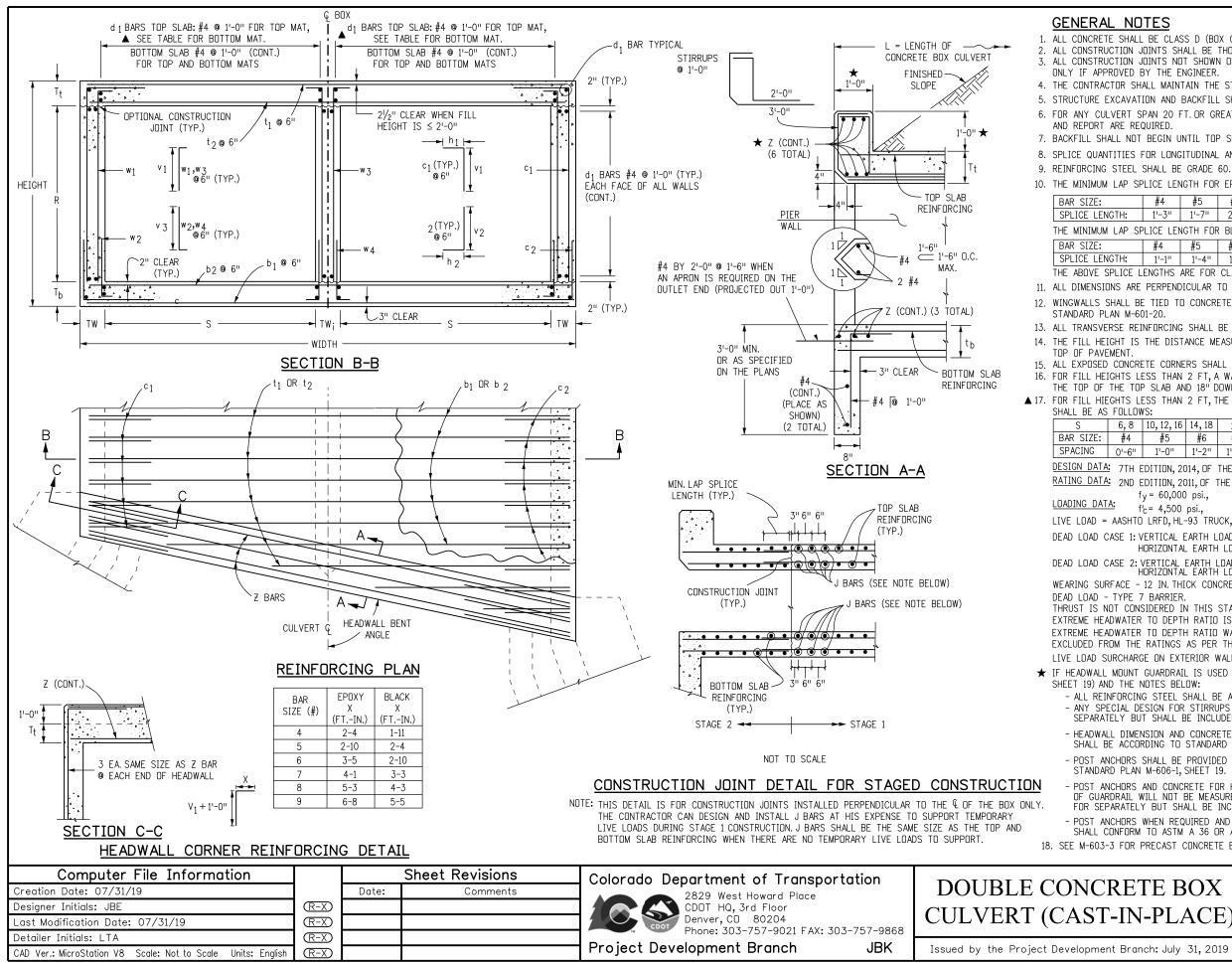


VEMENT THICKNESS (T)	DOWEL BAR DIAMETER
7 IN. \leq T < 8 IN.	1 IN.
8 IN. \leq T \leq 10 IN.	1.25 IN.
10 IN. $< T \le 15$ IN.	1.50 IN.

ETE	STANDARD PLAN NO.
	M-412-1
Γ JOINTS	Standard Sheet No. 5 of 5
ent Branch: July 31, 2019	Project Sheet Number:

PIPE MIN. MAX. HEIGHT OF COVER H (FT.)	PIPE SIZE♥	MIN. M		MAX.	PIPE SIZE V	MIN.	MIN. WALL	CORNER	MAX.	PIPE MIN		. HEIGHT	OF (COVER	H (FT.)
DIA. COVER WALL THICKNESS (IN.)	SPAN × RISE	COVERTHIC	(NESS RADII	Н	SPAN × RISE	COVER	THICKNESS	RADII	Н	DIA. COV		WALL T			
IN. 0.109 0.138 0.168 0.188 0.218 0.249 0.280 60 12 47 68 90 100 100 100 100	FT IN.	IN		FT.	FT IN.		IN.	1	FT.	IN.	0.100	0.125 0.15 45 60			0.225 0.250 92 100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12 12 0.1	09 18 09 18	15 15	6-2 x 5-0 6-7 x 4-11	21 21	0.100 0.100	27 27	15 15	60 15 66 18 72 21		41 54			92 100 84 94 77 86
72 12 39 57 75 86 100 100 100 76 12 36 52 69 79 95 100 100 84 12 34 49 64 73 88 100 100	6-9 x 4-11 7-0 x 5-1	12 12 0.1	09 18 09 18	14 14	6-7 x 5-8 6-11 x 5-9	21 21	0.100 0.100	32 32	15 15	72 21 78 21 84 21	25 23	37 50 35 46			77 86 71 79
84 12 34 49 64 73 88 100 100 90 12 31 45 60 68 82 97 100 96 12 20 43 56 64 77 91 100	7-3 x 5-3 7-8 x 5-5	12 0.1 12 0.1	09 18 09 18	13 13	7-3 x 5-11 7-9 x 6-0	21 24	0.100 0.100	32 32	15 15	84 21 90 24		$\begin{array}{ccc} 32 & 42 \\ 30 & 40 \\ 28 & 77 \\ \end{array}$		+ +	66 73 61 68
96 12 29 43 56 64 77 91 100 102 18 28 40 52 60 73 86 94 108 18 26 70 50 57 60 73 86 94	7-11 x 5- 7 8- 2 x 5- 9	12 0.1 18 0.1	09 18	12 12	8-1 x 6-1	24 24	0.100	32 32 32	15 15 15	96 24 102 24		28 37 26 35			57 64 54 60
108 18 26 38 50 57 69 81 88 114 18 25 36 47 54 65 77 84	8-7 x 5-11	18 0.1)9 18	12	8-5 x 6-3 8-10 x 6-4	24 27 27	0.100	32 32 32	15 15 15	108 27 114 27		25 33 23 31			51 57 48 54
120 18 23 34 45 51 62 73 80 126 18 22 32 42 49 59 69 76	$8-10 \times 6-1$ 9-4 x 6-3	18 0.1 18 0.1		11	9-3 x 6-5 9-7 x 6-6		0.100			120 27 126 30		22 30 21 28			46 51 44 49
132 18 21 31 40 46 56 66 72 138 18 20 29 39 44 54 63 69	9-6 x 6-5	18 0.1	09 18	10	9-11 x 6-8	27 27	0.100	32 32	15 15	132 30 138 30		20 27 19 26			42 46 40 44
144 18 19 28 37 43 51 61 66 150 24 19 27 36 41 49 58 64	9-9 x 6-7 10-3 x 6-9	18 0.1 18 0.1	09 18	10 9	10-3 x 6-9 10-9 x 6-10	27 30	0.100 0.100	32 32	15 14	144 33 150 30		18 25 18 24			38 42 36 40
156 24 18 26 34 39 47 56 61 162 24 17 25 33 38 46 54 59	10-8 x 6-11 10-11 x 7-1	18 0.1 18 0.1		9 9	11-1 x 7-0 11-5 x 7-1	30 30	0.100 0.100	32 32	14 14	156 30 162 30		17 23 22		31 30	35 38 34 37
168 24 17 24 32 36 44 52 57 174 24 16 23 31 35 42 50 55	11-5 x 7-3 11-7 x 7-5	18 0.1 18 0.1		8 7	11-9 x 7-2 12-3 x 7-3	33 33	0.100 0.100	32 32	13 13	168 30 174 30		21 20		29 28	32 35 31 34
180 24 15 22 30 34 41 48 53 186 24 15 22 29 33 40 47 51	11-10 x 7-7 12-4 x 7-9	18 0.1 30 0.1	09 18 09 18	76	12-7 x 7-5 12-11 x 7-6	33 33	0.100 0.100	32 32	12 12	180 27 186 27			23 22	27 26	30 33 29 31
192 24 21 28 32 38 45 50 198 30 20 27 31 37 44 48	12-6 x 7-11 12-8 x 8-1	30 0.1 30 0.1	09 18 09 18	6	13-1 x 8-2 13-1 x 8-4	33 33	0.100 0.100	32 32	12 12	192 <u>27</u> 198 27				25 24	28 30 27 29
204 30 20 26 30 36 43 47 210 30 19 25 29 35 41 45	12-10 x 8- 4 13- 3 x 9- 4	30 0.1 30 0.1		6 13	13-11 x 8-5 14-0 x 8-7	30 33	0.125	32 32	13 13	204 27 210 27				23	26 28 25 27
216 30 25 28 34 40 44 222 30 24 27 33 39 43	13-6 x 9-6	30 0.1	09 31	13 12 12	13-11 x 9-5	30 33	0.125	32 32 32	13	216 27 222 27					26 25
228 30 23 27 32 38 42 234 30 23 26 31 37 41	14- 0 x 9- 8 14- 2 x 9-10	30 0.1	09 31	12	14-3 x 9-7 14-8 x 9-8	33 33 33	0.125		12 12	228 27					25
240 30 25 31 36 40	14-5 x 10-0 14-11 x 10-2	30 0.1 30 0.1	09 31	11	14-11 x 9-10 15- 4 x 10- 0		0.125	32 32	12 12 12	TABLE IV					GATIONS
TABLE I - 6 IN. x 2 IN. CORRUGATIONS	15- 4 x 10- 4	30 0.1	09 31	11	15-7 x 10-2	33 30	0.150	32 32	11		RUUNL) ALUMI			
ROUND STEEL PIPE	15-7 x 10-6 15-10 x 10-8	30 0.1 30 0.1	09 31	11 10	16- 1 x 10- 4 16- 4 x 10- 6	33 33	0.150 0.150	32 32	11 11			<u>GENER</u>			
ASTM A 563 MARKING DN 11/4"	16- 3 x 10-10 16- 6 x 11- 0	30 0.1 30 0.1		10 10	16-9 x 10-8 17-0 x 10-10	33 33	0.150 0.150	32 32	11 10	R	EPAIRED IN .	-ARCH WITH E ACCORDANCE V D AS SHOWN	VITH SUBS	ECTION 707	
NUTS	17- 0 x 11- 2 17- 2 x 11- 4	30 0.1 30 0.1		10 10	17-3 x 11-0 17-9 x 11-2	33 30	0.150 0.175	32 32	10 10	2. W	HERE MULTIF	PLE PIPES ARE	USED, TH	IEY SHALL I	
	17-5 x 11-6 17-11 x 11-8	30 0.1 30 0.1	38 31 38 31	9 9	18- 0 x 11- 4 18- 5 x 11- 6	33 33	0.175 0.175	32 32	10 10	0	NE-HALF DIA	NCENT SIDES (METER OR ONE PING OF THE E	-HALF SP.	AN APART 1	TO PERMIT
ASTM A 449	18- 1 × 11-10 18- 7 × 12- 0	30 0.1 30 0.1	58 31 58 31	9	18-8 x 11-8 19-2 x 11-9	33 30	0.175 0.200	32 32 32	9 9	Т	HE CLEAR DI E MORE THAN	STANCE BETW	EEN ADJAC	CENT SIDÉS	SHALL NOT
MARKING ON BOLT HEADS J 4" HEX NUT	18-9 x 12-2 19-3 x 12-4	30 0.1 30 0.1	58 31	9	19-5 x 11-11 19-10 x 12-1	30 33	0.200	32 32 32	9			R FOR STRUC			R PIPE ARCH HE BOTTOM OF
1" SPHERICAL RAD.	19-6 x 12-6	30 0.1	58 31	8	20-1 x 12-3	33 33	0.200		9	T C	HE PAVEMEN ^T DVER SHALL	T:HMA OR PCC BE PROVIDED	P. DURING	CONSTRUC ECT THE ST	TION, ADEQUATE RUCTURE FROM
	19-8 x 12-8 19-11 x 12-10	30 0.1 30 0.1		777	20- 1 x 12- 6 20-10 x 12- 7	33	0.200	32 32	9		AMAGE.THE (EAST 1 FT.	COVER DURING	CONSTRU	CTION SHAL	L BE AT
	20- 5 x 13- 0 20- 7 x 13- 2	36 0.1 36 0.1	38 31 38 31	7 6	21-1 x 12-9 21-6 x 12-11	33	0.225	32 32 32	8						
PIPE BOLT AND NUT TABLE II - 6 IN. x 2 IN. CORRUGATIONS TABLE III - 9 IN. x 2½ IN. CORRUGATIONS															
DO NOT INVERT.		STEEL PIPE					M PIPE-ARC				IS APPROXIM	ATELY EQUAL			
1. NUTS MADE IN CONFORMANCE WITH ASTM A 194, GRADE 2 OR GRADE 2H, AND MARKED WITH THE GRADE SYMBOL ARE			JSE WHERE MINIMUM CO	JVER	H - HEIGHT OF C	OVER LIMIT.	MAXIMUM HEIGHT O	F FILL OVER ⁻	THE TOP	PIPE OR		ONFORMING TO			
ACCEPTABLE ÉQUIVALENTS FOR ASTM A 563, GRADE C NUTS. 2. BOLTS SHALL BE PLACED LOOSE TO ALIGN PLATES, THEN	REQUIREN USE ROUN	NENTS FOR ROUND PIAND PIAND PIPE WHEN 📙 EX	PE CANNOT BE MET. CEEDS 15 FT.		FILL HEIGHTS	S GREATER T	TOM OF THE PAVEN HAN MAXIMUM ALLO			PIPE-ARC	H DESIGN IS	STRUCTURAL BASED ON CO	IRNER BEA		
TIGHTENED TO MAINTAIN STRUCTURE SHAPE.	Sheet Revisi					e require s	PECIAL DESIGN.			ON THE S	UIL OF 2 TC	INS PER SQUA			

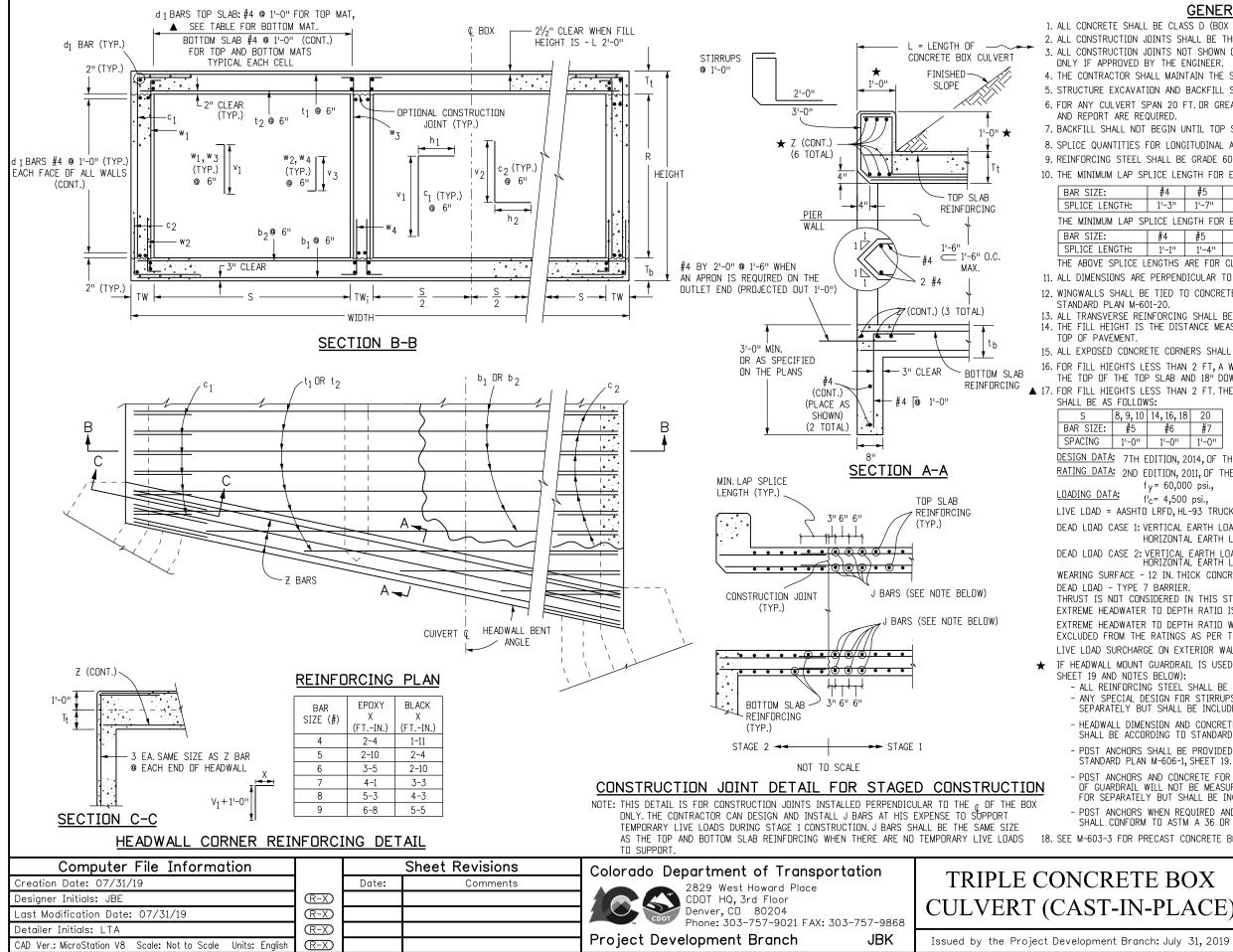
Computer File Information			Sheet Revisions	Colorado Department of Transportation	STRUCTURAL PLATE	STANDARD PLAN NO.
Creation Date: 07/31/19		Date:	Comments	2829 West Howard Place	STRUCTURAL PLATE	M-510-1
Designer Initials: JBK	$\overline{\mathbb{R}}$			CDDT HQ, 3rd Floor Denver, CD 80204	PIPE H-20 LOADING	
Last Modification Date: 07/31/19	(R-X)			Phone: 303-757-9021 FAX: 303-757-9868	FIFE II-20 LOADING	Standard Sheet No. 1 of 1
Detailer Initials: LTA	(R-X)			Project Development Branch JBK	Issued by the Project Development Branch: July 31, 2019	Project Sheet Number:
CAD Ver.: MicroStation V8 Scale: Not to Scale Units: English	$\overline{R-X}$				issued by the respect bevelopment bildhell. Only 51, 2013	ridjeet sheet Number.


<u>GENERAL NOTES</u>

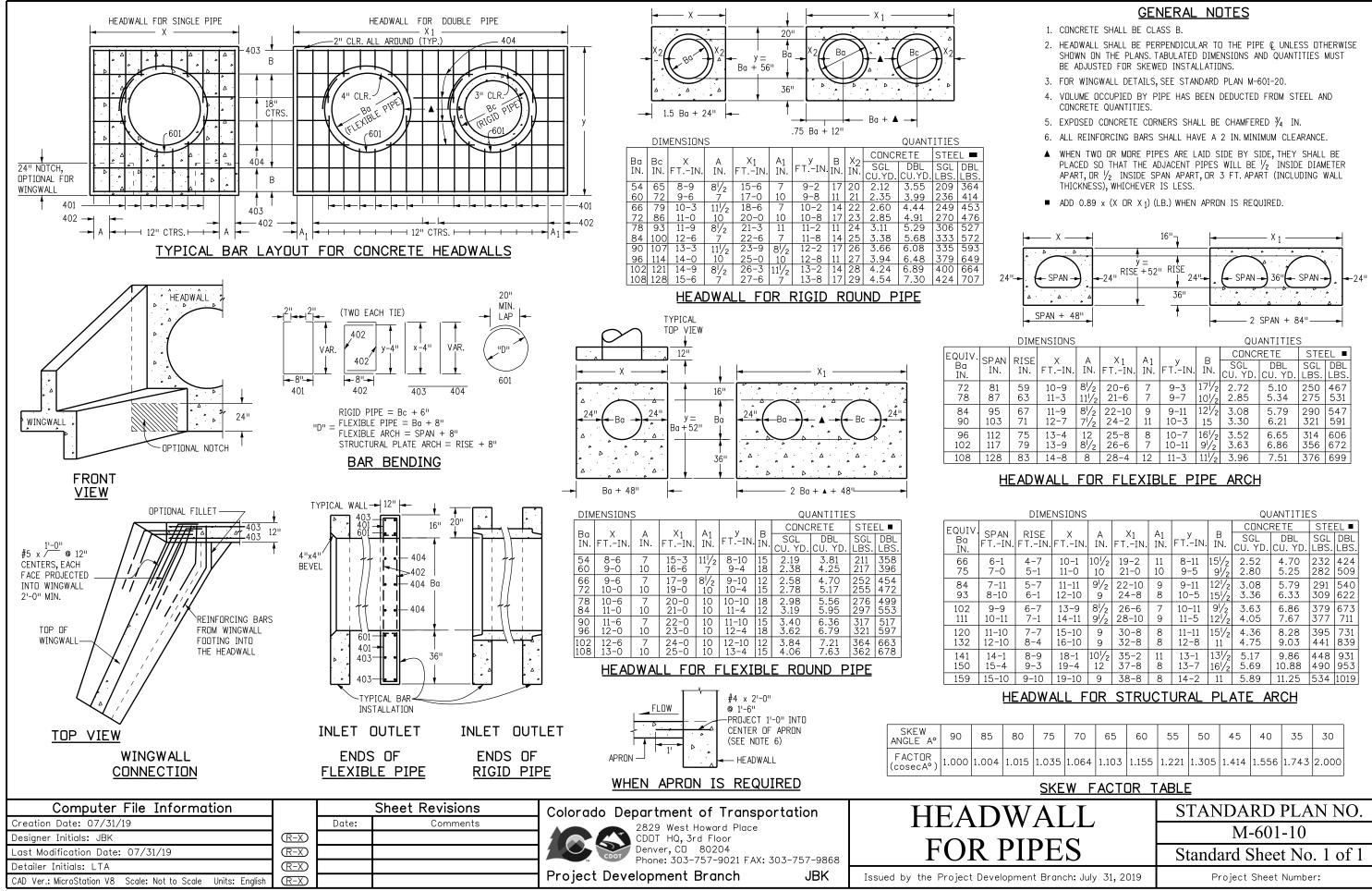
GENERA	LNUIES						
TE SHALL BE CLASS D (BOX CUL)	/ERT).						
UCTION JOINTS SHALL BE THOROU	GHLY CLEANED BEFORE FRESH CONCRETE IS PLACED.						
JCTION JOINTS NOT SHOWN ON THE PLANS SHALL BE CONSTRUCTED PROVED BY THE ENGINEER.							
CTOR SHALL MAINTAIN THE STABI	LITY OF THE STRUCTURE DURING CONSTRUCTION.						
	. BE IN ACCORDANCE WITH STANDARD PLAN M-206-1.						
HALL NOT BEGIN UNTIL TOP SLAB	DUNDATION INVESTIGATION AND REPORT ARE REQUIRED. HAS REACHED DESIGN STRENGTH, f'c.						
	RANSVERSE BARS ARE NOT INCLUDED.						
G STEEL SHALL BE GRADE 60.							
	COATED REINFORCING BARS SHALL BE:						
#4 #5 #6 NGTH: 1'-3" 1'-7" 2'-5"	#7 #8 #9 #10 #11 2'-10'' 3'-8'' 4'-8'' 5'-11'' 7'-3''						
M LAP SPLICE LENGTH FOR BLACK							
#4 #5 #6 NGTH: 1'-1" 1'-4" 1'-7"	#7 #8 #9 #10 #11 1'-11'' 2'-6'' 3'-1'' 3'-11'' 4'-10''						
SPLICE LENGTHS ARE FOR CLASS							
IONS ARE PERPENDICULAR TO THE							
SHALL BE TIED TO CONCRETE BO	X CULVERT IN ACCORDANCE WITH						
'LAN M-601-20. ERSE REINFORCING SHALL BE NOR	MAL TO THE CENTERLINE OF THE BOX.						
EIGHT IS THE DISTANCE MEASUREI 'EMENT.	O FROM THE TOP OF THE TOP SLAB TO THE						
D CONCRETE CORNERS SHALL BE TIGHTS LESS THAN 2 FT A WATER	CHAMFERED $rac{3}{4}$ ". RPROOFING MEMBRANE SHALL BE PROVIDED FOR						
THE TOP SLAB AND 18 INCHES [DOWN FROM THE TOP OF THE EXTERIOR WALLS.						
EIGHTS LESS THAN 2 FT, THE d ₁ S FOLLOWS:	BARS FOR THE BOTTOM MAT OF THE TOP SLAB						
	16, 18, 20						
#5 #6 #6	<u>#5</u>						
	<u>'-6''</u>						
, ,	HTO LRFD BRIDGE DESIGN SPECIFICATIONS						
<u>A:</u> 2ND EDITION, 2011, OF THE AASH f _y = 60,000 psi.,	HTO MANUAL FOR BRIDGE EVALUATION						
TA: f' _C = 4,500 psi.,							
	93 TANDEM, COLORADO PERMIT TRUCK, AND NRL						
CASE 1: VERTICAL EARTH LOAD = HORIZONTAL EARTH LOAD	120 LBS./CU.FT.						
CASE 2: VERTICAL EARTH LOAD =							
HORIZONTAL EARTH LOAD	= 60 LBS./CU.FT.						
NOT CONSIDERED IN THIS STANDA	1						
IRFACE – 12 INCHES THICK CONCR – TYPE 7 BARRIER.	LIL I AVEMENI.						
ADWATER TO DEPTH RATIO IS IN	ACCORDANCE WITH THE CDOT DRAINAGE MANUAL.						
ADWATER TO DEPTH RATIO WAS I ROM THE RATINGS AS PER THE A	NCLUDED IN THE DESIGN BUT ASHTO MANUAL FOR BRIDGE EVALUATION.						
SURCHARGE ON EXTERIOR WALLS							
	SEE STANDARD PLAN M-606-1, SHEET 19,						
INFORMATION BELOW):							
	CORDING TO THIS BOX CULVERT PLAN. WILL NOT BE MEASURED AND PAID FOR						
WATELY BUT SHALL BE INCLUDED	IN THE WORK.						
L BE ACCORDING TO STANDARD P	LAN M-606-1, SHEET 19.						
ANCHORS SHALL BE PROVIDED A NO-1, SHEET 19.	CCORDING TO STANDARD PLAN						
ANCHORS AND CONCRETE FOR H	EADWALL MOUNT						
SUARDRAIL WILL NOT BE MEASURED SEPARATELY BUT SHALL BE INCL	D AND PAID						
	ENCASED IN HEADWALL CONCRETE,						
3 FOR PRECAST CONCRETE BOX C							
	STANDARD PLAN NO.						
RETE BOX	M-601-1						
Γ-IN-PLACE)	Standard Sheet No. 1 of 2						
ent Branch: July 31, 2019	Project Sheet Number:						

SINGLE CONCRETE BOX CULVERT DIM	MENSIONS, QUANTITIES & RATING F	ACTORS (EXCLUDING HEADWALL & TOEWALL	QUANTITIES)
BOX SIZE FILL S R HT. WIDTH ALLOWED THICKNESS (INHES) t1* & b1 t2 t	BAR SIZES d1▲ DIMENSIONS b2 w1* & w2 c1* c2 d1▲ h1 h2 v1 v2 v3 d1	QUANTITIES RATING FACTORS CONCRETE REBAR STL WATERPROOFING HL-93 HL-93 COLORADD	NRL
FT FT FT FT T <tht< th=""> T <tht< th=""> T</tht<></tht<>	# # # # NU. FI-IN FI-IN FI-IN FI-IN FI-IN	CY/LF LBS/LF SY/LF INVENTORY OPERATING PERMIT	VEHICLE
6 7 8-4.5 7-8 2 TO 8 8.5 8 10 4 5 3 8-5 7-8 8 TO 15 85 85 10 4 5	5 4 5 5 64 3-10 4-4 7-6 2-11 1-9 5 4 5 5 64 3-8 2-4 7-6 3-0 1-9	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.09 2.58
8-5 7-8 15 TO 20 8.5 8.5 10 4 5 5 7-9 9-8 < 2	5 4 5 5 64 3-8 2-4 7-6 3-0 1-9 7 4 5 5 68 4-9 2-4 6-8 3-1 1-11	0.834 190 ◆ ◆ 0.997 251 1.407 1.10 1.43 1.65	1.63 2.46 HEADWALL AND TOEWALL OLIANITITIES
6 7-6 9-8 2 TO 8 8.5 9.5 10 4 6 7 7-6 9-8 8 10 15 8.5 9.5 10 4 6 7	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.907 220 1.59 2.07 2.39 0.907 216 ◆ ◆ ◆	ILADWALL AND TOLWALL QUANTITIES
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.907 216 ◆ ◆ 1.135 287 1.407 1.07 1.38 1.60 1.061 240 1.61 2.09 2.54	1.58 2.57 HEADWALL
$8 \begin{bmatrix} 9 - 7 & 9 - 8 & 7 & 13 & 10 & 20 & 6.3 & 9.3 & 10 & 4 & 7 \\ \hline 9 - 9 - 5 & 9 - 8 & -2 & 11.5 & 10 & 10 & 4 & 7 \\ \hline 9 - 7 & 9 - 8 & 2 & 10 & 8 & 9 & 10 & 10 & 4 & 6 & 6 \\ \hline 9 - 7 & 9 - 8 & 8 & 10 & 15 & 9 & 10 & 10 & 4 & 6 & 6 \\ \hline 1 - 10 & 9 - 8 & < 2 & 11.5 & 10.5 & 10 & 4 & 7 & 7 \\ \hline 11 - 7 & 9 - 8 & < 2 & 70 & 8 & 0 & 10 & 10 & 4 & 7 \\ \hline 11 - 7 & 9 - 8 & < 2 & 70 & 8 & 0 & 10 & 10 & 4 & 7 \\ \hline \end{bmatrix}$	6 4 5 5 74 3-7 2-4 8-7 3-1 1-11	1.061 235 • • •	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.66 CLEAR SPAN Z STIRRING REBAR Z STIRRING REBAR Z STIRRING REBAR
10 <u>11-7 9-8 8 TO 15 9 10 10 4 6 0</u> 11-9 9-11 15 TO 20 10 11 11.5 4 6 0	6 4 5 5 82 4-6 2-4 10-7 3-1 1-11 6 4 6 6 85 4-7 2-5 10-8 3-1 1-11	1.184 258 ◆ ◆ 1.353 302 ◆ ◆	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8 4 5 5 87 5-8 2-7 6-10 3-2 2-0 6 4 5 5 72 5-5 2-7 6-7 3-1 1-11	1.217 321 1.630 1.05 1.36 1.49 1.055 246 1.25 1.62 1.88	<u>1.48</u> <u>1.84</u> 6 4 4 22.8 4 4 22.2 6 4 34.6
7-8 11-8 10 10 10 10 4 6 8-1 11-10 15 10 10 10 4 6 9 11-10 15 10 20 13 12 11 4 6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	• 8 4 4 23.0 5 4 28.8 7 4 44.0 1.43
$10 \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>1.78</u> 10 5 4 28.5 6 4 35.1 9 4 68.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.481 271	
10 <u>11-7.5</u> <u>11-8</u> <u>2</u> <u>TO</u> 10 <u>9.5</u> <u>10</u> <u>10</u> <u>4</u> <u>6</u> <u>11-9</u> <u>11-10</u> <u>10</u> <u>10</u> <u>10</u> <u>11</u> <u>11</u> <u>4</u> <u>6</u> <u>10</u> <u>11-10</u> <u>10</u> <u>10</u> <u>10</u> <u>11</u> <u>11</u> <u>11</u> <u>4</u> <u>6</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u> <u>10</u>	6 4 5 5 88 5-5 2-7 10-7 3-1 1-11 6 4 5 5 91 4-4 2-8 10-8 3-2 1-11	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
12-0.5 12-0 15 TO 20 12 12.5 12 4 6 8-1.5 13-8 < 2	6 5 5 91 4-7 2-10 10-10 3-4 2-6 9 4 6 6 97 5-5 3-0 6-11 3-7 2-1	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7 4 6 6 78 6-4 3-0 6-7 3-5 1-11 7 4 6 6 78 5-1 3-0 6-7 3-7 2-0 7 4 6 6 78 5-1 3-0 6-7 3-7 2-0	<u>1.256</u> <u>333</u> <u>2.28</u> <u>2.95</u> <u>3.25</u>	3.54 20 7 4 39.3 \star \star \star \star \star \star
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CONCRETE QUANTITY = 0.086 CY/LF
12 8 9-9 5 13-8 2 TO 8 9.5 10.5 10 4 7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.005 462 1.052 1.29 1.37 1.337 355 1.21 1.57 1.77 1.401 358 2.32 3.01 3.31	1.73
12 0 9-9.5 13-10 12 10 11.5 11 4 7 1 10-0.5 14-0 16 10 21.5 12 5 7 7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
12-2 13-8 < 2 13.5 12.5 10 4 9 9 11-8 13-8 2 TO 8 9.5 10.5 10 4 7 7	7 4 6 6 94 6-4 3-0 10-7 3-6 1-11	1.714 513 1.852 1.04 1.35 1.43 1.461 385 1.15 1.50 1.69	1.41 1.65 ■ 1. SIX INCH SPACING AT EACH END OF THE SPAN FOR A DISTANCE OF 1/4 OF THE SPAN
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7 4 6 6 94 5-1 3-0 10-8 3-7 2-0 7 4 7 7 97 5-1 3-2 10-8 4-0 2-0 7 4 7 7 97 5-1 3-2 10-8 4-0 2-0	1.597 456 ♦ ♦	LENGTH; 12 INCH SPACING ELSEWHERE.
12-1 14-0 16 TO 20 12.5 12 5 7 8-3.5 15-8 < 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.821 462 ◆ ◆ 1.700 479 2.074 1.10 1.43 1.48 1.720 470 1.07 1.43 1.48	↓ ↓ 1.41 1.62 2. QUANTITIES ARE GIVEN FOR ONE HEADWALL AND ONE TOEWALL AND ARE BASED
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.01 ON PER LINEAR FOOT OF HEADWALL. STEEL QUANTITIES INCLUDE ALL REINFORCING.
7-11.5 15-8 10 T0 12 11 12.5 10 4 8 1 8-15 15-8 12 T0 14 12 13.5 10 4 8 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.43 4.11 4.89 QUANTITIES SHALL BE PAID FOR AS SHOWN ON THE PLANS.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8 5 7 7 87 5-9 3-6 6-10 4-2 2-7 9 4 6 6 115 5-10 3-6 8-11 3-9 2-0	1.654 500 ● ● 1.848 502 2.074 1.12 1.46 1.60 1.461 487 1.16 1.51 1.69	
	8 4 7 7 92 7-3 3-5 8-7 3-11 1-11 8 4 7 7 92 5-9 3-5 8-7 4-0 2-0	1.509 476 1.70 2.21 2.56	1.52 1.63 3.08 4.64 ★ S. SKEWED HEADWALLS ARE NOT RECOMMENDED FOR THESE SPANS. A SPECIAL DESIGN IS REQUIRED.
14 8 <u>9-10.5</u> 15-8 8 TO 10 10.5 12 10 4 8 4 9-11.5 15-8 10 TO 12 11 12.5 10 4 8	8 4 7 7 92 5-9 3-5 8-8 4-0 2-1 8 4 7 7 92 5-9 3-5 8-9 4-1 2-1	1.630 479 2.62 3.40 3.74	4. FUR HEADWALL AND TUEWALL DETAILS SEE M-601-1, SHEET 1 UF 2.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8 5 7 7 95 5-9 3-6 8-10 4-2 2-7	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.92 • 1.42 5. WHEN THE FILL HEIGHTS ARE LESS THAN OR EQUAL TO 2 FT, ALL
11-8.5 15-8 2 TO 6 9.5 11 10 4 8 3	8 5 7 7 100 7-3 3-5 10-7 3-11 2-5	1.609 538 1.17 1.51 1.67	1.63 NAT REINFORCING BARS IN THE HEADWALL, ALL REINFORCING BARS DESIGNATED
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.705 528 2.53 3.28 3.71 1.778 530 2.40 3.11 3.20	2.77 BY AN ASTERISK (*), AND THE d ₁ BARS IN THE TOP MAT OF THE TOP SLAB 2.27 SHALL BE EPOXY COATED.
<u>12-1.5</u> <u>15-8</u> <u>12 T0 14</u> <u>12</u> <u>13.5</u> <u>10</u> <u>4</u> <u>8</u> <u>12-1.5</u> <u>15-10</u> <u>14 T0 18</u> <u>12</u> <u>13.5</u> <u>11</u> <u>5</u> <u>8</u> <u>13</u> <u>13.5</u> <u>11</u> <u>5</u> <u>8</u> <u>13</u> <u>13.5</u> <u>11</u> <u>5</u> <u>8</u> <u>13.5</u> <u>11</u> <u>5</u> <u>13.5</u> <u>11</u> <u>5</u> <u>13.5</u> <u>11</u> <u>5</u> <u>13.5</u> <u>13.5</u> <u>11</u> <u>5</u> <u>13.5</u> <u>13.5 <u>13.5</u> <u>13.5 <u>13.</u></u></u>	8 5 7 7 100 5-9 3-5 10-10 4-2 2-5 8 5 7 7 103 5-9 3-6 10-10 4-2 2-7	1.850 531 1.78 2.31 2.23 1.925 560 ◆ ◆ ◆ ◆	1.58
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8 5 7 7 90 8-3 3-10 6-8 4-0 2-3	1.979 596 2.296 1.11 1.44 1.46 1.570 522 1.02 1.32 1.36	1.37 6. REINFORCING QUANTITIES INCLUDE BOTH EPOXY-COATED AND UNCOATED BARS.
$ \begin{smallmatrix} 6 \\ \hline 7-10.5 \\ 8-0 \\ 17-8 \\ 8-0 \\ 17-8 \\ 17-8 \\ 17-8 \\ 10-6 \\ 17-8 \\ 10-10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\$	8 5 8 8 90 6-6 3-10 6-9 4-10 2-4	1.59/ 569 1.78 2.32 2.63 1.679 570 2.00 2.60 2.88 2.130 626 2.296 1.17 1.51 1.62	3.15 3.27 7. WHEN A (RISE) R OF LESS THAN 6 FT IS REQUIRED, USE THE BAR
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8 5 7 7 98 8-3 3-10 8-8 4-0 2-3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.51 1.45 3.02 (IF AVAILABLE ON THE TABLE).
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8 5 8 8 98 6-6 3-10 8-9 4-10 2-4	1.802 606 1.64 2.13 2.35 2.253 669 2.296 1.12 1.46 1.47	2.68
10 <u>11-10 17-8 2 TD 6 10.5 11.5 10 4 8 1</u> <u>11-10.5 17-8 6 TD 8 10.5 12 10 4 8</u>	8 5 8 8 106 6-6 3-10 10-8 4-9 2-5	1.817 582 1.04 1.35 1.43 1.844 639 1.59 2.06 2.26	1:38 A 8. FOR SIZE AND SPACING OF THE BOTTOM MAT BARS IN THE TOP SLAB SEE TABLE ON M-601-1, SHEET 1 OF 2. ALL DTHER d₁ BARS ARE #4's AT 1'-O'' SPACING. THE NUMBER
12-0.5 17-8 8 T0 10 11.5 13 10 4 8 1 10-8 19-8 < 2 16 16 10 4 10 1 0 10 10 10 10 10 10 10 10 10 10 10 10 10		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.36 OF BARS REQUIRED IS LISTED ON THIS SHEET AND INCLUDES BOTH #4 BARS AND
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.920 705 1.60 2.08 2.24	1.37 THOSE FROM THE TABLE.
$10 \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9 5 8 8 112 9-2 4-3 10-8 4-10 2-4	2.560 852 2.519 1.14 1.47 1.46 2.013 759 1.11 1.44 1.50 2.104 741 1.89 2.45 2.60	1.32 1.42 ◆ 9. LIVE LOAD IS NEGLECTED AS PER AASHTO LRFD SECTION 3.6.1.2.6. FOR THESE STRUCT 3.18
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2.704 741 1.09 2.740 2.00 2.734 883 2.741 1.19 1.55 1.48 2.099 754 1.00 1.29 1.25	3.16 REFER TO THE CDOT RATING MANUAL. 1.17
8 10-2 21-8 3 TO 6 12.5 13.5 10 4 9 9 10-3 21-10 6 TO 8 13 14 11 4 9	9 5 8 8 113 8-0 4-8 8-11 4-11 2-7	2.233 756 1.37 1.78 1.71 2.363 763 1.66 2.16 2.16	1.59 10. FOR ALL NEW CULVERT DESIGNS, A RATING IS REQUIRED. THE RATING SUMMARY SHEET
20 10-5.5 22-1 8 TO 10 14 15.5 12.5 4 9 9	9 5 8 8 113 8-0 4-10 9-0 5-11 2-7 10 5 8 8 210 8-0 4-9 11-2 5-2 2-10	2.628 781 1.99 2.58 2.69 2.970 980 2.759 1.14 1.48 1.41	3.02 SHOULD BE PRINTED FROM THE CDOT EXTERNAL WEBSITE AND SUBMITTED TO THE 1.29 BRIDGE RATING UNIT OR INCLUDED AS PART OF A LARGER DESIGN PACKAGE.FOR
12-0 21-8 2 TO 3 11.5 12.5 10 4 9 1 10 12-2 21-8 3 TO 6 12.5 13.5 10 4 9 1	9 5 8 8 118 8-0 4-8 10-10 4-11 2-5	2.222 789 1.01 1.31 1.33 2.356 792 1.30 1.69 1.74 0.72 0.90 1.30 1.69 1.74	1.23 ADDITIONAL INFORMATION, SEE THE CDOT RATING MANUAL.
<u>12-3.5</u> <u>21-10</u> <u>6</u> <u>10</u> <u>8</u> <u>13</u> <u>14.5</u> <u>11</u> <u>4</u> <u>9</u> <u>12-5.5</u> <u>22-1</u> <u>8</u> <u>10</u> <u>10</u> <u>14</u> <u>15.5</u> <u>12.5</u> <u>4</u> <u>9</u> <u>12-5.5</u> <u>22-1</u> <u>8</u> <u>10</u> <u>10</u> <u>14</u> <u>15.5</u> <u>12.5</u> <u>4</u> <u>9</u> <u>12-5.5</u> <u>10</u> <u>14</u> <u>15.5</u> <u>12.5</u> <u>10</u> <u>14</u> <u>15.5</u> <u>11</u> <u>15.5</u> <u>1</u>	9 5 8 8 121 8-0 4-10 10-11 5-10 2-7 9 5 8 8 121 8-0 4-10 11-0 5-11 2-7 9	2.532 810 1.80 2.34 2.40 2.782 816 2.12 2.75 2.89	2.73
Computer File Information	Sheet Revisions		
Creation Date: 07/31/19	Date: Comments	Colorado Department of Transportation	SINGLE CONCRETE BOX STANDARD PLAN NO
	(R-X)	2829 West Howard Place CDDT HQ, 3rd Floor Denver, CD 80204	M = 601 - 1
		Denver, CD 80204 Phone: 303-757-9021 FAX: 303-757-9868	CULVERT (CAST-IN-PLACE) Standard Sheet No. 2 of
		Project Development Branch JBK	Issued by the Project Development Branch: July 31, 2019 Project Sheet Number:
CAD Ver.: MicroStation V8 Scale: Not to Scale Units: English ((R-X)		

D	TOEWALL	QUANTITIES


RETE BOX	STANDARD PLAN NO.
	M-601-1
-IN-PLACE)	Standard Sheet No. 2 of 2
nt Branch: July 31, 2019	Project Sheet Number:

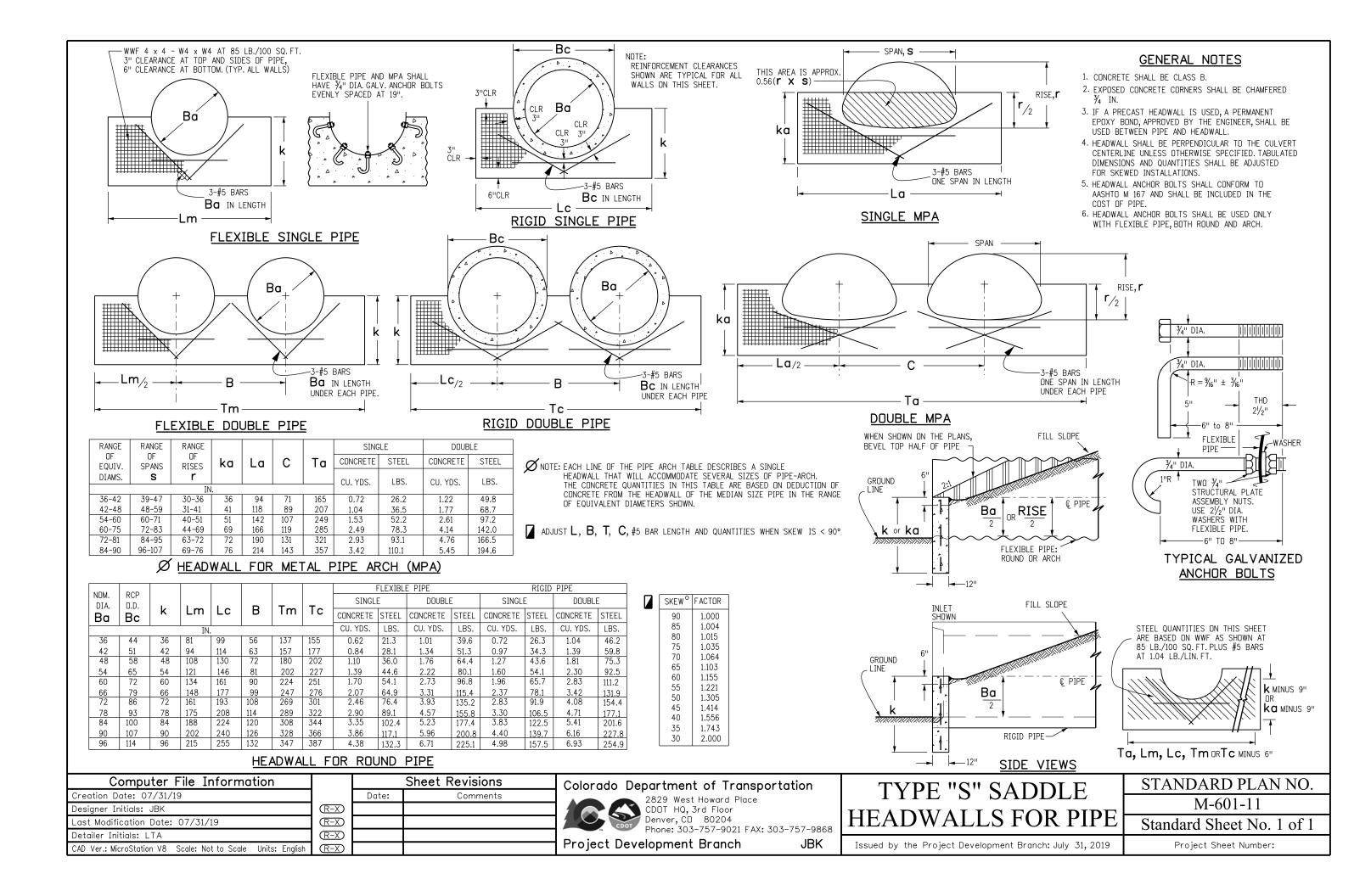
1. ALL CONCRETE SHALL BE CLASS D (BOX CULVERT). 2. ALL CONSTRUCTION JOINTS SHALL BE THOROUGHLY CLEANED BEFORE FRESH CONCRETE IS PLACED. 3. ALL CONSTRUCTION JOINTS NOT SHOWN ON THE PLANS SHALL BE CONSTRUCTED ONLY IF APPROVED BY THE ENGINEER. 4. THE CONTRACTOR SHALL MAINTAIN THE STABILITY OF THE STRUCTURE DURING CONSTRUCTION. 5. STRUCTURE EXCAVATION AND BACKFILL SHALL BE IN ACCORDANCE WITH STANDARD PLAN M-206-1. 6. FOR ANY CULVERT SPAN 20 FT. OR GREATER, A FOUNDATION INVESTIGATION AND REPORT ARE REQUIRED. 7. BACKFILL SHALL NOT BEGIN UNTIL TOP SLAB HAS REACHED DESIGN STRENGTH, f'c. 8. SPLICE QUANTITIES FOR LONGITUDINAL AND TRANSVERSE BARS ARE NOT INCLUDED. 9. REINFORCING STEEL SHALL BE GRADE 60. 10. THE MINIMUM LAP SPLICE LENGTH FOR EPOXY COATED REINFORCING BARS SHALL BE: #4 #5 #6 #7 #8 #9 #10 #11 1'-3" 1'-7" 2'-5" 2'-10" 3'-8" 4'-8" 5'-11" 7'-3" THE MINIMUM LAP SPLICE LENGTH FOR BLACK REINFORCING BARS SHALL BE: #4 | #5 #6 #7 #8 #9 #10 #11 1'-1" 1'-4" 1'-7" 1'-11'' 2'-6" 3'-1" 3'-11" 4'-10" THE ABOVE SPLICE LENGTHS ARE FOR CLASS B SPLICES 11. ALL DIMENSIONS ARE PERPENDICULAR TO THE CENTERLINE OF THE BOX. 12. WINGWALLS SHALL BE TIED TO CONCRETE BOX CULVERT IN ACCORDANCE WITH 13. ALL TRANSVERSE REINFORCING SHALL BE NORMAL TO THE CENTERLINE OF THE BOX. 14. THE FILL HEIGHT IS THE DISTANCE MEASURED FROM THE TOP OF THE TOP SLAB TO THE 16. FOR FILL HEIGHTS LESS THAN 2 FT, A WATERPROOFING MEMBRANE SHALL BE PROVIDED FOR THE TOP OF THE TOP SLAB AND 18" DOWN ALONG THE TOPS OF THE EXTERIOR WALLS. $m ar{17}$. FOR FILL HIEGHTS LESS THAN 2 FT, THE d₁ BARS FOR THE BOTTOM MAT OF THE TOP SLAB S 6, 8 10, 12, 16 14, 18 20 BAR SIZE: #4 #5 #6 #7 SPACING 0'-6" 1'-0" 1'-2" 1'-2" DESIGN DATA: 7TH EDITION, 2014, OF THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS RATING DATA: 2ND EDITION, 2011, OF THE AASHTO MANUAL FOR BRIDGE EVALUATION fy = 60,000 psi., $f_{C}^{I} = 4,500 \text{ psi.},$ LIVE LOAD = AASHTO LRFD, HL-93 TRUCK, HL-93 TANDEM, COLORADO PERMIT TRUCK AND NRL DEAD LOAD CASE 1: VERTICAL EARTH LOAD = 120 LBS./CU.FT. HORIZONTAL EARTH LOAD = 30 LBS./CU.FT. DEAD LOAD CASE 2: VERTICAL EARTH LOAD = 120 LBS./CU.FT. HORIZONTAL EARTH LOAD = 60 LBS./CU.FT WEARING SURFACE - 12 IN. THICK CONCRETE PAVEMENT. DEAD LOAD - TYPE 7 BARRIER. THRUST IS NOT CONSIDERED IN THIS STANDARD, I.E. THRUST = 0. EXTREME HEADWATER TO DEPTH RATIO IS IN ACCORDANCE WITH THE CDOT DRAINAGE MANUAL. EXTREME HEADWATER TO DEPTH RATIO WAS INCLUDED IN THE CULVERT DESIGNS BUT EXCLUDED FROM THE RATINGS AS PER THE AASHTO MANUAL FOR BRIDGE EVALUATION. LIVE LOAD SURCHARGE ON EXTERIOR WALLS = 2 FT. OF EARTH ★ IF HEADWALL MOUNT GUARDRAIL IS USED (SEE STANDARD PLAN M-606-1, SHEET 19) AND THE NOTES BELOW: - ALL REINFORCING STEEL SHALL BE ACCORDING TO THIS BOX CULVERT PLAN. - ANY SPECIAL DESIGN FOR STIRRUPS WILL NOT BE MEASURED AND PAID FOR SEPARATELY BUT SHALL BE INCLUDED IN THE WORK - HEADWALL DIMENSION AND CONCRETE QUANTITY SHALL BE ACCORDING TO STANDARD PLAN M-606-1, SHEET 19. - POST ANCHORS SHALL BE PROVIDED ACCORDING TO STANDARD PLAN M-606-1, SHEET 19. - POST ANCHORS AND CONCRETE FOR HEADWALL MOUNT OF GUARDRAIL WILL NOT BE MEASURED AND PAID FOR SEPARATELY BUT SHALL BE INCLUDED IN THE WORK. - POST ANCHORS WHEN REQUIRED AND ENCASED IN HEADWALL CONCRETE, SHALL CONFORM TO ASTM A 36 OR AASHTO M 169 STEEL. 18. SEE M-603-3 FOR PRECAST CONCRETE BOX CULVERT DETAILS. STANDARD PLAN NO. M-601-2 Standard Sheet No. 1 of 2

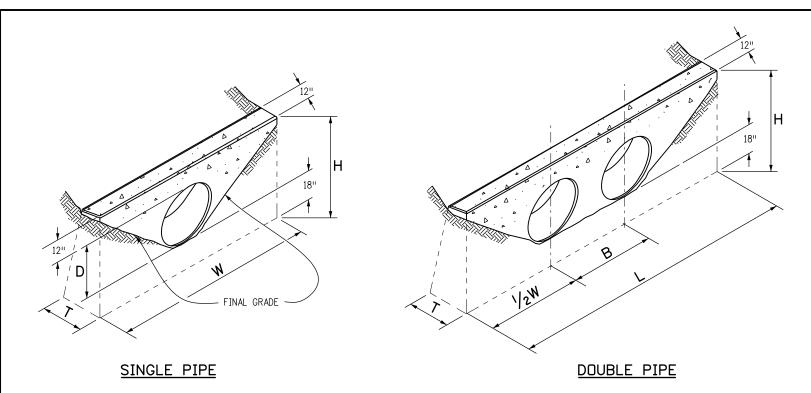

DOUBLE CONCRETE BOX CULVER	T DIMENSION	S. QUANTITIES & RAT	ING FACTORS	(EXCLUDING H	EADWALL &	TOEWALL Q	DUANTITIES)
	BAR SIZES	•		QUANTITIES		FACTORS	
S R HT. WIDTH ALLOWED THICKNESS (INHES) t1* t	2 b1 b2 w1* & w2 w3*	& w4 c1* c2 d1 [▲] h1 h2 v1	V2 V3 CONCRETE	REBAR STL MEMBRANE	HL-93 HL-93	COLORADO NRL	
FT FT FT-IN FT-FT Tt Tb TW & TWi # # 7-9 14-6 < 2		# # # NO. FT-IN	T-IN FT-IN CY/LF 3-1 1-11 1.495	LBS/LF CY/LF 338 1.944	INVENTORY OPERATIN		
6 7-7.5 14-6 2 TO 10 10 9.5 10 5 5		4 5 5 102 2-6 2-4 6-8 4 5 5 102 2-6 2-4 6-8	<u>3-1 1-11 1.428</u> 3-1 1-11 1.428	300	1.81 2.35 4.53 5.88	2.09 2.05 2.90 2.82 6.42 7.36	HEADWALL AND TOEWALL QUANTITIES
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 4 4 4	4 5 5 102 2-6 2-4 6-8 4 5 5 126 3-5 2-4 8-8	3-1 1-11 1.451 3-1 1-11 1.681	258 365 1.944			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 5 5 4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	327	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.85 2.77	HEADWALL
9-8 14-6 12.8 T0 20 10 10 10 4 5 11-9 14-6 < 2 11 10 10 5 6	5 5 5 4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	317	+.00 0.04 • •	● ● ● ●	BENT ANGLE 90° TO 75° 74° TO 60° 59° TO 45°
10 11-7.5 14-6 2 TO 10 10 9.5 10 5 5	5 5 5 4	4 5 5 136 5-5 2-4 10-8 4 5 5 126 2-6 2-4 10-8 4 5 5 126 2-6 2-4 10-8	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u> </u>	1.83 2.38 2.22 2.88	1.00 2.06 1.00 2.78 2.79 1.96	CLEAR SPAN (S) Z STIRRUPS REBAR QUANT. Z STIRRUPS REBAR QUANT. Z STIRRUPS REBAR QUANT. Z STIRRUPS REBAR QUANT.
11-8.5 14-10.5 12.8 TO 20 10 10.5 11.5 4 5	5 4 5 4	4 5 5 126 2-6 2-4 10-8	3-2 2-0 2.006	336	• •	* *	# # LBS/LF # # LBS/LF # # LBS/LF
7-10.5 18-6 < 2 12.5 10 10 5 6 7-8 18-6 2 T0 10 10 10 5 5		4 5 5 134 3-5 2-4 6-10 4 5 5 118 2-6 2-4 6-8	3-1 1-11 1.840 3-1 1-11 1.698	<u> </u>	1.20 1.56 1.47 1.90	1.76 1.65 2.19 2.15	6 4 4 20.8 4 4 20.4 6 4 31.2
6 <u>7-10</u> <u>18-6</u> <u>10 T0 15</u> <u>10</u> <u>12</u> <u>10</u> <u>5</u> <u>4</u> <u>7-11</u> <u>18-9</u> <u>15 T0 16.8</u> <u>10.5</u> <u>12.5</u> <u>11</u> <u>5</u> <u>4</u> <u>7-11</u> <u>18-9</u> <u>16.8</u> <u>T0 20</u> <u>10.5</u> <u>12.5</u> <u>11</u> <u>5</u> <u>4</u>		4 5 5 118 2-6 2-4 6-8 4 5 5 118 2-6 2-5 6-8	3-3 2-1 1.812 3-4 2-2 1.942	<u>332</u> <u>335</u> 335	2.89 3.74 3.37 4.37	4.60 4.86	8 4 4 19.9 5 4 24.3 7 4 36.2
⁰ 9-10.5 18-6 < 2 12.5 10 10 5 6		4 5 5 118 2-6 2-4 6-8 4 5 5 146 3-5 2-4 8-10	3-4 2-2 1.942 3-1 1-11 2.025	421 2.389	◆ ◆ 1.21 1.57		10 5 4 25.0 6 4 30.6 9 4 57.8
8 <u>9-8 18-6 2 TO 10 10 10 10 5 5</u> 9-10 18-6 10 TO 15 10 12 10 5 4		4 5 5 130 2-6 2-4 8-8 4 5 5 130 2-6 2-4 8-8	3-1 1-11 1.883 3-3 2-1 1.997	371 359	1.46 1.89 2.96 3.83	2.18 2.13 4.10 4.37 4.70 4.96	12 6 4 30.0 6 4 29.6 9 5 61.3
9-11 18-9 15 T0 16.8 10.5 12.5 11 5 4 9-11 18-9 16.8 T0 20 10.5 12.5 11 5 4		4 5 5 130 2-6 2-5 8-8 4 5 5 130 2-6 2-5 8-8	3-4 2-2 2.146 3-4 2-2 2.146	<u> </u>	3.44 4.46	<u>4.70</u> <u>4.96</u> ♦	14 6 4 29.7 7 4 35.7 * *
8-0.5 22-6 < 2 13.5 11 10 5 6 8-1.5 22-6 2 T0 5 13 12.5 10 5 6	6 <u>5 6 4</u> 6 5 6 4	4 5 5 134 3-5 2-4 6-11 4 5 5 134 2-6 2-4 6-11	<u>3-2</u> <u>2-0</u> <u>2.257</u> <u>3-4</u> <u>2-2</u> <u>2.326</u>	444 2.833 434	<u>1.15</u> <u>1.49</u> 1.52 1.98	1.65 1.49 1.82 1.84	16 6 4 29.0 8 5 46.7 * *
6 8-2 22-6 5 TO 10 13 13 10 5 4 8-2.5 22-9 10 TO 15 13 13.5 11 6 5	4 6 6 4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3-4 2-2 2.326 3-5 2-2 2.361 3-5 2-7 2.472	417 495	1.77 2.29 3.57 4.63	2.65 3.77 4.62 5.05	18 7 4 35.0 9 5 54.9 * *
8-5.5 23-0 15 TO 20 14 15.5 12 6 5 10-1 22-6 < 2 14 11 10 5 6		5 5 5 134 2-6 2-6 7-0 4 5 5 146 3-5 2-5 8-11	<u>3-7 2-9 2.761</u> <u>3-2 2-0 2.477</u>	501 472 2.833	<u>3.36</u> 4.36 1.22 1.58	<u>4.38</u> <u>4.52</u> 1.60 1.44	20 7 4 34.4 * * * * *
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	461	1.52 1.52 1.74 2.25	1.79 1.79 2.61 3.53	CONCRETE QUANTITY = 0.086 CY/LF
10 3 22 9 10 10 15 13 14 11 6 5 10-5.5 23-0 15 T0 20 14 15.5 12 6 5	5 6 5 5	5 5 5 146 2-6 2-5 8-11 6 5 5 146 2-6 2-5 8-11 6 5 5 146 2-6 2-6 9-0 6 9-0 6 9-0 6 9-0 9-0 6 9-0	3-5 2-7 2.711 3-7 2-9 2.983	508 588	<u> </u>	5.26 5.69 4.51 4.64	
12-2 22-6 < 2 14 12 10 5 6		6 5 5 146 2-6 2-6 9-0 4 5 5 158 3-5 2-5 10-11 4 5 5 158 2-6 2-4 10-11	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	499 2.833	1.24 1.60	1.79 1.61	
10 12-3 22-6 5 TO 10 13 14 10 5 4		4 5 5 158 2-6 2-4 10-11	3-4 2-2 2.731 3-5 2-3 2.801 3-7 2-9 3.090	<u>488</u> <u>452</u> 527	<u>1.64</u> 2.12 <u>1.72</u> 2.23 2.42 3.14	<u>1.89</u> <u>1.88</u> <u>2.58</u> <u>2.74</u>	NOTES
12-5.5 23-0 15 TO 20 14 15.5 12 6 5	6 6 4 5 5 6 6 5	5 5 5 158 2-6 2-5 11-0 5 5 5 158 2-6 2-5 11-0	3-7 2-9 3.205	567	2.11 2.73	3.18 2.25 2.64 1.86	
8-3.5 26-6 < 2 14.5 13 10 5 6 6 8-5 26-6 2 TO 5 14 15 10 5 6	6 5 6 4 6 6 6 4	4 5 5 150 3-5 2-5 7-0 4 5 5 150 2-6 2-4 7-0	3-4 2-2 2.805 3-6 2-4 2.927 3-6 2-5 2.968	500 3.278 512 488	1.16 1.51 1.22 1.59	1.51 1.59 1.43 1.54	■ 1. SIX INCH SPACING AT EACH END OF THE SPAN FOR A DISTANCE OF 1/4 OF THE SPAN
0 8-5.5 26-6 5 TO 10 14 15.5 10 6 5 8-6.5 26-9 10 TO 15 15 15.5 11 6 6	5 6 6 4 6 7 6 5	4 5 5 150 2-6 2-4 7-0 5 5 5 150 3-3 2-5 7-1	3-7 2-9 3.129	610	<u>2.10</u> <u>2.72</u> 1.86 <u>2.42</u>	<u>3.13</u> <u>3.89</u> 2.36 2.53	LENGTH; 12 INCH SPACING ELSEWHERE.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	6 <u>5 6 4</u> 6 5 6 4	4 5 5 162 3-5 2-5 9-0 4 5 5 162 2-6 2-4 9-0	3-5 2-3 3.031 3-7 2-5 3.154	528 3.278	1.16 1.51 1.22 1.58	<u>1.56</u> <u>1.59</u> 1.43 <u>1.51</u>	2. QUANTITIES ARE GIVEN FOR ONE HEADWALL AND ONE TOEWALL AND ARE BASED
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6 6 6 4 6 7 6 5	4 5 5 162 3-3 2-4 9-2 5 5 5 162 3-3 2-5 9-2	<u>3-7 2-5 3.317</u> <u>3-7 2-9 3.416</u>	515 544 644	1.70 2.21 2.83 3.67	2.16 2.39 3.54 3.80	ON PER LINEAR FOOT OF HEADWALL. STEEL QUANTITIES INCLUDE ALL REINFORCING.
	6 5 6 4 6 5 6 4	4 5 5 174 3-9 2-5 11-0 4 5 5 174 2-6 2-5 11-0	<u>3-5</u> <u>2-3</u> <u>3.298</u> <u>3-7</u> <u>2-5</u> <u>3.339</u>	556 3.278 543	1.23 1.60 1.22 1.58	1.66 1.69 1.43 1.52	QUANTITIES SHALL BE PAID FOR AS SHOWN ON THE PLANS.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3-5 2-3 3.298 3-7 2-5 3.339 3-7 2-5 3.502 3-7 2-9 3.619	571 678	1.82 2.36 2.33 3.02	2.31 2.56 2.92 2.08	\star 3. SKEWED HEADWALLS ARE NOT RECOMMENDED FOR THESE SPANS. A
8-5.5 30-6 < 2 15.5 14 10 6	7 6 7 5		3-9 2-7 3.333	766 3.722	1.15 1.49	1.54 1.53	SPECIAL DESIGN IS REQUIRED.
6 8-4.5 30-6 2 T0 5 14 14.5 10 6 7 8-6.5 30-6 5 T0 10 15.5 15 10 6	7 6 7 5 7	5 6 6 166 2-10 2-8 7-0 5 6 6 166 3-8 2-8 7-1	<u>3-10 2-8 3.238</u> <u>3-10 2-8 3.427</u>	731 770	<u>1.28</u> <u>1.66</u> <u>1.37</u> <u>1.78</u>	1.41 1.50 1.65 1.83 2.50 2.66	4. FOR HEADWALL AND TOEWALL DETAILS SEE M-601-2, SHEET 1 OF 2.
10-5.5 30-6 < 2 15.5 14 10 6	6 7 7 5 7 6 7 5	5 6 6 166 3-8 2-9 7-2 5 6 6 178 4-4 2-9 9-1	3-11 2-9 3.568 3-9 2-7 3.518	803 3.722	2.27 2.95 1.15 1.49	1.49 1.50	
14 8 10-4.5 30-6 2 TO 5 14 14.5 10 6 7 14 10-6.5 30-6 5 TO 10 15.5 15 10 6 7		5 6 6 178 2-10 2-8 9-0 5 6 6 178 3-8 2-8 9-1	<u>3-10 2-8 3.424</u> <u>3-10 2-8 3.612</u>	768 807	<u>1.26</u> <u>1.64</u> <u>1.37</u> <u>1.77</u>	1.38 1.46 1.65 1.83	 WHEN THE FILL HEIGHTS ARE LESS THAN OR EQUAL TO 2 FT, ALL REINFORCING BARS IN THE HEADWALL, ALL REINFORCING BARS DESIGNATED
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 7 7 <u>5</u> 7 6 7 5	5 6 6 178 3-8 2-8 9-2 5 6 6 190 4-4 2-9 11-1	3-9 2-7 3.703	783 839 3.722	1.46 1.90 1.15 1.50	2.09 2.27 1.46 1.48	BY AN ASTERISK ($*$), AND THE d ₁ BARS IN THE TOP MAT OF THE TOP SLAB
10 12-6.5 30-6 5 TO 7 15.5 15 10 6 5	7 <u>6 7 5</u> 5 7 7 5	5 6 6 190 2-10 2-9 11-0 5 6 6 190 3-8 2-8 11-1	3-10 2-8 3.797	809 783	1.30 1.69 1.49 1.93	<u>1.42</u> <u>1.57</u> 2.18 2.78	SHALL BE EPOXY COATED.
12-8.5 30-6 7 TO 12 16 16.5 10 7 5 8-6.5 34-9 < 2	5 7 7 5	5 6 6 190 3-8 2-8 11-2 5 6 6 182 4-4 2-9 7-1	4-0 2-10 3.985 3-9 2-8 3.882	820 825 4.194	<u>1.47 1.91</u> 1.12 1.46	<u>2.11</u> <u>2.02</u> <u>1.44</u> <u>1.44</u>	6. REINFORCING QUANTITIES INCLUDE BOTH EPOXY-COATED AND UNCOATED BARS.
8-5 34-6 2 TO 5 14 15 10 7 6	6 6 7 5 6 7 6 5	5 - 6 - 6 - 182 - 2 - 10 - 2 - 8 - 7 - 0 5 - 6 - 6 - 182 - 2 - 10 - 2 - 8 - 7 - 0	3-10 2-8 3.644 3-11 2-9 3.750 3-11 2-9 3.990	799	1.00 1.29	1.09 1.02 1.94 2.21 1.89 2.06	0. REIN DREING QUANTITIES INCLUDE DUTH EFUXT CUATED AND UNCUATED DATS.
8-7.5 34-9 7 TD 10 15.5 16 11 7 6	6 8 6 5 7 C 7 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<u>3-11</u> <u>2-9</u> <u>3.990</u> <u>3-10</u> <u>2-8</u> <u>4.103</u>	853	1.64 2.13	1.94 2.21 1.89 2.06	7. WHEN A (RISE) R OF LESS THAN 6 FT IS REQUIRED, USE THE BAR
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		5 6 6 194 4-4 2-9 9-2 5 6 6 194 2-10 2-8 9-1 5 6 6 194 2-10 2-8 9-1	3-10 2-8 4.193 3-10 2-8 3.935 3-11 2-9 4.042	864 4.194 880	<u>1.18</u> <u>1.54</u> <u>1.02</u> <u>1.32</u>	1.45 1.46 1.42 1.36 2.23 2.13	SIZES AND THE SLAB AND WALL THICKNESSES FOR THE 6 FT RISE (IF AVAILABLE ON THE TABLE).
10-8 34-9 7 TO 10 15.5 16.5 11 7 6	6 8 6 5 7 6 7 5		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	891	1.72 2.23	1.84 2.00	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	/ <u>6</u> / 5 6 7 6 5	5 6 6 206 4-4 2-9 11-2 5 6 6 206 2-10 2-8 11-1	3-10 2-8 4.397 3-10 2-8 4.174 4 4.222 4.222	901 4.194 916	1.19 1.54 1.02 1.33	1.41 1.42 1.43 1.37 2.23 2.12	▲ 8. FOR SIZE AND SPACING OF THE BOTTOM MAT BARS IN THE TOP SLAB SEE TABLE ON
12-7.5 34-6 5 T0 7 15.5 16 10 8 6 8-8 38-9 < 2	b / 6 5 B 7 8 5	5 6 6 206 2-10 2-8 11-1 5 6 6 198 4-4 2-10 7-2	3-10 2-9 4.438	918 1094 4.639	<u>1.74 2.26</u> <u>1.14 1.47</u>	1.27 1.32	M-601-2, SHEET 1 OF 2. ALL OTHER d_1 BARS ARE #4's AT 1'-O" SPACING. THE NUMBER OF BARS REQUIRED IS LISTED ON THIS SHEET AND INCLUDES BOTH #4 BARS AND
6 8-6.5 38-9 2 TO 5 15 15.5 11 8 8 8-7.5 38-9 5 TO 7 15.5 16 11 8 8	8 8 8 5 8 8 8 5	5 6 6 198 3-8 2-9 7-1 5 6 6 198 3-8 2-9 7-1 5 6 6 198 3-8 2-9 7-1 5 6 6 210 4-4 2-9 9-3	3-11 2-9 4.259 3-11 2-9 4.378	1153 1153	1.32 1.71 2.23 2.89	1.73 1.65 2.57 2.58	THOSE FROM THE TABLE.
10-9 38-9 < 2 17.5 15.5 11 7 8 18 8 10-7 38-9 2 T0 5 16 11 8 5	8 7 8 5 9 8 9 5	5 6 6 210 4-4 2-9 9-3 5 6 6 210 3-8 2-9 9-1	3-10 2-9 4.762 3-11 2-9 4.522	1132 4.639 1302	<u>1.19</u> <u>1.55</u> <u>1.47</u> <u>1.90</u>	1.28 1.33	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9 8 9 5 8 7 8 5	5 6 6 210 3-8 2-9 9-1 5 6 6 222 4-4 2-9 11-3	3-11 2-9 4.522 3-10 2-9 4.965	1302 1302 1168 4.639	2.20 2.85 1.16 1.51	2.45 2.46	♦ 9. LIVE LOAD IS NEGLECTED AS PER AASHTO LRFD SECTION 3.6.1.2.6. FOR THESE STRUCTURES REFER TO THE CDOT RATING MANUAL.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3-11 3-1 4.726	1404 1404	1.10 1.53 2.20 2.85	1.78 1.88	
<u>6 8-10 43-0 < 2 18 16 12 8 5</u>	9 8 9 6	6 7 7 214 5-0 3-3 7-3	4-3 3-1 5.179	1546 5.111	1.16 1.51	1.22 1.31	10. FOR ALL NEW CULVERT DESIGNS, A RATING IS REQUIRED. THE RATING SUMMARY SHEET SHOULD BE PRINTED FROM THE CDOT EXTERNAL WEBSITE AND SUBMITTED TO THE
0 0 10-10 43-0 < 2 18 16 12 8	9 8 9 6 9 8 9 6	6 7 7 226 5-0 3-3 9-3	4-4 3-1 5.401	1480 1595 5.111	1.48 1.91 1.14 1.48 1.52 1.97	1.51 1.70 1.16 1.24	BRIDGE RATING UNIT OR INCLUDED AS PART OF A LARGER DESIGN PACKAGE.FOR
10 12-10.5 43-0 < 2 18 16.5 12 8 5	9 8 9 6	6 7 7 226 4-3 3-3 9-1 6 7 7 238 5-0 3-3 11-3	4-4 3-2 5.690	1595 5.111 1528 1645 5.111	1.16 1.50	1.46 1.68 1.20 1.28	ADDITIONAL INFORMATION, SEE THE CDOT RATING MANUAL.
10 12-7.5 43-0 2 TO 5 15.5 16 12 8 9 8 9 6 6 7 7 238 5-4 3-3 11-1 4-4 3-1 5.292 1585 1.52 1.97 1.43 1.64							
Computer File Information		Sheet Revisions	Colorado Den	artment of Transp	portation	DOUD	STANDARD PLAN NO.
Creation Date: 07/31/19	Date:	Comments		2829 West Howard Place		DOUB	
Designer Initials: JBE	(R-X)			CDAT HQ. 3rd Floor			RT (CAST-IN-PLACE) M-601-2 Standard Sheet No. 2 of 2
Last Modification Date: 07/31/19	(R-X)		CDOT	Denver, CO 80204 Phone: 303-757-9021 FAX	(: 303-757-9868		Standard Sheet No. 2 of 2
Detailer Initials: LTA	R-X			opment Branch	JBK	Issued by the	Project Development Branch: July 31, 2019 Project Sheet Number:
CAD Ver.: MicroStation V8 Scale: Not to Scale Units: English	(R-X)						

RETE BOX	STANDARD PLAN NO.					
	M-601-2					
-IN-PLACE)	Standard Sheet No. 2 of 2					
nt Branch: July 31, 2019	Project Sheet Number:					

<u>GENERAL</u>	<u>NOTES</u>							
ETE SHALL BE CLASS D (BOX CU								
	DUGHLY CLEANED BEFORE FRESH CONCRETE IS PLACED. THE PLANS SHALL BE CONSTRUCTED							
	BILITY OF THE STRUCTURE DURING CONSTRUCTION.							
	LL BE IN ACCORDANCE WITH STANDARD PLAN M-206-1.							
CULVERT SPAN 20 FT.OR GREATE RT ARE REQUIRED.	,							
	B HAS REACHED DESIGN STRENGTH, f'c.							
ANTITLES FUR LUNGITUDINAL AND NG STEEL SHALL BE GRADE 60.	TRANSVERSE BARS ARE NOT INCLUDED.							
	XY COATED REINFORCING BARS SHALL BE:							
: #4 #5 #6	#7 #8 #9 #10 #11							
ENGTH: 1'-3" 1'-7" 2'-								
UM LAP SPLICE LENGTH FOR BLA : #4 #5 #6	CK REINFORCING BARS SHALL BE: #7 #8 #9 #10 #11							
ENGTH: 1'-1" 1'-4" 1'-								
SPLICE LENGTHS ARE FOR CLAS								
SIONS ARE PERPENDICULAR TO TH								
SHALL BE TIED TO CONCRETE BOX CULVERT IN ACCORDANCE WITH PLAN M-601-20.								
/ERSE REINFORCING SHALL BE NORMAL TO THE CENTERLINE OF THE BOX. EIGHT IS THE DISTANCE MEASURED FROM THE TOP OF THE TOP SLAB TO THE VEMENT.								
ED CONCRETE CORNERS SHALL BE	CHAMFERED 3/4 IN.							
IEGHTS LESS THAN 2 FT, A WATERPROOFING MEMBRANE SHALL BE PROVIDED FOR THE TOP SLAB AND 18" DOWN ALONG THE TOPS OF THE EXTERIOR WALLS.								
IEGHTS LESS THAN 2 FT. THE d $_1$ BARS FOR THE BOTTOM MAT OF THE TOP SLAB								
S FOLLOWS:								
#5 #6 #7 1'-0'' 1'-0'' 1'-0''								
TA: 7TH EDITION, 2014, OF THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS								
TA: 2ND EDITION, 2011, OF THE AASHTO MANUAL FOR BRIDGE EVALUATION								
fy= 60,000 psi., <u>ATA:</u> f' _c = 4,500 psi., = AASHTO LRFD, HL-93 TRUCK, HI	L-93 TANDEM, COLORADO PERMIT TRUCK AND NRL							
CASE 1: VERTICAL EARTH LOAD	= 120 LBS./CU.FT.							
HORIZONTAL EARTH LOAD CASE 2: VERTICAL EARTH LOAD								
CASE 2: VERTICAL EARTH LOAD HORIZONTAL EARTH LOAD SURFACE - 12 IN. THICK CONCRETE								
– TYPE 7 BARRIER.								
NOT CONSIDERED IN THIS STAN	DARD, I.E. THRUST = 0. N ACCORDANCE WITH THE CDOT DRAINAGE MANUAL.							
EADWATER TO DEPTH RATIO WAS	INCLUDED IN THE CULVERT DESIGNS BUT AASHTO MANUAL FOR BRIDGE EVALUATION.							
SURCHARGE ON EXTERIOR WALLS								
LL MOUNT GUARDRAIL IS USED (S	EE STANDARD PLAN M-606-1,							
	CORDING TO THIS BOX CULVERT PLAN.							
SPECIAL DESIGN FOR STIRRUPS W RATELY BUT SHALL BE INCLUDED	/ILL NOT BE MEASURED AND PAID FOR IN THE WORK.							
WALL DIMENSION AND CONCRETE C . BE ACCORDING TO STANDARD PL								
ANCHORS SHALL BE PROVIDED ACCORDING TO ARD PLAN M-606-1, SHEET 19.								
ANCHORS AND CONCRETE FOR HEADWALL MOUNT JARDRAIL WILL NOT BE MEASURED AND PAID								
ANCHORS WHEN REQUIRED AND E	EPARATELY BUT SHALL BE INCLUDED IN THE WORK. ANCHORS WHEN REQUIRED AND ENCASED IN HEADWALL CONCRETE, CONFORM TO ASTM A 36 OR AASHTO M 169 STEEL.							
-3 FOR PRECAST CONCRETE BOX								
RETE BOX	STANDARD PLAN NO.							
	M-601-3							
Γ-IN-PLACE)	Standard Sheet No. 1 of 2							
ent Branch: July 31 2019	Project Sheet Number:							

TRIPLE CONCRETE BOX CULVERT	DIMENSION	NS, QUANTITIES & RATI	ING FACTORS (EXCLUDING HEADWA	L & TOEWALI	L QUANTITIES)	
BOX SIZE FIL HEIGHT ALLOWED SLAB & WALL THICKNESS (INCHES) S R HT. WIDTH ALLOWED FT FT FT-IN FT-FT T+ Tb	BAR SIZES		QUANTITIES RATING FAC			
S R HT. WIDTH ALLOWED INICKNESS (INCHES) t1* t2 b1 FT FT FT-IN FT-IN FT-FT Tt Tb TW&TW # # #	b2 w1* & w2 w3* & w4 # # # #	<u>c1</u> [*] c2 ⁻¹ h1 h2 v1 v2 v3		DLORADO NRL PERMIT VEHICLE		
7-10.5 27-4 < 2 12.5 10 10 5 6 5 7-9.5 27-4 2 10 8 10.5 11 10 4 5 4 8-0 27-4 8 10 12 11 13 10 4 5 4	6 4 4 5 4 4	5 5 168 3-5 2-4 6-10 2-4 1-11 5 5 168 2-6 2-4 6-8 3-2 2-0	2.639 531 3.370 1.21 1.57 2.555 429 1.47 1.90 2.765 432 3.38 4.39 2.765 462 6.80 8.81 2.765 482 1.69 2.19	1.82 1.69 2.07 1.83		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.765 432 3.38 4.39 2.765 462 6.80 8.81	4.80 5.22 9.35 8.63		
	4 5 5	5 5 168 2-4 2-4 6-9 3-5 2-2 5 5 168 2-6 2-4 6-11 2-4 2-3	2.765 482 1.69 2.19 3.061 523 6.80 8.82	3.35 3.05 2.20 2.27 8.50 5.95		
8	6 5 5	5 5 168 3-3 2-6 6-11 3-6 2-4 5 5 184 3-5 2-4 8-10 3-1 1-11	3.300 587	0.50 5.55 ◆ ◆		
9-9.5 27-4 2 TD 8 10.5 11 10 4 5 4	5 4 4	5 5 104 3-5 2-4 8-8 3-2 2-0	2.801 461 1.46 1.89	1.82 2.00 1.82 1.05	<u>HEADWALL AND TOEWALL QU</u>	ANTITES
8 10-0 27-4 12 TO 16 11 13 10 5 4 4	5 4 4 5 4 4	5 5 184 2-6 2-4 8-9 5-4 2-2 5 5 184 2-6 2-4 8-9 2-4 2-2	3.012 464 3.45 4.47 3.012 460 2.53 3.27 3.350 490 3.07 3.98	4.89 5.12 3.47 3.73		
10-4 27-4 16 TŪ 20 13.5 14.5 10 5 4 5 10-4 27-6 20 TŪ 25.9 13.5 14.5 10.5 5 6 5	5 4 4 5 6 6	5 5 184 3-3 2-4 8-11 3-5 2-2 5 5 184 3-3 2-4 8-11 3-6 2-3	3.414 675 1.78 2.32	<u>3.84</u> 2.72 2.23 1.56	HEADWALL BENT ANGLE 90° TO 75° 7	'4° TO 60° 59° TO 45°
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7 5 5	5 5 184 3-3 2-6 8-11 3-6 2-4 5 5 192 3-5 2-4 6-11 3-1 1-11 5 5 192 2-6 2-4 6-9 2-4 1-11	3.584 578 ◆ ◆ 3.210 796 4.037 1.20 1.55	◆ ◆ 1.44 1.37		
6 7-9 33-4 2 10 8 11 10 10 6 7 6 6 8-1 33-4 8 T0 12 11.5 13.5 10 5 7 5	7 <u>5</u> 5 7 5 5	5 5 192 2-6 2-4 6-9 2-4 1-11 5 5 192 2-6 2-4 6-9 3-4 2-2	2.901 774 1.56 2.02 3.313 721 2.81 3.65	<u>1.81</u> <u>1.73</u> 3.73 4.04	(S) Z STIRRUPS QUANT. Z STIR	RUPS QUANT. Z STIRRUPS QUANT.
8-2.5 33-4 12 TO 16 12 14.5 10 6 6 5 8-6 33-4 16 TO 22 14 16 10 6 5 6	7 <u>5</u> 5 555	<u>5 5 192 2-6 2-4 6-10 3-7 2-4</u> 5 5 192 2-6 2-4 7-0 3-7 2-5	3.827 658 2.44 3.17	<u>3.58</u> <u>3.84</u> 3.04 <u>3.14</u>	# # LBS/LF # #	# LBS/LF # # LBS/LF
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7 <u>5 5</u> 7 5 5	5 5 208 3-5 2-4 8-11 3-1 1-11 5 5 208 2-6 2-4 8-9 2-4 2-0	<u>3.519</u> 8404.0561.201.56 3.405817 1.6521.14	1.40 1.33 2.44 2.39	8 4 4 19.2 5 4	
10 8 10-1 33-4 6 TO 8 11.5 13.5 10 5 7 5 10-1 33-4 8 TO 12 11.5 13.5 10 5 7 5	7 <u>5 5</u> 7 5 5	5 5 208 2-6 2-4 8-9 3-3 2-0 5 5 208 2-6 2-4 8-9 3-5 2-2	<u>3.560</u> <u>760</u> <u>3.11</u> <u>4.04</u> <u>3.560</u> <u>763</u> <u>2.85</u> <u>3.69</u>	3.99 4.60 3.76 4.07	10 5 4 23.9 6	
<u>10-5</u> <u>33-4</u> <u>12 TD 16</u> <u>13.5</u> <u>15.5</u> <u>10</u> <u>5</u> <u>7</u> <u>5</u> 10-6 <u>33-4</u> <u>16 TD 22</u> <u>14</u> <u>16</u> <u>10</u> <u>6</u> <u>7</u> <u>6</u>	7 <u>5 5</u> 7 5 5	5 5 208 2-6 2-4 8-9 3-5 2-2 5 5 208 2-6 2-4 8-11 3-7 2-4 5 5 208 2-6 2-4 8-11 3-7 2-4 5 5 208 2-6 2-4 9-0 3-7 2-5	3.971 768 3.36 4.36 4.074 831 2.37 3.08	4.60 4.04 2.93 2.10		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7 5 5	5 5 224 3-5 2-4 10-11 2-4 1-11 5 5 224 2-6 2-4 10-9 3-2 2-0	<u>3.778</u> 879 4.056 <u>1.17</u> <u>1.52</u> <u>3.623</u> 864 <u>1.65</u> 2.14	1.36 1.30 2.15 2.06		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	7 5 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.904 808 3.09 4.10 4.012 675 1.68 2.17 4.205 812 1.59 2.06	<u>3.92</u> 2.10 1.50		
12-5 33-6 14 TO 16 13.5 15.5 10.5 5 7 5 12-6 34-0 16 TO 22 14 16 12 6 7 6	7 5 5	5 5 224 2-6 2-4 10-11 3-7 2-4 6 6 224 2-10 2-8 11-0 2-4 2-5	4.295 812 1.59 2.06 4.630 914 1.40 1.82	1.99 1.41 1.75 1.24		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7 5 5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.826 905 4.722 1.03 1.33 3.564 881 1.34 1.74	<u>1.14</u> <u>1.15</u> <u>1.46</u> <u>1.55</u>		5 51.8 * * *
$\begin{bmatrix} 7-11.5 & 39-4 & 2 & 10 & 4 & 12.5 & 11 & 10 & 6 & 7 & 6 \\ \hline 8-2 & 39-4 & 4 & TO & 8 & 13.5 & 12.5 & 10 & 5 & 7 & 5 \\ \hline 8-6.5 & 39-4 & 8 & TO & 10 & 14.5 & 16 & 10 & 5 & 7 & 5 \end{bmatrix}$	7 5 5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>3.394</u> <u>861</u> <u>1.34</u> <u>1.74</u> <u>3.897</u> <u>818</u> <u>1.10</u> <u>1.42</u> <u>4.443</u> <u>823</u> <u>2.22</u> <u>2.88</u>	1.46 1.55 1.27 1.36 2.82 3.06	20 7 4 32.8 *	* * * * *
0 8-6.5 39-4 8 10 10 14.5 10 10 5 7 5 8-8 39-6 10 T0 12 16 16 10.5 6 5 6 9-8 30 12 T0 16 16 10.5 6 5 6	, <u> </u>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.443 823 2.22 2.88 4.679 735 3.48 4.51 4.733 745 2.48 3.22	<u>4.97</u> <u>5.27</u> <u>3.40</u> <u>3.59</u>	CONCRETE QUANTITY	= 0.086 CY/LF
8-8 39-8 12 10 16 16 16 11 6 5 6 8-11 39-8 16 T0 18 17 18 11 6 5 6		5 5 216 3-3 2-5 7-2 3-7 2-5 5 5 216 3-3 2-4 7-3 3-9 2-7	4./33 /45 2.48 3.22 5.100 748 2.09 2.71	2.79 2.86		
$12 \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7 5 5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4.146 984 4.722 1.07 1.39 3.841 923 1.31 1.70	1.19 1.20 1.44 1.52	<u>NOTES</u>	
10-9.5 39-8 8 TO 12 16 17.5 11 5 5 5	5 5 5 5 5 5	5 5 232 2-6 2-4 8-11 2-4 2-2 5 5 232 3-3 2-5 9-2 3-9 2-6	4.205 695 1.15 1.50 5.188 716 2.51 3.26	1.34 1.43 2.93 3.11		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 5 5 7 5 5	<u>5 5 232 3-3 2-5 9-3 3-9 2-7</u> <u>6 6 248 4-4 2-8 11-1 2-8 2-0</u>	<u>4.588</u> <u>1030</u> <u>4.722</u> <u>1.11</u> <u>1.44</u>	2.63 2.71 1.23 1.24		SPAN FOR A DISTANCE OF 1/4 OF THE SPAN
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7 <u>5</u> <u>5</u> 5 <u>5</u> <u>5</u>	<u>5 5 248 2-6 2-4 10-10 3-2 2-0</u> <u>5 5 248 2-6 2-4 10-11 2-4 2-4</u>	4.585 1050 4.722 1.11 1.44 4.087 964 1.30 1.69 4.694 739 1.60 2.07	1.43 1.50 2.17 2.61	LENGTH; 12 INCH SPACING ELSEWHERE.	
12-9.5 39-8 8 TO 12 16 17.5 11 5 5 5 12-11 39-8 12 TO 18 17 18 11 6 5 6	5 <u>5</u> <u>5</u> 5 <u>5</u> <u>5</u>	<u>5 5 248 3-3 2-5 11-2 3-9 2-6</u> <u>5 5 248 3-3 2-5 11-3 3-9 2-7</u>	5.459 757 2.57 3.34 5.643 832 1.36 1.77	3.00 3.06 1.70 1.21	2. QUANTITIES ARE GIVEN FOR ONE HEADWALL	AND ONE TOEWALL AND ARE BASED
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8 <u>5</u> 5 8 5 5	5 5 240 3-9 2-4 7-1 3-2 2-0 5 5 240 2-6 2-4 6-11 3-3 2-1	4.569 1243 5.389 1.00 1.30 4.239 1196 1.31 1.69	1.10 1.12 1.67 1.69	ON PER LINEAR FOOT OF HEADWALL. STEEL	
6 8-1 45-4 2 T0 4 13 12 10 7 8 7 8-2 45-4 4 T0 8 13 13 10 7 8 7 8-5 45-8 8 T0 12 14 15 11 7 8 7	8 5 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<u>4.379 1193 1.98 2.57</u> <u>4.902 1242 3.51 4.54</u>	2.82 2.90 3.93 4.17	QUANTITIES SHALL BE PAID FOR AS SHOWN	
$14 \begin{bmatrix} 0 & -2 & +3 & -4 & -7 & -10 & -10 & -10 & -10 & -7 & -8 & -7 \\ -8 & -5 & 45 & -8 & 8 & -70 & -10 & -11 & -10 & -7 & -8 & -7 \\ -10 & -3 & 5 & 45 & -6 & -5 & -2 & -16 & -11 & -5 & -7 & -8 & -7 \\ -10 & -1 & 45 & -4 & -7 & -8 & -7 & -10 & -7 & -8 & -7 \\ -10 & -2 & 45 & -4 & 4 & -70 & -8 & -13 & -12 & -10 & -7 & -8 & -7 \\ \hline \end{array}$	8 5 5 8 5 5 8 5 5	6 6 240 2-10 2-9 7-0 3-10 2-4 5 5 256 3-9 2-4 9-1 3-2 2-0 5 5 256 3-9 2-4 9-1 3-2 2-0 5 5 256 2-6 2-4 8-11 3-3 2-1	4.899 1284 5.389 1.04 1.35 4.486 1237 1.43 1.86	1.14 1.16 1.63 1.65		
14 8 10-2 45-4 4 10 8 13 13 10 7 8 7 10-5 46-0 8 T0 12 14 15 12 7 8 7	8 5 5	5 5 256 2-6 2-4 8-11 3-4 2-2 6 6 256 2-10 2-10 9-0 2-4 2-4	4.626 1238 2.10 2.73	2.76 3.95 4.19	★ 3. SKEWED HEADWALLS ARE NOT RECOMMENDE SPECIAL DESIGN IS REQUIRED.	D FUR THESE SPANS. A
12-4.5 45-6 < 2 16.5 12 10.5 7 8 7		5 5 272 3-9 2-4 11-2 3-2 2-1 5 5 272 2-6 2-4 10-11 3-3 2-1	5.299 1328 5.389 1.07 1.39 4.733 1278 1.41 1.83	1.18 1.20 1.61 1.62		
¹⁰ <u>12-2</u> 45-4 <u>4</u> TO 8 <u>13</u> <u>13</u> <u>10</u> <u>7</u> <u>8</u> <u>7</u>	8 5 5	5 5 272 2-6 2-4 10-11 3-4 2-2 6 6 272 2-10 2-10 11-0 3-11 2-4	4.872 1280 1.15 2.53 5.670 1561 3.77 4.89	2.62 2.81 4.56 3.99	4. FOR HEADWALL AND TOEWALL DETAILS SEE	M-601-3, SHEET 1 DF 2.
	0 5 5	6 6 264 4-4 2-8 7-2 2-4 2-1	E 787 1410 E 056 1 07 1 30	1.13 1.18 1.71 1.77	5. WHEN THE FILL HEIGHTS ARE LESS THAN (ΤΡ ΕΛΙΙΔΙ ΤΟ 2 ΕΤ ΔΙΙ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8 5 5 8 5 5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4,781 1359 1.25 1.62 4,860 1361 1.64 2.13 5,000 1361 1.75 0.07	1.51 1.57 1.75 1.77	REINFORCING BARS IN THE HEADWALL, ALL	REINFORCING BARS DESIGNATED
8-51-5 51-4 6 10 6 13.5 14 10 7 8 7 8-6 51-8 8 TO 10 14.5 15.5 11 7 8 7	8 5 5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5.096 1061 1.75 2.27 5.599 1377 2.06 2.68 5.591 145 145 147	1.67 1.92 2.21 2.28 1.02 1.17	BY AN ASTERISK (*), AND THE d1 BARS I	IN THE TOP MAT OF THE TOP SLAB
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.647 1455 6.056 1.02 1.33 5.265 1406 1.31 1.70 5.265 1406 1.33 1.62	1.08 1.13 1.38 1.44	SHALL BE EPOXY COATED.	
	8 5 5	<u>6 6 280 2-10 2-8 9-0 3-8 2-2</u> <u>6 6 280 2-10 2-8 9-0 3-10 2-4</u>	5.203 1400 1.57 2.03 5.503 1410 2.01 2.61 5.600 1510 150 150	1.0/ 1./0 2.15 2.21 2.13 2.01	6. REINFORCING QUANTITIES INCLUDE BOTH E	POXY-COATED AND UNCOATED BARS.
	8 5 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.065 1500 6.056 1.06 1.37	<u>2.13</u> <u>2.21</u> <u>1.12</u> <u>1.16</u>		
	8 5 5 8 5 5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5.512 1452 1.30 1.68 5.512 1452 1.54 2.00 5.829 1455 2.24 2.91 6.301 1469 2.35 3.05	1.36 1.43 1.64 1.68	7. WHEN A (RISE) R OF LESS THAN 6 FT IS I	
12-5 51-4 6 10 8 14 15 10 7 8 7 12-7 51-8 8 TO 10 15 16 11 7 8 7	8 5 5 8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.829 1455 2.24 2.91 6.301 1469 2.35 3.05	2.50 2.57 2.52 2.61	SIZES AND THE SLAB AND WALL THICKNES: (IF AVAILABLE ON THE TABLE).	SES FUR THE OFT RISE
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	8 5 5 8 5 5	/ 7 288 5-0 3-1 7-2 2-4 2-1 6 6 288 3-8 2-8 7-1 3-9 2-3	6.191 1589 6.722 1.07 1.39 5.872 1499 1.15 1.50 6.243 1507 1.50 1.94	1.09 1.16 1.15 1.25	Ŷ,	
		6 6 288 3-8 2-9 7-1 3-10 2-4 6 6 288 3-8 2-9 7-2 4-0 2-6	6.688 1512 1.91 2.48	1.52 1.57 1.98 2.04	▲ 8. FOR SIZE AND SPACING OF THE BOTTOM M	
18 10-6.5 57-6 < 2 17 13.5 10.5 7 8 7 18 8 10-5 57-4 2 10 4 15 14 10 7 8 7	8 5 5 8 5 5	7 7 304 5-0 3-1 9-2 4-1 2-1 6 6 304 3-8 2-8 9-1 2-4 2-3	6.450 1653 6.722 1.02 1.33 6.119 1535 1.13 1.46	1.05 1.11 1.13 1.22	M-601-3, SHEET 1 OF 2. ALL OTHER d ₁ BAR OF BARS REQUIRED IS LISTED ON THIS SH	S ARE #4's AT 1'-0'' SPACING. THE NUMBER
10-9 57-8 6 TO 8 16 17 11 7 8 7	8 5 5 8 5 5	6 6 304 3-8 2-9 9-1 3-10 2-4 6 6 304 3-8 2-9 9-2 4-0 2-6	6.960 1557 1.88 2.44	1.47 <u>1.52</u> 1.93 <u>1.99</u>	THOSE FROM THE TABLE.	THE THEORES DOLLI # T DAILS AND
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8 5 5	7 7 320 5-0 3-1 11-2 4-1 2-2 6 6 320 3-8 2-8 11-1 3-9 2-3	6.798 1703 6.722 1.06 1.38 6.366 1589 1.11 1.44 6.787 1588 1.41 1.83	1.08 1.15 1.11 1.20		
	8 5 5	6 6 320 3-8 2-9 11-1 2-4 2-4 6 6 320 3-8 2-9 11-2 4-0 2-6		<u>1.43</u> <u>1.49</u> <u>1.90</u> <u>1.97</u>		LRFD SECTION 3.6.1.2.6. FOR THESE STRUCTURES
8-8 63-8 < 2 18 14 11 8 9 8 6 8-8 63-8 2 10 4 16 10 11 7 8 7	9 6 6	7 7 312 5-0 3-2 7-3 4-2 2-6	7.10.3 2195 7.407 1.00 1.30	1.00 1.07 1.13 1.25	REFER TO THE CDOT RATING MANUAL.	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8 5 5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7.103 1798 1.14 1.47 7.103 1798 1.61 2.09 7.473 2259 7.407 1.02 1.33	<u>2.00</u> <u>2.27</u> 1.02 1.09		IS REQUIRED. THE RATING SUMMARY SHEET
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8 5 5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7.374 1684 1.14 1.48 7.374 1843 1.83 2.38	<u>1.10</u> <u>1.22</u> 2.08 2.21	SHOULD BE PRINTED FROM THE COOT EXTE	RNAL WEBSITE AND SUBMITTED TO THE
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9 6 6	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7.374 1843 1.83 2.38 7.843 2335 7.407 1.06 1.37 7.646 1729 1.12 1.46	<u>1.05</u> <u>1.13</u>	BRIDGE RATING UNIT OR INCLUDED AS PAR ADDITIONAL INFORMATION, SEE THE CDOT R	
10 <u>12-8</u> <u>63-8</u> <u>2 10 4</u> <u>16</u> <u>10</u> <u>11</u> <u>7 6</u> <u>7</u> <u>12-8</u> <u>63-8</u> <u>4 TO 6</u> <u>16</u> <u>16</u> <u>11</u> <u>8 8 8</u>	8 5 5	<u>6 6 344 3-8 2-9 11-2 2-4 2-5</u>	7.646 1729 1.12 1.46 7.646 1878 1.87 2.43	2.05 2.18		
Computer File Information		Sheet Revisions	Colorado Department of Transportatio			STANDARD PLAN NO.
Creation Date: 07/31/19	Date:	Comments			PLE CONCRETE BOX	
Designer Initials: JBE	(R-X)		2829 West Howard Place CDDT HQ, 3rd Floor Denver, CD 80204 Phone: 303-757-9021 FAX: 303-757			M-601-3
Last Modification Date: 07/31/19	(R-X)		Denver, CD 80204		/ERT (CAST-IN-PLACE)	Standard Sheet No. 2 of 2
Detailer Initials: LTA	(R-X)		Protect Development Drawsh	3000		
CAD Ver.: MicroStation V8 Scale: Not to Scale Units: English	(R-X)		Project Development Branch	SK Issued by	the Project Development Branch: July 31, 2019	Project Sheet Number:




T 1411	11010110						Q (),		, ,	
сг	V	٨	X 1	۸.		В	CONC	RETE	STE	EL 🔳
SE N.	X FTIN.	A IN.	~1 FTIN.	IN.	A1 IN. FTIN.		SGL CU. YD.	DBL CU. YD.	SGL LBS.	DBL LBS.
9 3	10-9 11-3	81/2 111/2	20-6 21-6	7 7		171/2 101/2		5.10 5.34	250 275	467 531
7 1	11-9 12-7	81/2 71/2	22-10 24-2	9 11	9-11 10-3	121/2 15	3.08 3.30	5.79 6.21	290 321	547 591
59	13-4 13-9	12 8½	25-8 26-6	8 7	10-7 10-11	16 /2 9 /2	3.52 3.63	6.65 6.86	314 356	606 672
3	14-8	8	28-4	12	11-3	111/2	3.96	7.51	376	699

)	75	70	65	60	55	50	45	40	35	30
5	1.035	1.064	1.103	1.155	1.221	1.305	1.414	1.556	1.743	2.000

5	1.035	1.064	1.103	1.155	1.221	1.305	1.414	1.556	1.743	2.000	
	<u>SKE</u>	WF	ACT	<u>JR T</u>	ABLE	-					

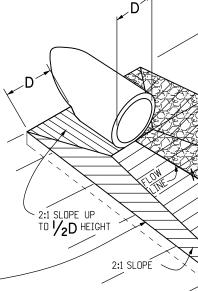
ALL	STANDARD PLAN NO.
	M-601-10
PES	Standard Sheet No. 1 of 1
ent Branch: July 31, 2019	Project Sheet Number:

CONCRETE HEADWALL INSTALLATIONS SEE STANDARD PLAN M-601-10 FOR REINFORCING DETAILS.

זח	DE		PIPE DIAMETER (AND EQUIVALENT DIAMETER) (IN.)										
PI	PE	1	.8	24		30		36		42			48
TYPE	MATERIAL	SINGLE	DOUBLE	SINGLE	DOUBLE	SINGLE	DOUBLE	SINGLE	DOUBLE	SINGLE	DOUBLE	SINGLE	DOUBLE
	RIGID	1.0	1.3	1.5	2.0	2.0	2.7	2.8	3.6	3.6	4.6	4.6	6.0
CIRCULAR FLEXIBLE		1.1	1.4	1.6	2.1	2.2	3.0	3.0	4.0	3.9	5.3	5.0	6.8
ELLIPTICAL	DICID	23 >	< 14	30 >	< 19	38 >	: 24	45 >	< 29	53 x	: 34	60 ×	38
ELLIFTICAL	RIGID	0.9	1.2	1.3	1.6	1.7	2.2	2.3	2.9	2.9	3.7	3.5	4.4
ARCH	METAL	22 >	22 x 13		29 x 18		22	43 x 27		50 >	< 31	58 >	36
	WIE LAL	0.9	1.3	1.4	1.9	1.8	2.4	2.4	3.4	3.2	4.4	3.4	5.0

CONCRETE QUANTITIES FOR ONE CONCRETE HEADWALL (CUBIC YARDS)

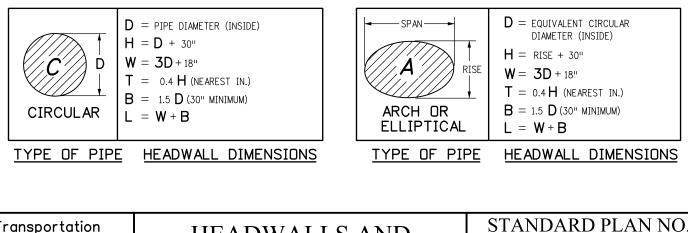
THICKNESS	MATERIAL PIPE DIAMETER (IN.)								
michiless		18	24	30	36	42	48		
4"	CONCRETE	0.4	0.8	1.2					
6"	CONCRETE				2.6	3.6	4.7		
18"	RIPRAP	2.0	3.5	5.4	7.8	10.7	13.9		

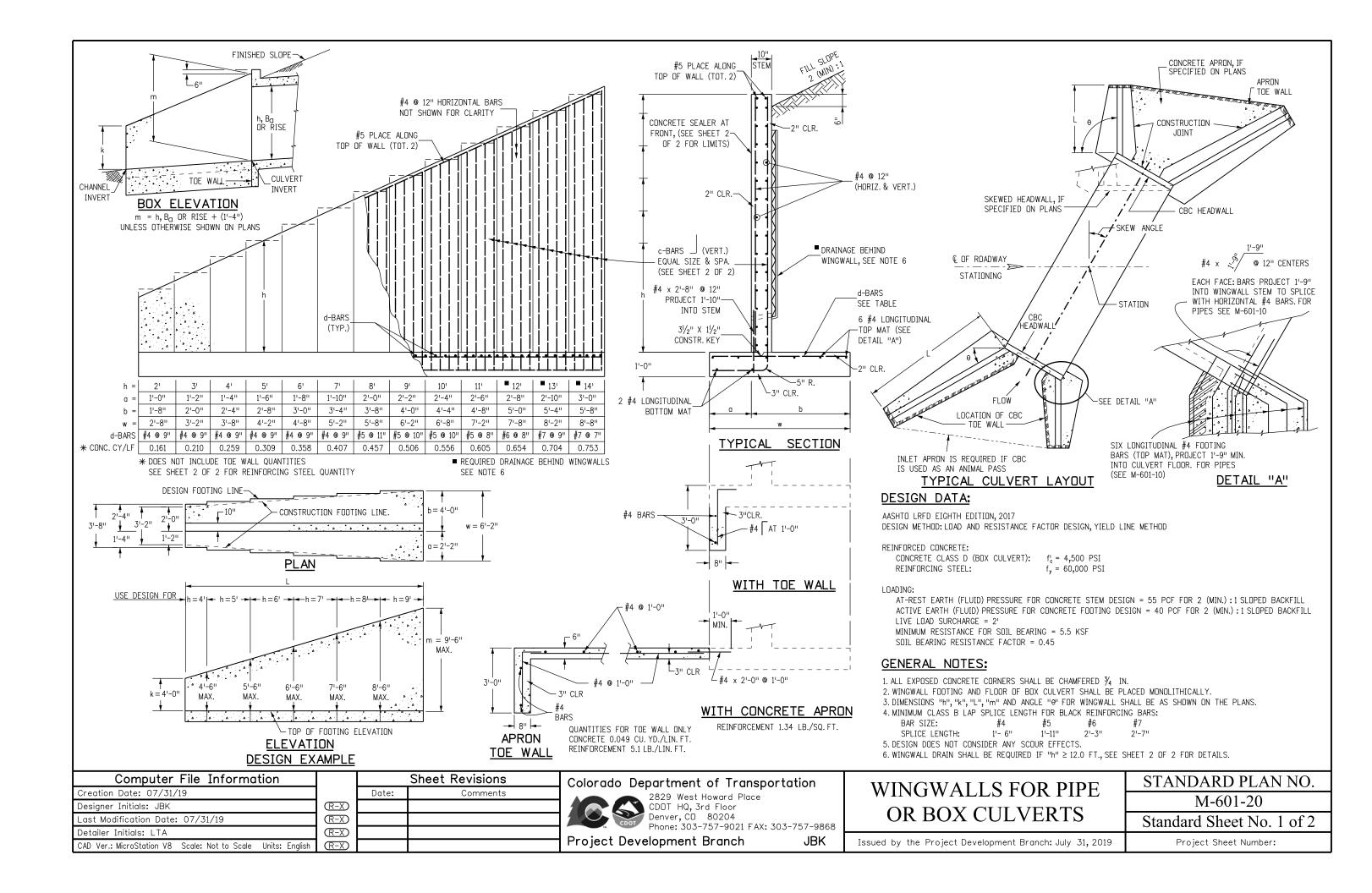

PIPE OUTLET PAVING (CUBIC YARDS)

NOTE: VOLUME OCCUPIED BY PIPE HAS BEEN DEDUCTED

NOTE: VOLOME	UCCUPIED	BI PIPE HAS	BEEN DEDUCTED.			
Computer File Information			Sheet Revisions	Colorado Department of Transportation		STANDARD PLAN NO.
Creation Date: 07/31/19		Date:	Comments	2829 West Howard Place	HEADWALLS AND	M 601 12
Designer Initials: JBK	(R-X)			CDDT HQ, 3rd Floor	DIDE OUTLET DAVINC	M-601-12
Last Modification Date: 07/31/19	(R-X)			Denver, CD 80204 Phone: 303-757-9021 FAX: 303-757-9868	PIPE OUTLET PAVING	Standard Sheet No. 1 of 1
Detailer Initials: LTA	$\overline{R-X}$					
CAD Ver.: MicroStation V8 Scale: Not to Scale Units: English	(R-X)			Project Development Branch JBK	Issued by the Project Development Branch: July 31, 2019	Project Sheet Number:

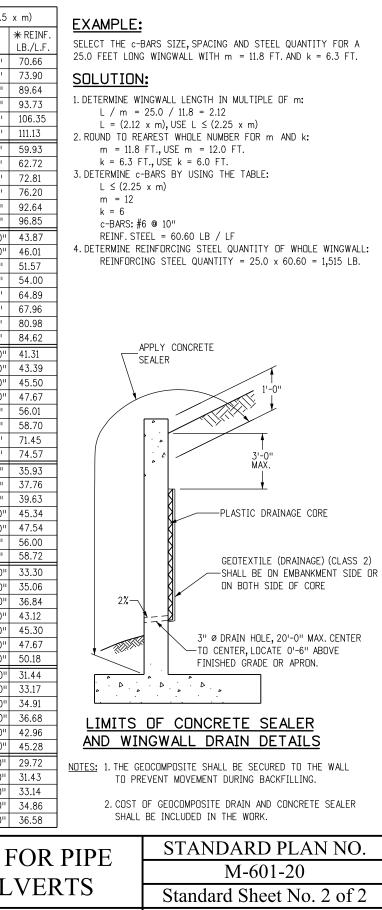
GENERAL NOTES

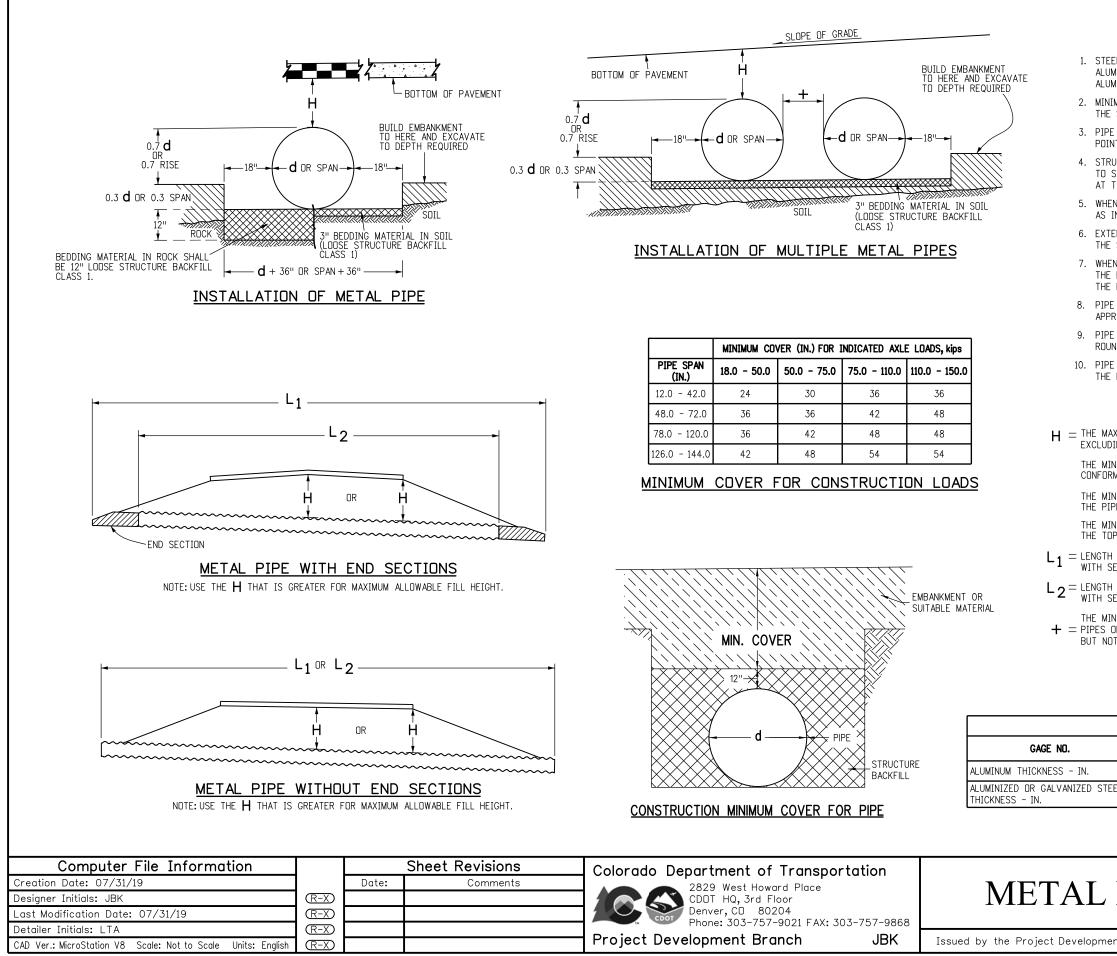

- NOT FORMED IN ACCORDANCE WITH SUBSECTION 601.09(b). IN A PATTERN SIMILAR TO STANDARD PLAN M-601-10. D 18" THICK LAYER OF RIPRAP OR AS SPECIFIED ON THE PLANS 4D 2:1 SLOPE 20 30 BED COURSE MATERIAL OR GEOTEXTILE WHERE SPECIFIED ON THE PLANS-
- 1. FOR SIZE AND LOCATION OF PIPES, SEE THE PLANS. 2. ALL CONCRETE SHALL BE CLASS B. 3. FOOTINGS IN ROCK SHALL BE POURED OUT TO ROCK AND 4. EXPOSED CONCRETE CORNERS SHALL BE CHAMFERED $\frac{3}{4}$ IN. 5. HEADWALL SHALL HAVE REINFORCING STEEL INSTALLED THE COST OF REINFORCING STEEL SHALL BE INCLUDED IN THE WORK UNLESS THE STEEL QUANTITIES ARE LISTED IN THE PLANS AND ARE PAID FOR SEPARATELY. 2:1 SLOPE UP TO 1/2D HEIGHT



4" OR 6" THICK CONCRETE SLOPE AND DITCH PAVING WITH WELDED WIRE FABRIC 6 x 6 - W 1.4 x W 1.4

PIPE OUTLET PAVING


MAY BE USED WITH MULTIPLE PIPES.



<u>c-BAR</u>	RS AND REINFORCING STEEL QUANTITY (EXCLUDE TOE WALL) * REINFORCING STEEL QUANTITY INCLUDES STEM AND FOOTING QUANTITIES, BUT DOES NOT INCLUDE TOE WALL QUANTITIES.																					
L (MULTIF	LE OF m)	≤ (1.0	x m)	≤ (1.2	5 x m)	≤ (1.5	x m)	≤ (1.75	ō x m)	≤ (2.0	x m)	≤ (2.25	j x m)	≤ (2.5	x m)	≤ (2.75	ō x m)	≤ (3.0) x m)	≤ (3.2	5 x m)	≤ (3.5
m (FT)	k (FT)	c-BARS	₩ REINF. LB./L.F.	c-BARS	* REINF. LB./L.F.	c-BARS	* REINF. LB./L.F.	c-BARS	₩ REINF. LB./L.F.	c-BARS	₩ REINF. LB./L.F.	c-BARS	* REINF. LB./L.F.	c-BARS	* REINF. LB./L.F.	c-BARS						
	4 5	#4 @ 10" #4 @ 10"	53.60 55.86	#5 @ 10" #5 @ 10"		#5 @ 10" #5 @ 10"	57.10 59.60	#5 @ 8" #5 @ 8"	60.22 62.89	#5 @ 7" #5 @ 7"	62.43 65.23	#5 @ 7" #5 @ 7"	62.09 64.88	#5 @ 6" #5 @ 6"	65.38 68.34	#5 @ 6" #5 @ 6"	65.15 68.11	#6 @ 8" #6 @ 8"	67.10 70.17	#6 @ 8" #6 @ 8"	66.94 70.00	#6 @ 7" #6 @ 7"
14	6	# 5 ◎ 10"	64.43	#6 @ 10"	70.60	#6 @ 10"	69.69	#6 @ 8"	74.93	#6 @ 8"	74.45	#6 @ 7"	78.30	#6 @ 6"	83.64	#6 @ 6"	83.40	#6 @ 6"	83.22	#6 @ 6"	83.05	#7 @ 7"
	7	#5 @ 10" #5 @ 8"	67.29 74.71	#6 @ 10" #6 @ 8"	73.76	#6 @ 10" #6 @ 7"	72.83 87.09	#6 @ 8" #6 @ 6"	78.32 92.54	#6 @ 8" #7 @ 7"	77.84 99.47	#6 @ 7" #7 @ 7"	81.87 99.08	#6 @ 6" #7 @ 6"	87.45 107.11	#6 @ 6" #7 @ 6"	87.21 106.86	#6 @ 6" #7 @ 6"	87.02 106.66	#6 @ 6" #7 @ 6"	86.86	#7 @ 7" #7 @ 6"
	9	#5 @ 8"	78.10	#6 @ 8"	87.23	#6 @ 7"	91.03	#6 @ 6"	96.72	#7 @ 7"	103.93	#7 @ 7"	103.54	#7 @ 6"	111.90	#7 @ 6"	111.65	#7 @ 6"	111.45	#7 @ 6"	111.28	#7 @ 6"
	4	#4 @ 10"	50.51	#4 @ 10"	49.25	#5 @ 10"	53.71	#5 @ 10"	53.09	#5 @ 10"	52.36	#5 @ 9"	53.85	#5 @ 8"	55.54	#5 @ 7"	57.85	#5 @ 7"	57.67	#5 @ 7"	57.51	#6 @ 9"
	5	#4 @ 10"	52.66	#4 @ 10"		#5 @ 10"	56.09	#5 @ 10"	55.46	#5 @ 10"	54.99	#5 @ 9"	56.29	#5 @ 8"	58.08	#5 @ 7"	60.51	#5 @ 7"	60.33	#5 @ 7"	60.17	#6 @ 9"
13	6 7	#4 @ 10" #4 @ 10"	54.92 57.36	#5 @ 10" #5 @ 10"	59.48 62.16	#5 @ 9" #5 @ 9"	60.31 63.05	#6 @ 9" #6 @ 9"	67.56 70.66	#6 @ 9" #6 @ 9"	67.08 70.16	#6 @ 9" #6 @ 9"	66.70 69.78	#6 @ 8" #6 @ 8"	69.53 72.75	#6 @ 8" #6 @ 8"	69.28 72.50	#6 @ 7" #6 @ 7"	73.12	#6 @ 7" #6 @ 7"	72.95	#6 @ 7" #6 @ 7"
	8	#5 @ 10"	66.39	#6 @ 10"	72.82	#6 @ 8"	77.97	#6 @ 7"	81.68	#6 @ 7"	81.19	#6 @ 6"	86.67	#6 @ 6"	86.37	#7 @ 7"	93.18	#7 @ 7"	92.97	#7 @ 7"	92.80	#7 @ 7"
	9	#5 @ 10"	69.37	#6 @ 10"	76.10	#6 @ 8"	81.49	#6 @ 7"	85.37	#6 @ 7"	84.87	#6 @ 6"	90.59	#6 @ 6"	90.29	#7 @ 7"	97.39	#7 @ 7"	97.18	#7 @ 7"	97.00	#7 @ 7"
	2 3	#4 @ 10" #4 @ 10"	43.91 45.82	#4 @ 10" #4 @ 10"	42.65 44.55	#4 @ 10" #4 @ 10"	41.82 43.71	#4 @ 10" #4 @ 10"	41.22 43.11	#4 @ 10" #4 @ 10"	40.78 42.66	#4 @ 9" #4 @ 9"	41.29 43.22	#5 @ 10" #5 @ 10"	44.61 46.75	#5 @ 10" #5 @ 10"	44.37 46.51	#5 @ 10" #5 @ 10"	44.18	#5 @ 10" #5 @ 10"		#5 @ 10" #5 @ 10"
	4	#4 @ 10 #4 @ 10"	47.80	#4 @ 10" #4 @ 10"	46.51	#4 @ 10 #4 @ 10"	45.65	#4 @ 10 #5 @ 10"		#4 @ 10 #5 @ 10"	42.66	#4 @ 9 #5 @ 10"	49.22	#5 @ 10"	48.94	#5 @ 10" #5 @ 10"	48.69	#5 @ 9" #5 @ 9"	50.00	#5 @ 8"	51.72	#5 @ 8"
12	5	#4 @ 10"	49.84	#4 @ 10"	48.53	#4 @ 10"	47.66	#5 @ 10"		#5 @ 10"	51.85	#5 @ 10"	51.48	#5 @ 10"	51.19	#5 @ 10"	50.94	#5 @ 9"	52.33	#5 @ 8"	54.14	#5 @ 8"
12	6	#4 @ 10"	51.99	#4 @ 10"	50.65	#5 @ 10"	55.34	#5 @ 8"	58.41	#5 @ 8"	57.93	#6 @ 10"	60.60	#6 @ 10"	60.29	#6 @ 9"	62.42	#6 @ 9"	62.22	#6 @ 9"	62.04	#6 @ 8"
	7	#4 @ 10" #5 @ 10"	54.30 62.91	#5 @ 10" #5 @ 10"		#5 @ 10" #5 @ 7"	57.87 67.46	#5 @ 8" #5 @ 6"	61.10 70.68	#5 @ 8" #5 @ 6"	60.61 70.20	#6 @ 10" #6 @ 7"	63.43 76.44	#6 @ 10" #6 @ 7"	63.11 76.13	#6 @ 9" #6 @ 7"	65.35 75.87	#6 @ 9" #6 @ 6"	65.15 81.30	#6 @ 9" #6 @ 6"	64.97 81.12	#6 @ 8" #6 @ 6"
	9	#5 @ 10"	65.64	#5 @ 10"		#5 @ 7"	70.44	#5 @ 6"	73.82	#5 @ 6"	73.33	#6 @ 7"	79.86	#6 @ 7"	79.54	#6 @ 7"	79.28	#6 @ 6"	84.95	#6 @ 6"	84.77	#6 @ 6"
	2	#4 @ 10"	41.70	#4 @ 10"	40.42	#4 @ 10"	39.57	#4 @ 10"	38.96	#4 @ 10"	38.50	#4 @ 10"	38.15	#4 @ 10"	37.87	#4 @ 10"	37.63	#4 @ 9"	38.25	# 5 @ 10"	41.46	# 5 @ 10"
	3	#4 @ 10"	43.57	#4 @ 10"	42.27	#4 @ 10"	41.40	#4 @ 10"	40.79	#4 @ 10"	40.33	#4 @ 10"	39.97	#4 @ 10"	39.69	#4 @ 10"	39.45	#4 @ 9"	40.12	#5 @ 10"		#5 @ 10"
	4	#4 @ 10" #4 @ 10"	45.48 47.46	#4 @ 10" #4 @ 10"	44.16 46.10	#4 @ 10" #4 @ 10"	43.28 45.21	#4 @ 10" #4 @ 10"	42.66 44.58	#4 @ 9" #4 @ 9"	43.09 45.06	#5 @ 10" #5 @ 10"	46.57 48.74	#5 @ 10" #5 @ 10"	46.27 48.44	#5 @ 10" #5 @ 10"	46.02 48.19	#5 @ 10" #5 @ 10"	45.82	#5 @ 10" #5 @ 10"	45.65 47.81	#5 @ 10" #5 @ 10"
11	6	#4 @ 10"	49.52	#4 @ 10"		#4 @ 9"	48.23	#5 @ 10"		#5 @ 10"	51.38	#5 @ 9"	52.57	#5 @ 9"	52.27	#5 @ 8"	53.99	#5 @ 8"	53.79	#5 @ 7"	56.16	#5 @ 7"
	7	#4 @ 10"	51.73	#4 @ 10"		#4 @ 9"	50.43	#5 @ 10"		#5 @ 10"	53.78	#5 @ 9"	55.04	#5 @ 9"	54.73	#5 @ 8"	56.55	#5 @ 8"	56.35	#5 @ 7"	58.84	#5 @ 7"
	8	#4 @ 10" #4 @ 10"	54.00 56.20	#5 @ 10" #5 @ 10"	58.44 60.87	#5 @ 10" #5 @ 10"	57.45 59.85	#5 @ 8" #5 @ 8"	60.64 63.21	#5 @ 7" #5 @ 7"	62.92 65.60	#5 @ 6" #5 @ 6"	66.25 69.09	#5 @ 6" #5 @ 6"	65.94 68.78	#5 @ 6" #5 @ 6"	65.69 68.52	#6 @ 8" #6 @ 8"	67.76 70.69	#6 @ 8" #6 @ 8"	67.57 70.51	#6 @ 7" #6 @ 7"
	9 2	#4 @ 10"	39.84	#3 © 10" #4 @ 10"		#3 @ 10'	37.65	#3 @ 0 #4 @ 10"	37.03	#3 @ 10"	36.57	#3 © 0 #4 @ 10"	36.20	#3 © 0 #4 @ 10"	35.91	#3 © 0 #4 @ 10"	35.67	#0 @ 0 #4 @ 10'	35.48	#0 © 0 #4 @ 9"	36.07	#0 @ 9" #4 @ 9"
	3	#4 @ 10"	41.68	#4 @ 10"		#4 @ 10'	39.47	#4 @ 10"		#4 @ 10"	38.36	#4 @ 10"	38.00	#4 @ 10"	37.71	#4 @ 10"	37.46	#4 @ 10'	37.27	#4 @ 9"	37.91	#4 @ 9"
	4	#4 @ 10"	43.58	#4 @ 10"		#4 @ 10'	_	#4 @ 10"		#4 @ 10"	40.19	#4 @ 10"	39.82	#4 @ 10"	39.53	#4 @ 10"	39.28	#4 @ 10'		#4 @ 9"	39.77	#4 @ 9"
10	5 6	#4 @ 10" #4 @ 10"	45.53 47.58	#4 @ 10" #4 @ 10"	44.14 46.14	#4 @ 10' #4 @ 10'	43.21 45.20	#4 @ 10" #4 @ 10"	42.56 44.53	#4 @ 10" #4 @ 10"	42.07 44.03	#5 @ 10" #5 @ 10"	46.44 48.67	#5 @ 10" #5 @ 10"	46.13 48.35	#5 @ 10" #5 @ 10"	45.87 48.08	#5 @ 10" #5 @ 10"	45.67	#5 @ 10" #5 @ 10"	45.49 47.69	#5 @ 10" #5 @ 10"
	7	#4 @ 10"	49.79	#4 @ 10"	48.31	#4 @ 10'	47.34	#5 @ 10"	51.97	#5 @ 10"	51.45	#5 @ 10"	51.04	#5 @ 9"	52.29	#5 @ 9"	52.03	#5 @ 8"	53.79	#5 @ 8"	53.61	#5 @ 7"
	8	#4 @ 10"	52.06	#4 @ 10"		#4 @ 10'		#5 © 10"		#5 @ 10"	53.89	#5 @ 10"	53.47	#5 @ 9"	54.80	# 5 @ 9"	54.53	#5 @ 8"	56.39	# 5 @ 8"	56.20	#5 © 7"
	2	#4 @ 10"	38.01	#4 @ 10"		#4 @ 10"	35.85	#4 @ 10"		#4 @ 10"	34.73	#4 @ 10"	34.36	#4 @ 10"	34.06	#4 @ 10"	33.81	#4 @ 10'	33.61	#4 @ 10"		#4 @ 10"
	3	#4 @ 10" #4 @ 10"	39.93 41.81	#4 @ 10" #4 @ 10"		#4 @ 10" #4 @ 10"	37.64 39.47	#4 @ 10" #4 @ 10"	36.99 38.81	#4 @ 10" #4 @ 10"	36.51 38.31	#4 @ 10" #4 @ 10"	36.13 37.93	#4 @ 10" #4 @ 10"	35.83 37.63	#4 @ 10" #4 @ 10"	35.58 37.37	#4 @ 10' #4 @ 10'		#4 @ 10" #4 @ 10"		#4 @ 10" #4 @ 10"
9	5	#4 @ 10"	43.75	#4 @ 10"		#4 @ 10"		#4 @ 10"		#4 @ 10"	40.17	#4 @ 10"	39.78	#4 @ 10"	39.47	#4 @ 10"	39.20	#4 @ 9"	39.86	#5 @ 10"		#5 @ 10"
	6	#4 @ 10"	45.79	#4 @ 10"		#4 @ 10"	43.31	#4 @ 10"		#4 @ 10"	42.10	#4 @ 10"	41.71	#4 @ 10"	41.39	#4 @ 10"	41.12	#4 @ 9"	41.82	#5 @ 10"		#5 @ 10"
	7	#4 @ 10" #4 @ 10"	48.04 50.43	#4 @ 10" #4 @ 10"		#4 @ 10" #4 @ 10"	45.49 47.80	#4 @ 10" #4 @ 10"		#5 @ 10" #5 @ 10"	49.29 51.83	#5 @ 10" #5 @ 10"	48.86 51.40	#5 @ 10" #5 @ 10"	48.53 51.05	#5 @ 10" #5 @ 10"	48.24 50.77	#5 @ 10" #5 @ 10"	48.03	#5 @ 10" #5 @ 10"		#5 @ 10" #5 @ 10"
	2	#4 @ 10"	36.41	#4 @ 10"		#4 @ 10"		#4 @ 10"		#3 @ 10"	32.92	#4 @ 10"	32.54	#3 @ 10" #4 @ 10"	32.23	#3 @ 10" #4 @ 10"	31.97	#3 @ 10 #4 @ 10'	1	#3 @ 10" #4 @ 10"	1	#3 @ 10 #4 @ 10"
	3	#4 @ 10"	38.23	#4 @ 10"		#4 @ 10"		#4 @ 10"		#4 @ 10"	34.67	#4 @ 10"	34.28	#4 @ 10"	33.97	#4 @ 10"	33.70	#4 @ 10'	33.50	#4 @ 10"		#4 @ 10"
8	4	#4 @ 10"	40.09	#4 @ 10"		#4 @ 10"		#4 @ 10"		#4 @ 10"	36.44	#4 @ 10"	36.04	#4 @ 10"		#4 @ 10"	33.45	#4 @ 10'	35.25	#4 @ 10"		#4 @ 10"
	5 6	#4 @ 10" #4 @ 10"	41.99 43.97	#4 @ 10" #4 @ 10"		#4 @ 10" #4 @ 10"	39.47 41.36	#4 @ 10" #4 @ 10"		#4 @ 10" #4 @ 10"	38.24 40.10	#4 @ 10" #4 @ 10"	37.83 39.68	#4 @ 10" #4 @ 10"	37.50 39.35	#4 @ 10" #4 @ 10"	37.23 39.07	#4 @ 10' #4 @ 9"	43.33	#4 @ 10" #5 @ 10"		#4 @ 10" #5 @ 10"
	7	#4 @ 10"	46.19	#4 @ 10"		#4 @ 10"		#4 @ 10"		#4 @ 10"	42.18	#4 @ 10"	41.75	#4 @ 10"	41.41	#4 @ 10"	41.13	#4 @ 9"	45.65	#5 @ 10"	45.45	#5 @ 10"
	2	#4 @ 10"	34.90	#4 @ 10"		#4 @ 10"		#4 @ 10"		#4 @ 10"	31.27	#4 @ 10"	30.86	#4 @ 10"	30.54	#4 @ 10"	30.27	#4 @ 10"	30.06	#4 @ 10"	29.88	#4 @ 10"
_	3	#4 @ 10"	36.73	#4 @ 10"		#4 @ 10"		#4 @ 10"		#4 @ 10"	33.00	#4 @ 10"	32.59	#4 @ 10"	32.26	#4 @ 10"	31.99	#4 @ 10"	31.78	#4 @ 10"	31.59	#4 @ 10"
	4 5	#4 @ 10" #4 @ 10"	38.59 40.48	#4 @ 10" #4 @ 10"		#4 @ 10" #4 @ 10"	36.01 37.80	#4 @ 10" #4 @ 10"		#4 @ 10" #4 @ 10"	34.75 36.50	#4 @ 10" #4 @ 10"	34.33 36.07	#4 @ 10" #4 @ 10"	33.99 35.73	#4 @ 10" #4 @ 10"	33.71 35.44	#4 @ 10" #4 @ 10"	33.50 35.22	#4 @ 10" #4 @ 10"		#4 @ 10" #4 @ 10"
	6	#4 @ 10"	42.39	#4 @ 10"		#4 @ 10"		#4 @ 10"		#4 @ 10"	38.26	#4 @ 10"	37.82	#4 @ 10"		#4 @ 10"	37.17	#4 @ 10"		#4 @ 10"		#4 @ 10"
C	omput	<u>er File</u>	Infor	mation				Shee	t Revis	ions		Colora	do De	partme	ent of	Transp	ortatio	n I	ττ 7		TT 7 A T	
Creation [Date:		Com	ments				2829 W€	est Howar	d Place			W	ING	WAI	LLS I
Designer 1			71 /10			$(\mathbb{R}-X)$		_					5	CDOT HO	, 3rd Flo	or)4 9021 FAX:			(OR F	ROX	CUL
Last Modi Detailer Ir			21/18			(R-X) (R-X)		+					CDOT				303-757	-9868				
CAD Ver.: N			: Not to S	cale Units	: English	R-X		1				Projec	t Deve	elopmei	nt Brar	nch	L	IBK	Issued	by the F	roject De	evelopmen
					~			-														

nt Branch: July 31, 2019

 STEEL PIPES SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M36. ALUMINUM PIPES SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M196. ALUMINIZED STEEL SHALL CONFORM TO THE REQUIREMENTS OF AASHTO M274.

2. MINIMUM COVER SHALL BE PROVIDED DURING CONSTRUCTION TO PROTECT THE STRUCTURE FROM DAMAGE.

3. PIPE SHALL BE PLACED WITH LONGITUDINAL SEAMS AT THE SIDES OR QUARTER POINTS BUT NOT ALONG TOP OF VERTICAL AXIS.

4. STRUCTURAL PLATE PIPES OF EQUAL OR GREATER DIAMETER THAT CONFORM TO SECTION 510 MAY BE SUBSTITUTED FOR THE PIPES ON THESE SHEETS AT THE CONTRACTOR'S EXPENSE.

5. WHEN A PIPE IS TO BE EXTENDED, THE SAME PIPE MATERIAL AND SIZE AS IN THE ORIGINAL INSTALLATION SHALL BE USED.

6. EXTENSIONS FOR CMP ARCH PIPE SHALL MATCH THE CORRUGATIONS, AND THE SPAN AND RISE DIMENSIONS OF THE PIPE TO BE EXTENDED.

7. WHEN INSTALLING A GUARDRAIL OR A SIGN POST DIRECTLY ABOVE A PIPE, THE BOTTOM OF THE POST MUST BE AT LEAST 1 FOOT ABOVE THE TOP OF THE PIPE. THE HOLE FOR THE POST SHALL BE DRILLED INTO THE SOIL.

8. PIPE ARCH WITH EQUAL PERIPHERY AND WITH SPAN AND RISE DIMENSIONS APPROXIMATELY EQUAL TO THOSE SPECIFIED ON THE PLANS WILL BE PERMITTED.

 PIPE ARCH IS INTENDED FOR USE WHERE MINIMUM COVER REQUIREMENTS FOR ROUND PIPE CANNOT BE MET. WHEN COVER EXCEEDS 11 FT. USE ROUND PIPE.
 PIPE COVER GREATER THAN 90 FT. SHALL REQUIRE AN INVESTIGATION OF THE FOUNDATION MATERIAL.

LEGEND

 ${\bf H}$ = the maximum allowable heights of fill over the top of the pipe, excluding pavement thickness, are shown in the tables of this standard.

THE MINIMUM COVER SHALL BE AS SHOWN ON THESE TABLES OR CONFORM TO AASHTO REQUIREMENTS, WHICHEVER IS GREATER.

THE MINIMUM COVER FOR PIPE IS MEASURED FROM THE TOP OF THE PIPE TO THE BOTTOM OF THE PAVEMENT: HMA OR PCCP.

THE MINIMUM COVER IS MEASURED FROM THE TOP OF THE PIPE TO THE TOP OF THE SUBGRADE FOR CONSTRUCTION LOADS.

 $L_1 = \underset{\text{with section 624.}}{\text{length of pipe to be measured when placed in accordance}}$

 L_2 = length of pipe to be measured when placed in accordance with section 603.

THE MINIMUM SPACING BETWEEN THE DUTSIDE WALLS OF MULTIPLE + = PIPES OR END SECTIONS IS 18" OR $\frac{1}{2}$ d , whichever is greater, but not to exceed 36".

CO	CONVERSION OF NOMINAL GAGE TO THICKNESS							
	16	14	12	10	8			
	0.060	0.075	0.105	0.135	0.164			
EEL	0.064	0.079	0.109	0.138	0.168			

ALLOWED WALL THICKNESS

DIDE	STANDARD PLAN NO.
PIPE	M-603-1
	Standard Sheet No. 1 of 4
ent Branch: July 31, 2019	Project Sheet Number:

THESE TABLES ARE APPLICABLE FOR THE FOLLOWING LIST OF CORRUGATED STEEL PIPE: 1. GALVANIZED CORRUGATED STEEL PIPE (CSP) 2. ALUMINIZED CORRUGATED STEEL PIPE TYPE 2 (ALT2 CSP) 3. BITUMINOUS COATED CORRUGATED STEEL PIPE (BIT. CO. CSP) 4. ARAMID FIBER BONDED CORRUGATED STEEL PIPE (A.F. BD. CSP) 5. PRECOATED CORRUGATED STEEL PIPE (PCSP- BOTH SIDES)

	Н			PIPE GAGE				
DIAMETER (IN.)	MINIMUM Cover		h maximum of cover (FT.)					
(211.)	(IN.)	16	14	12	10	8		
12	24	207	259					
15	24	165	207					
18	24	138	172	242				
21	24	118	148	207				
24	24	103	129	181				
30	24	82	103	145				
36	24	68	86	120	155			
42	24	58	73	103	133	163		
48	36	51	64	90	103	142		
54	36		57	80	93	126		
60	36			72	84	114		
66	36				77	103		
72	36					94		
78	36					84		
84	36					72		

2-3/3" X 1/2" CORRUGATIONS CORRUGATED STEEL PIPE

Η

DL

SPAN X RISE (IN. X IN.)	round Equivalent (In.)	H MINIMUM COVER (IN.)	PIPE GAGE	H MAXIMUM COVER (FT.)
17 X 13	15	24	16	13
21 X 15	18	24	16	12
24 X 18	21	24	16	13
28 X 20	24	24	16	12
35 X 24	30	24	16	12
42 X 29	36	24	16	12
49 X 33	42	24	14	12
57 X 38	48	36	12	12
64 X 43	54	36	12	12
71 X 47	60	36	10	12
77 X 52	66	36	8	12
83 X 57	72	36	8	12

2-2/3" X 1/2" CORRUGATIONS * CORRUGATED STEEL PIPE ARCH

	MINIMUM									
AMETER (IN.)	COVER		h maximum of cover (FT.)							
(114.)	(IN.)	16	14	12	10	8				
48	36	59	74	104	134	164				
54	36	52	65	92	119	146				
60	36	47	59	83	107	131				
66	36	42	53	75	97	119				
72	36	39	49	69	89	109				
78	36		45	63	82	101				
84	36		42	59	76	93				
90	36			55	71	87				
96	36			51	66	81				
102	36			48	62	77				
108	36				59	72				
114	36				56	68				
120	36				53	65				
126	42					62				

PIPE GAGE

3" X 1" CORRUGATIONS CORRUGATED STEEL PIPE

SPAN X RISE (IN. X IN.)	rdund Equivalent (In.)	H MINIMUM COVER (IN.)	PIPE GAGE	H MAXIMUM COVER (FT.)
53 X 41	48	36	14	12
60 X 46	54	36	14	20
66 X 51	60	36	14	20
73 X 55	66	36	14	20
81 X 59	72	36	14	17
87 X 63	78	36	14	16
95 X 67	84	36	14	16
103 X 71	90	36	12	16
112 X 75	96	36	12	16
117 X 79	102	36	12	16

3" X 1" CORRUGATIONS * CORRUGATED STEEL PIPE ARCH

Computer File Information			Sheet Revisions	Colorado Department of Transportation		STANDARD PLAN NO.
Creation Date: 07/31/19		Date:	Comments	2829 West Howard Place		M (02 1
Designer Initials: JBK	(R-X)			CDDT HQ. 3rd Floor	METAL PIPE	M-603-1
Last Modification Date: 07/31/19	(R-X)			Denver, CO 80204 Phone: 303-757-9021 FAX: 303-757-9868		Standard Sheet No. 2 of 4
Detailer Initials: LTA	(R-X)					
CAD Ver.: MicroStation V8 Scale: Not to Scale Units: English	(R-X)			Project Development Branch JBK	Issued by the Project Development Branch: July 31, 2019	Project Sheet Number:

DIAMETER	Н	PIPE	GAGE
(IN.)	COVER	h maximum o	F COVER (FT.)
V -1.17	(IN.)	16	14
6	24	408	509
8	24	306	382
10	24	244	305

1-1/2" X 1/4" CORRUGATIONS CORRUGATED STEEL PIPE

* CORNER BEARING PRESSURE OF 2 TONS PER SQ.FT.

Computer File Information			Sheet Revisions	Colorado Department of Transportation		STANDARD PLAN NO.
Creation Date: 07/31/19		Date:	Comments	2829 West Howard Place	METAL DIDE	M (02 1
Designer Initials: JBK	(R-X)			CDDT HQ, 3rd Floor	METAL PIPE	M-603-1
Last Modification Date: 07/31/19	(R-X)			Denver, CD 80204 Phone: 303-757-9021 FAX: 303-757-9868		Standard Sheet No. 3 of 4
Detailer Initials: LTA	(R-X)					
CAD Ver.: MicroStation V8 Scale: Not to Scale Units: English	(R-X)			Project Development Branch JBK	Issued by the Project Development Branch: July 31, 2019	Project Sheet Number:

102		36				50
3⁄4''	х	3∕₄	7-1%"	CORR	UGATI	IONS
				STEE		

3∕4''	Х	3∕4	7 -1⁄2 ''	CORRUG	GATIONS
C	COR	RUC	GATED	STEEL	PIPE

24	24	67	95	158	
30	24	54	75	126	
36	24	45	63	105	
42	24	38	54	90	
48	36	33	47	78	114
54	36	29	41	70	101
60	36		37	63	91
66	36		34	57	83
72	36			52	76
78	36			48	70
84	36			44	65
90	36				60
96	36				56
102	36				50

90 126

77 108

H MINIMUM

COVER

(IN.)

36

36

36

36

36

36

36

36

36

36

н

COVER (IN.)

24

24

DIAMETER | MINIMUM

(IN.)

18

21

16

46

58

52

47

5" X 1" CORRUGATIONS CORRUGATED STEEL PIPE

DIAMETER

(IN.)

54

60

66

72

78

84

90

96

102

108

PIPE GAGE

H MAXIMUM OF COVER (FT.)

82

74

66

61

56

53

PIPE GAGE

H MAXIMUM OF COVER (FT.)

16 14 12 10

181

14 12 10 8

106 129

116

106

95

86

79

73

68

63

59

55

SPAN X RISE (IN. X IN.)	Round Equivalent (In.)	H MINIMUM COVER (IN.)	PIPE GAGE	H MAXIMUM COVER (FT.)					
81 X 59	72	36	12	17					
87 X 63	78	36	12	16					
95 X 67	84	36	12	16					
CD	5" X 1" CORRUGATIONS * CORRUGATED STEEL PIPE ARCH								

THESE TABLES ARE APPLICABLE FOR THE FOLLOWING LIST OF CORRUGATED STEEL PIPE: 1. GALVANIZED CORRUGATED STEEL PIPE (CSP) 2. ALUMINIZED CORRUGATED STEEL PIPE TYPE 2 (ALT2 CSP) 3. BITUMINOUS COATED CORRUGATED STEEL PIPE (BIT. CO. CSP) 4. ARAMID FIBER BONDED CORRUGATED STEEL PIPE (A.F. BO. CSP) 5. PRECOATED CORRUGATED STEEL PIPE (PCSP- BOTH SIDES)

X RISE (IN. X IN.)	round Equivalent (In.)	MINIMUM COVER (IN.)	PIPE GAGE	•
20 X 16	18	24	16	
23 X 19	21	24	16	
27 X 21	24	24	16	
33 X 26	30	24	16	
40 X 31	36	24	16	
46 X 36	42	24	12	
53 X 41	48	36	12	
60 X 46	54	36	12	

* CORNER BEARING PRESSURE OF 2 TONS PER SQ.FT.

round

66 X 51 60 36 12 $\frac{3}{4}$ " X $\frac{3}{4}$ 7- $\frac{1}{2}$ " CORRUGATIONS * CORRUGATED STEEL PIPE ARCH *

н

SPAN

H MAXIMUM COVER (FT.)
16
15
13
13
14
13
13
20
20

H DIAMETER MINIMUM		PIPE GAGE				
(IN.)	COVER	h maximum of cover (FT.)				
(111.)	(IN.)	16				
6	24	247				
8	24	185				
10	24	148				

1-1/2" X 1/4" CORRUGATIONS CORRUGATED ALUMINUM PIPE

	H MINIMUM	PIPE GAGE H MAXIMUM OF COVER (FT.)					
DIAMETER (IN.)	COVER						
(211.)	(IN.)	16	14	12	10		
18	24	43	61				
21	24	38	52	84			
24	24	33	45	73			
30	24	26	36	58			
36	24	21	30	49	69		
42	24		25	41	59		
48	36			36	51		
54	36			32	46		
60	36			29	41		
66	36				37		
72	36				34		

¾" X ¾" 7-½" CORRUGATIONS CORRUGATED ALUMINUM PIPE

SPAN	ROUND	H MINIMUM		PIPE	GAGE	
X RISE (IN. X IN.)	EQUIVALENT	COVER)		
	(IN.)	(IN.)	16	14	12	10
20 X 16	18	24	16			
23 X 19	21	24	15			
27 X 21	24	24	13	13		
33 X 26	30	24	13	13	13	
40 X 31	36	24		13	13	
46 X 36	42	24			13	13
53 X 41	48	36			13	13
60 X 46	54	36			20	20
66 X 51	60	36				20

 $\frac{3}{4}$ " X $\frac{3}{4}$ " 7- $\frac{1}{2}$ " CORRUGATIONS CORRUGATED ALUMINUM PIPE ARCH *

THES	SE TABLES	ARE	APPLICABLE	FOR	THE	FOLLOWING	LIST
OF (CORRUGATE	D ST	EEL PIPE:				

1. GALVANIZED CORRUGATED STEEL PIPE (CSP) 2. ALUMINIZED CORRUGATED STEEL PIPE TYPE 2 (ALT2 CSP)

3. BITUMINOUS COATED CORRUGATED STEEL PIPE (BIT. CO. CSP) 4. ARAMID FIBER BONDED CORRUGATED STEEL PIPE (A.F. BO. CSP)

5. PRECOATED CORRUGATED STEEL PIPE (PCSP- BOTH SIDES)

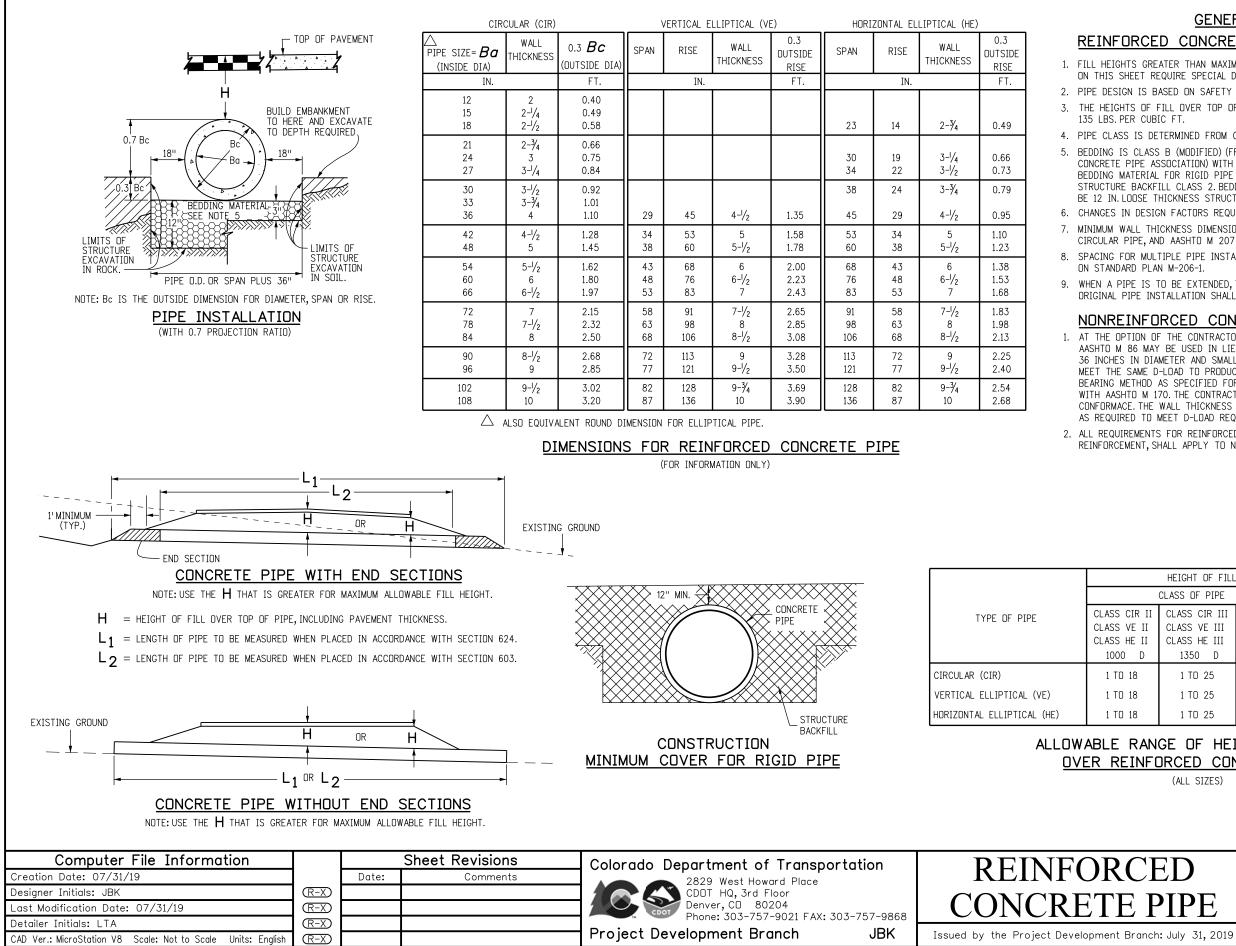
	Н			PIPE GAG	E			
DIAMETER (IN.)	MINIMUM Cover	h maximum of cover (FT.)						
(114.)	(IN.)	16	14	12	10	8		
12	24	125	157					
15	24	100	125					
18	24	83	104					
21	24	71	89					
24	24	62	78	109				
27	24		69	97				
30	24		62	87				
36	24		51	73	94			
42	24			62	80			
48	36			54	70	85		
54	36			48	62	76		
60	36				52	64		
66	36					52		
72	36					43		

 $2-\frac{2}{3}$ " X $\frac{1}{2}$ " CORRUGATIONS CORRUGATED ALUMINUM PIPE

SPAN X RISE (IN. X IN.)	Round Equivalent (In.)	H MINIMUM COVER (IN.)	PIPE GAGE	H MAXIMUM COVER (FT.)
17 X 13	15	24	16	13
21 X 15	18	24	16	12
24 X 18	21	24	16	13
28 X 20	24	24	16	12
35 X 24	30	24	16	12
42 X 29	36	24	16	12
49 X 33	42	24	14	12
57 X 38	48	36	12	12
64 X 43	54	36	12	12
71 X 47	60	36	10	12

$2-\frac{2}{3}$ " X $\frac{1}{2}$ " CORRUGATIONS * CORRUGATED ALUMINUM PIPE ARCH

* CORNER BEARING PRESSURE OF 2 TONS PER SQ.FT.


	H MINIMUM		PIPE GAGE					
DIAMETER (IN.)	COVER	H MAXIMUM OF COVER (FT.)						
(111.)	(IN.)	16	14	12	10	8		
30	24	57	72	101	135	159		
36	24	47	60	84	112	132		
42	24	40	51	72	96	113		
48	36	35	44	62	84	99		
54	36	31	39	55	74	88		
60	36	28	35	50	67	79		
66	36	25	32	45	61	72		
72	36	23	29	41	56	66		
78	36		27	38	51	61		
84	36			35	48	56		
90	36			33	44	52		
96	36			31	41	49		
102	36				39	46		
108	36				37	43		
114	36					39		
120	36					36		

3" X 1" CORRUGATIONS CORRUGATED ALUMINUM PIPE

SPAN X RISE (IN. X IN.)	round Equivalent (In.)	H MINIMUM COVER (IN.)	PIPE GAGE	H MAXIMUM COVER (FT.)
60 X 46	54	36	14	20
66 X 51	60	36	14	20
73 X 55	66	36	14	20
81 X 59	72	36	12	16
87 X 63	78	36	12	16
95 X 67	84	36	12	16
103 X 71	90	36	10	16
112 X 75	96	36	8	16

	3"	Х	1"	CORF	RUGA	TIONS		*
CORRI	JGA	TE	D,	ALUM:	INUM	PIPE	ARCH	~~~

	STANDARD PLAN NO.		
PIPE	M-603-1		
	Standard Sheet No. 4 of 4		
ent Branch: July 31, 2019	Project Sheet Number:		

REINFORCED CONCRETE PIPE

1. FILL HEIGHTS GREATER THAN MAXIMUM ALLOWED IN THE HEIGHTS OF FILL TABLE ON THIS SHEET REQUIRE SPECIAL DESIGN OF STRUCTURE.

2. PIPE DESIGN IS BASED ON SAFETY FACTOR OF 1.33 ON ULTIMATE STRENGTH. 3. THE HEIGHTS OF FILL OVER TOP OF PIPE ARE BASED ON UNIT WEIGHT OF SOIL AT 135 LBS. PER CUBIC FT.

4. PIPE CLASS IS DETERMINED FROM 0.01 IN. CRACK D-LOAD.

5. BEDDING IS CLASS B (MODIFIED) (FROM CONCRETE PIPE DESIGN MANUAL-AMERICAN CONCRETE PIPE ASSOCIATION) WITH SETTLEMENT RATIO R = 0.0 sd (YIELDING BED). BEDDING MATERIAL FOR RIGID PIPE IN SOIL SHALL BE 3 IN. LODSE THICKNESS STRUCTURE BACKFILL CLASS 2. BEDDING MATERIAL FOR RIGID PIPE IN ROCK SHALL BE 12 IN. LODSE THICKNESS STRUCTURE BACKFILL CLASS 1.

6. CHANGES IN DESIGN FACTORS REQUIRE COMPENSATING CHANGES IN PIPE DESIGN.

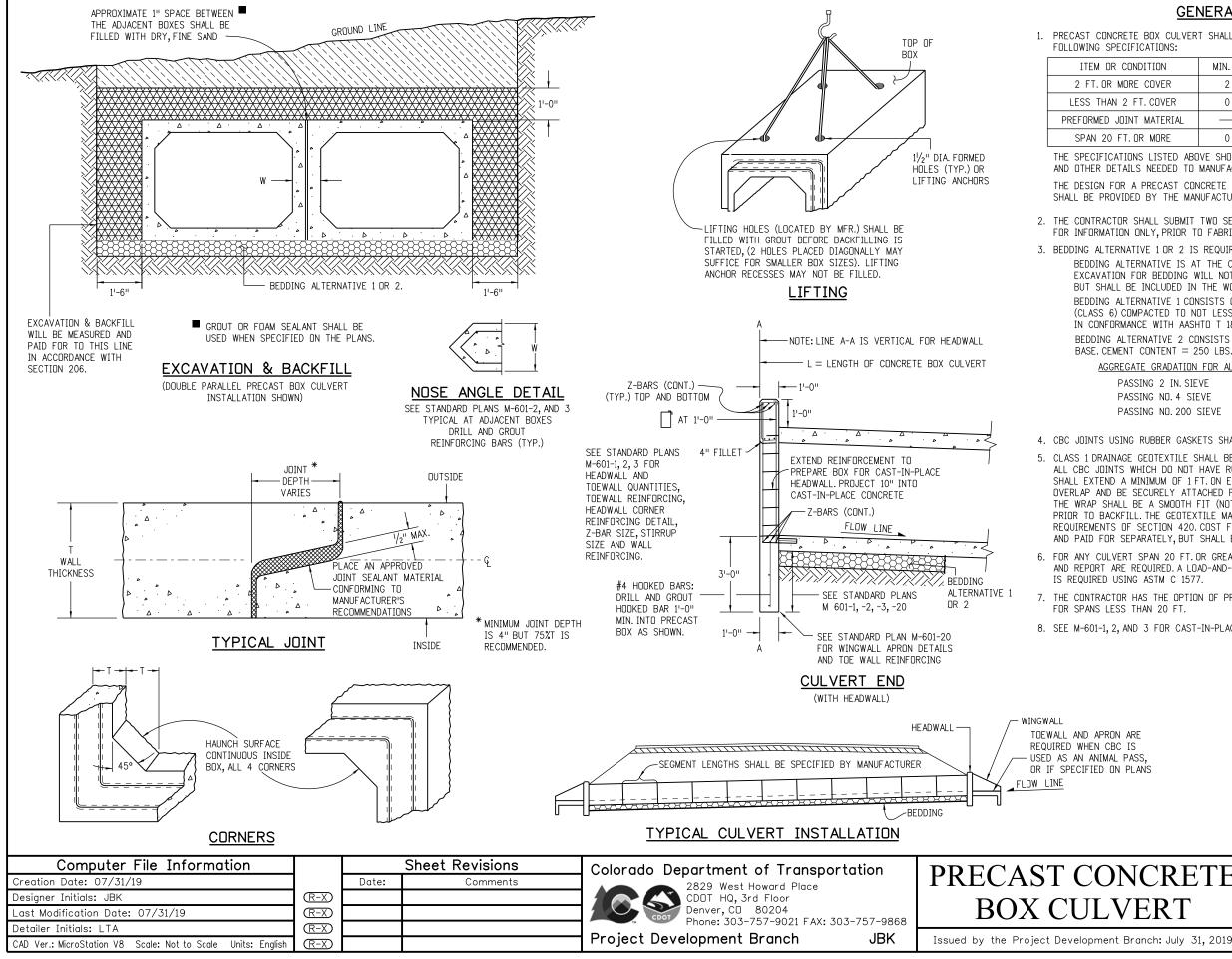
7. MINIMUM WALL THICKNESS DIMENSIONS ARE BASED ON AASHTO M 170 (WALL B) FOR CIRCULAR PIPE, AND AASHTO M 207 FOR ELLIPTICAL PIPE.

8. SPACING FOR MULTIPLE PIPE INSTALLATIONS SHALL CONFORM TO THE DETAILS SHOWN ON STANDARD PLAN M-206-1

9. WHEN A PIPE IS TO BE EXTENDED, THE SAME PIPE MATERIAL AND SIZE AS IN THE ORIGINAL PIPE INSTALLATION SHALL BE USED.

NONREINFORCED CONCRETE PIPE

1. AT THE OPTION OF THE CONTRACTOR, NONREINFORCED CONCRETE PIPE CONFORMING TO AASHTO M 86 MAY BE USED IN LIEU OF REINFORCED CONCRETE PIPE FOR ALL SIZES 36 INCHES IN DIAMETER AND SMALLER. THE NONREINFORCED CONCRETE PIPE SHALL MEET THE SAME D-LOAD TO PRODUCE THE ULTIMATE LOAD UNDER THE THREE-EDGE BEARING METHOD AS SPECIFIED FOR REINFORCED CONCRETE PIPE IN CONFORMANCE WITH AASHTO M 170. THE CONTRACTOR SHALL PROVIDE WRITTEN CERTIFICATION OF CONFORMACE. THE WALL THICKNESS OF THE NONREINFORCED PIPE MAY BE INCREASED AS REQUIRED TO MEET D-LOAD REQUIREMENT.


2. ALL REQUIREMENTS FOR REINFORCED CONCRETE PIPE, EXCEPT THOSE REFERRING TO REINFORCEMENT, SHALL APPLY TO NONREINFORCED CONCRETE PIPE.

HEIGHT OF FILL OVER TOP OF PIPE, $oldsymbol{H}$ (FEET)								
	CLASS OF PIPE (0.01 IN. CRACK D-LOAD)							
ASS CIR II	CLASS CIR III	CLASS CIR IV	CLASS CIR V					
ASS VE II	CLASS VE III	CLASS VE IV	CLASS VE V	CLASS VE VI				
ASS HE II	CLASS HE III	CLASS HE IV						
1000 D	1350 D	2000 D	3000 D	4000 D				
1 TO 18	1 TO 25	± 25 TO 37	± 37 TO 45					
1 TO 18	1 TO 25	± 25 TO 37	± 37 TO 45	± 45 TD 62				
1 TO 18	1 TO 25	± 25 TO 37						

ALLOWABLE RANGE OF HEIGHTS FOR FILL OVER REINFORCED CONCRETE PIPE

(ALL SIZES)

STANDARD PLAN NO. M-603-2 Standard Sheet No. 1 of 1 Project Sheet Number:

1. PRECAST CONCRETE BOX CULVERT SHALL CONFORM TO THE REQUIREMENTS OF THE FOLLOWING SPECIFICATIONS:

OR CONDITION	MIN. COVER	AASHTO	EQUIV. ASTM
R MORE COVER	2 FT.	M 259,TABLE 2	C 1433, TABLE 2
AN 2 FT.COVER	0 FT.	M 273, TABLE 2	C 1433, TABLE 2
D JOINT MATERIAL		M 198,6.1 DR 6.2	C 990,6.1 DR 6.2
O FT.OR MORE	0 FT.		C 1577

THE SPECIFICATIONS LISTED ABOVE SHOW REINFORCING PLACEMENT, EARTH COVER AND OTHER DETAILS NEEDED TO MANUFACTURE THE BOX CULVERTS.

THE DESIGN FOR A PRECAST CONCRETE BOX WITH A SPAN LARGER THEN 12 FT. SHALL BE PROVIDED BY THE MANUFACTURER.

2. THE CONTRACTOR SHALL SUBMIT TWO SETS OF WORKING DRAWINGS TO THE ENGINEER FOR INFORMATION ONLY, PRIOR TO FABRICATION.

3. BEDDING ALTERNATIVE 1 OR 2 IS REQUIRED:

BEDDING ALTERNATIVE IS AT THE CONTRACTOR'S OPTION. BEDDING AND EXCAVATION FOR BEDDING WILL NOT BE MEASURED AND PAID FOR SEPARATELY, BUT SHALL BE INCLUDED IN THE WORK.

BEDDING ALTERNATIVE 1 CONSISTS OF 6 IN. OF AGGREGATE BASE COURSE (CLASS 6) COMPACTED TO NOT LESS THAN 95% MAXIMUM DENSITY DETERMINED IN CONFORMANCE WITH AASHTO T 180.

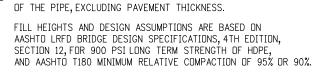
BEDDING ALTERNATIVE 2 CONSISTS OF AN 3 IN. THICK, MINIMUM, LEAN CONCRETE BASE. CEMENT CONTENT = 250 LBS./CU. YD.

AGGREGATE GRADATION FOR ALTERNATIVE 2 BEDDING:

PASSING 2 IN. SIEVE		100%
PASSING NO. 4 SIEVE	—	20% TO 70%
PASSING NO. 200 SIEVE		5% TO 15%

4. CBC JOINTS USING RUBBER GASKETS SHALL MEET ASTM C1677.

5. CLASS 1 DRAINAGE GEOTEXTILE SHALL BE COMPLETELY WRAPPED AROUND ALL CBC JOINTS WHICH DO NOT HAVE RUBBER GASKETS. THE GEOTEXTILE SHALL EXTEND A MINIMUM OF 1 FT. ON EACH SIDE OF JOINTS AND SHALL OVERLAP AND BE SECURELY ATTACHED FOR AT LEAST 1 FT. AT ITS ENDS. THE WRAP SHALL BE A SMOOTH FIT (NOT LOOSE OR STRETCHED) JUST PRIOR TO BACKFILL THE GEOTEXTILE MATERIAL SHALL MEET THE APPLICABLE REQUIREMENTS OF SECTION 420. COST FOR GEOTEXTILE WILL NOT BE MEASURED AND PAID FOR SEPARATELY, BUT SHALL BE INCLUDED IN THE WORK.

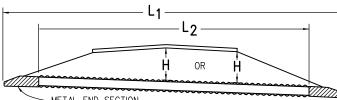

6. FOR ANY CULVERT SPAN 20 FT. OR GREATER, A FOUNDATION INVESTIGATION AND REPORT ARE REQUIRED. A LOAD-AND-RESISTANCE FACTOR DESIGN (LRFD) IS REQUIRED USING ASTM C 1577.

7. THE CONTRACTOR HAS THE OPTION OF PROVIDING A CBC WHICH MEETS ASTM C 1577 FOR SPANS LESS THAN 20 FT.

8. SEE M-601-1, 2, AND 3 FOR CAST-IN-PLACE CONCRETE BOX CULVERT DETAILS.

	LEGE	<u>ND</u>
[STRUCTURE EXCAVATION LIMITS
Ş		STRUCTURE BACKFILL, (CLASS 1)
RON ARE C.B.C. IS	i[i[i]i	EMBANKMENT MATERIAL
IAL PASS, DN PLANS		EARTH
Ē		BEDDING
[· · Δ ·	CONCRETE
DNCRETE	STA	NDARD PLAN NO.
		M-603-3
VERT	Stand	lard Sheet No. 1 of 1
ent Branch: July 31, 2019		Project Sheet Number:

<u>LEGEND</u> H = MAXIMUM ALLOWABLE HEIGHT OF COVER OVER THE TOP

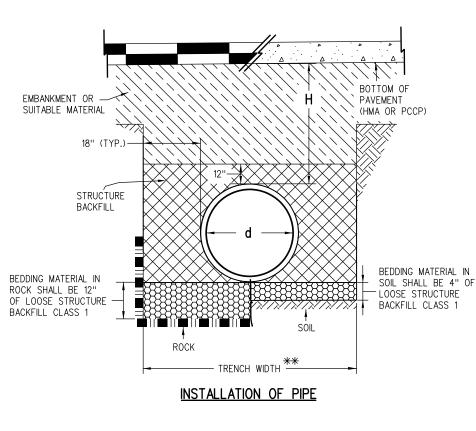

FILL HEIGHTS ARE BASED ON AASHTO M294 FOR POYLEHTELENE AND AASHTO M330 FOR POLYPROPYLENE, TYPE S PIPES WITH OUTER, CORRUGATED WALLS AND SMOOTH INNER LINEARS.

FILL HEIGHTS, FOR INSTALLATION WITH HIGH WATER TABLE, REQUIRE A SPECIAL DÉSIGN. THE MAXIMUM HEIGHT IN HIGHWATER LOCATIONS SHOULD BE 15 FEET OR BASED ON AASHTO LRFD DESIGN SPECIFICATIONS.

THE MINIMUM COVER SHALL BE AS SHOWN ON THESE TABLES OR CONFORM TO AASHTO REQUIREMENTS, WHICHEVER IS GREATER. THE MINIMUM COVER FOR PIPE IS MEASURED FROM THE TOP OF THE PIPE TO THE BOTTOM OF THE PAVEMENT: HMA OR PCCP.

THE MINIMUM COVER IS MEASURED FROM THE TOP OF THE PIPE TO THE TOP OF THE SUBGRADE DURING CONSTRUCTION. THE MINIMUM COVER IS BASED ON DUAL AXLE LOADS UP TO 50.000 POUNDS.

- L 1 = LENGTH OF PIPE TO BE MEASURED WHEN PLACED IN ACCORDANCE WITH SECTION 624.
- L2 = LENGTH OF PIPE TO BE MEASURED WHEN PLACED IN ACCORDANCE
- WITH SECTION 603.
- THE MINIMUM SPACING BETWEEN THE OUTSIDE WALLS OF MULTIPLE PIPES + = OR END SECTIONS IS 18" OR $\frac{1}{2}$ (d), WHICHEVER IS GREATER.


METAL END SECTION NOTE: USE THE H THAT IS GREATER FOR MAXIMUM ALLOWABLE FILL HEIGHT.

PIPE WITH END SECTIONS

PIPE DIAMETER, d	H MINIMUN	M HEIGHT	H MAXIMUM HEIGHT OF COVER (FT.)			
(IN.)	OF COVE	ER (FT.)	95% CO	MPACTION	90% COMPACTION	
12	2	2	27	25	19	17
15	2	2	29	27	20	20
18	2	2	24	23	17	17
24	2	2	21	20	15	14
30	2	2	18	23	12	17
36	2	2	20	20	13	14
42	2	2	19	18	13	13
48	3	2	17	20	12	13
60	3	2.5	20	21	13	14

NOTE: THE VALUES FOR POLYPROPYLENE PIPES (AASHTO M330) ARE SHOWN IN ITALICS.

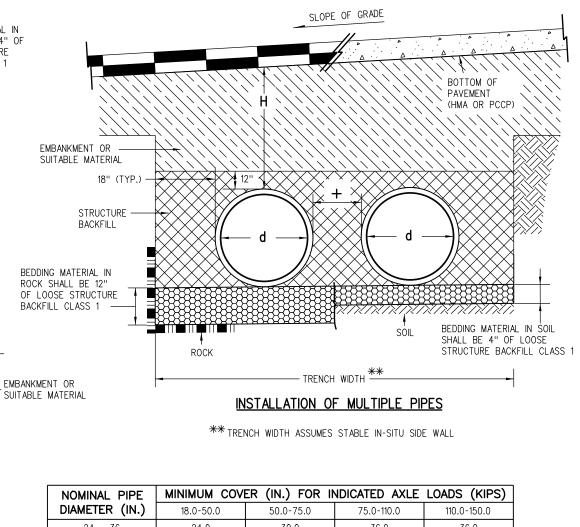
MINIMUM AND MAXIMUM COVER

L1 OR L2

NOTE: USE THE H THAT IS GREATER FOR MAXIMUM ALLOWABLE FILL HEIGHT.

PIPE WITHOUT END SECTIONS

OR


EMBANKMENT OR MIN. COVER 12". - PIPF STRUCTURE BACKFILL

NOMINAL PIPE	MINIMUM
DIAMETER (IN.)	18.0-50.
24 - 36	24.0
42 - 48	36.0
54 - 60	36.0

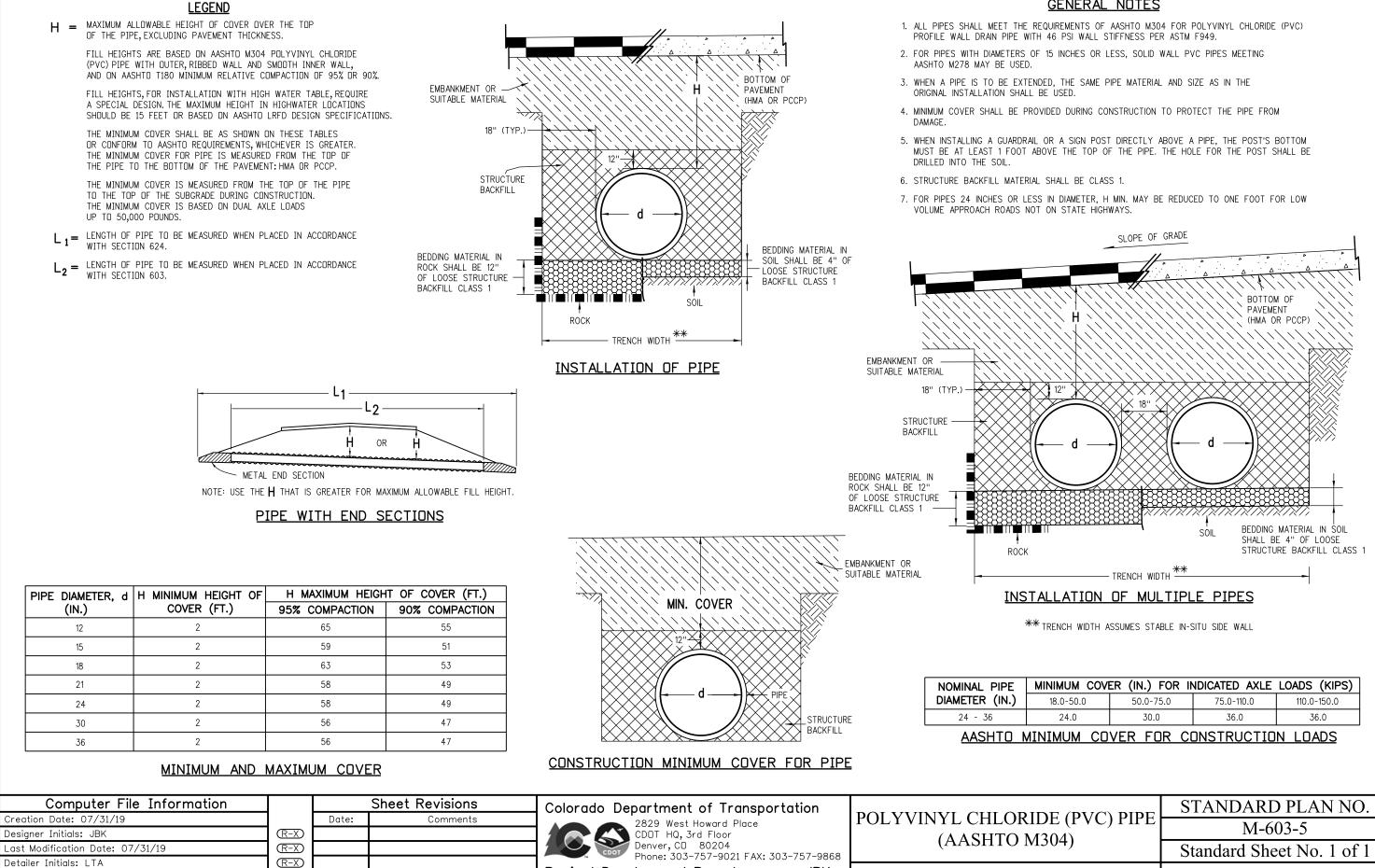
AASHTO MINIMUM COVER FOR CONSTRUCTION LOADS

Computer File Information			Sheet Revisions	Colorado Department of Transportation	CORRUGATED	STANDARD PLAN NO.
Creation Date: 07/31/19		Date:	Comments	2829 West Howard Place	POLYETHYLENE PIPE (AASHTO M294)	M-603-4
Designer Initials: JBK	(R-X)			CDDT HQ, 3rd Floor	AND	IVI-003-4
Last Modification Date: 07/31/19	(R-X)			Denver, CO 80204 Phone: 303-757-9021 FAX: 303-757-9868	POLYPROPYLENE PIPE (AASHTO M330)	Standard Sheet No. 1 of 1
Detailer Initials: LTA	(R-X)					
CAD Ver.: MicroStation V8 Scale: Not to Scale Units: English	(R-X)			Project Development Branch JBK	Issued by the Project Development Branch: July 31, 2019	Project Sheet Number:

- WITH SMOOTH INNER SURFACE.
- ORIGINAL INSTALLATION SHALL BE USED.
- DAMAGE.
- DRILLED INTO THE SOIL.
- 5. STRUCTURE BACKFILL MATERIAL SHALL BE CLASS 1.

GENERAL NOTES

1. ALL PIPES SHALL MEET THE REQUIREMENTS OF AASHTO M294 FOR POLYETHELENE AND AASHTO M330 FOR POLYPROPYLENE, TYPE S FOR HIGH DENSITY CORRUGATED POLYETHYLENE PIPE (HDPE) AND POLYPROPYLENE PIPE (PP) RESPECTIVELY,


2. WHEN A PIPE IS TO BE EXTENDED, THE SAME PIPE MATERIAL AND SIZE AS IN THE

3. MINIMUM COVER SHALL BE PROVIDED DURING CONSTRUCTION TO PROTECT THE PIPE FROM

4. WHEN INSTALLING A GUARDRAIL OR A SIGN POST DIRECTLY ABOVE A PIPE, THE POST'S BOTTOM MUST BE AT LEAST 1 FOOT ABOVE THE TOP OF THE PIPE. THE HOLE FOR THE POST SHALL BE

6. FOR PIPES 24 INCHES OR LESS IN DIAMETER, H MIN. MAY BE REDUCED TO ONE FOOT FOR LOW VOLUME APPROACH ROADS NOT ON STATE HIGHWAYS.

36.0	42.0	48.0	
36.0	42.0	48.0	
50.0	36.0	36.0	

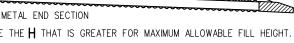
CAD Ver.: MicroStation V8 Scale: Not to Scale Units: English

(R-X)

Project Development Branch JBK

Issued by the Project Development Branch: July 31, 2019

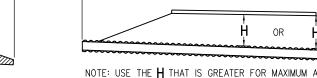
GENERAL NOTES


	PIPE DIAMETER, d (IN.)	H MINIMUM OF COVER		H MAXIMUM HEIGHT * OF COVER (FT.)		BANKMENT OR
	30	2		50	MIN. COVER	
	36	2		50		
	42	2		50		
	48	2		30		
	54	2		30		NOMINAL PIPE MI DIAMETER (IN.)
	60	2.5		30		30 - 36
	* A MANUFACTURER'S CER	RTIFICATION OF MAX	IMUM ALLOW	VABLE FILL HEIGHT IS REQUIRED		42 - 48
	PRIOR TO INSTALLATION	l.			BACKFILL	54 - 60
	MININ	<u>MUM AND M</u>	AXIMU	<u>M COVER</u>		<u>AASHTO MINI</u>
					CONSTRUCTION MINIMUM COVER FOR PIPE	
	mputer File Informa	Ition		Sheet Revisions	Colorado Department of Transportation	STEEL REIN
Creation Dat Designer Init	e: 07/31/19		R-X)	Date: Comments	2829 West Howard Place	POLYETHYLEN
-	ition Date: 07/31/19		$\mathbb{R}^{-\lambda}$		2829 West Howard Place CDDT HQ, 3rd Floor Denver, CD 80204 Phone: 303-757-9021 FAX: 303-757-9868	(AASHTC
Dotailor Initia	als: LTA		R-X			
Dergier Thru		Units: English	R-X)		Project Development Branch JBK	Issued by the Project Develo

METAL END SECTION

PIPE WITH END SECTIONS

NOTE: USE THE H THAT IS GREATER FOR MAXIMUM ALLOWABLE FILL HEIGHT.



L2

OR

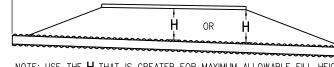
EMBANKMENT OR

BEDDING MATERIAL IN

ROCK SHALL BE 12"

BACKFILL CLASS 1

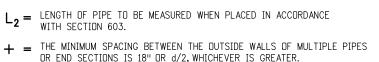
OF LOOSE STRUCTURE -


SUITABLE MATERIAL

18" (TYP.

STRUCTURE

BACKFILL


PIPE WITHOUT END SECTIONS

NOTE: USE THE H THAT IS GREATER FOR MAXIMUM ALLOWABLE FILL HEIGHT.

INSTALLATION OF PIPE L1_{OR} L2

ROCK

UP TO 50,000 POUNDS. L 1 = LENGTH OF PIPE TO BE MEASURED WHEN PLACED IN ACCORDANCE WITH SECTION 624.

THE PIPE TO THE BOTTOM OF THE PAVEMENT: HMA OR PCCP.

THE MINIMUM COVER IS BASED ON DUAL AXLE LOADS

WITH RIBBED REINFORCED STEEL WALLS. FILL HEIGHTS FOR INSTALLATION WITH HIGH WATER TABLE REQUIRE A SPECIAL DESIGN.

FILL HEIGHTS ARE BASED ON AASHTO MP 20, TYPE S PIPES

<u>LEGEND</u>

FILL HEIGHTS AND DESIGN ASSUMPTIONS ARE BASED ON AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS, 7TH EDITION,

H = MAXIMUM ALLOWABLE HEIGHT OF COVER OVER THE TOP

SECTION 12.7.

OF THE PIPE, EXCLUDING PAVEMENT THICKNESS.

THE MINIMUM COVER SHALL BE AS SHOWN ON THESE TABLES

OR CONFORM TO AASHTO REQUIREMENTS, WHICHEVER IS GREATER.

TO THE TOP OF THE SUBGRADE DURING CONSTRUCTION.

THE MINIMUM COVER FOR PIPE IS MEASURED FROM THE TOP OF THE MINIMUM COVER IS MEASURED FROM THE TOP OF THE PIPE

EMBANKMENT OR SUITABLE MATERIAL

BEDDING MATERIAL IN

ROCK SHALL BE 12"

OF LOOSE STRUCTURE

BACKFILL CLASS 1 -

18" (TYP.)

STRUCTURE BACKFILL

BOTTOM OF

(HMA OR PCCP)

BEDDING MATERIAL IN

SOIL SHALL BE 4" OF

LOOSE STRUCTURE

BACKFILL CLASS 1

PAVEMENT

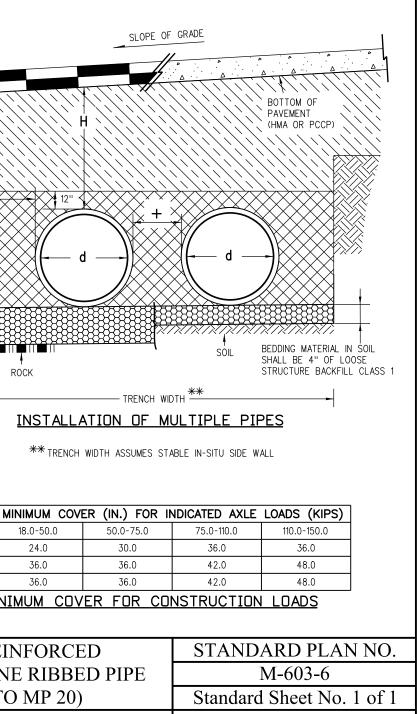
SOIL

- TRENCH WIDTH **

2. WHEN A PIPE IS TO BE EXTENDED, THE SAME PIPE MATERIAL AND SIZE AS IN THE ORIGINAL INSTALLATION SHALL BE USED.

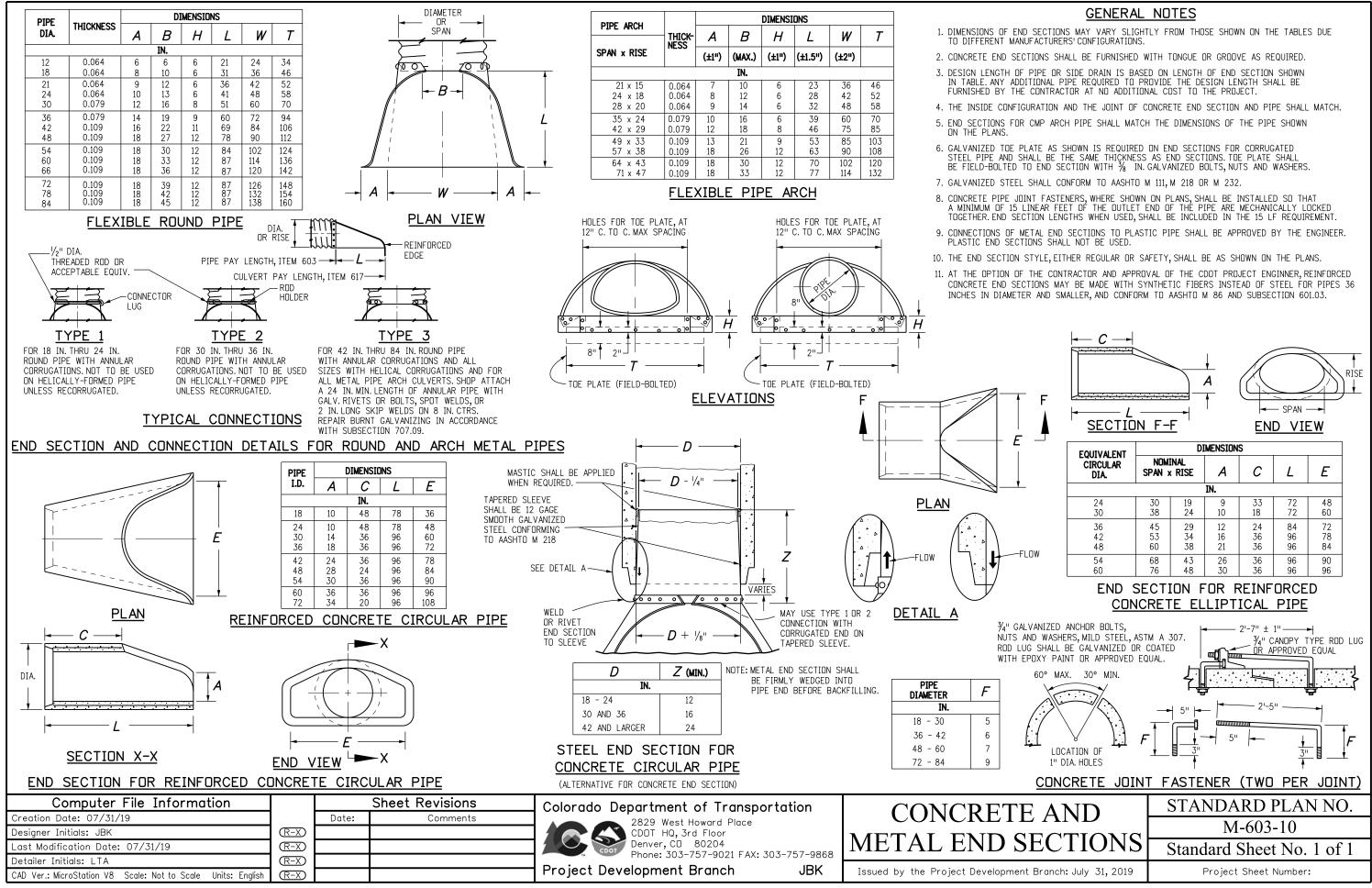
DAMAGE

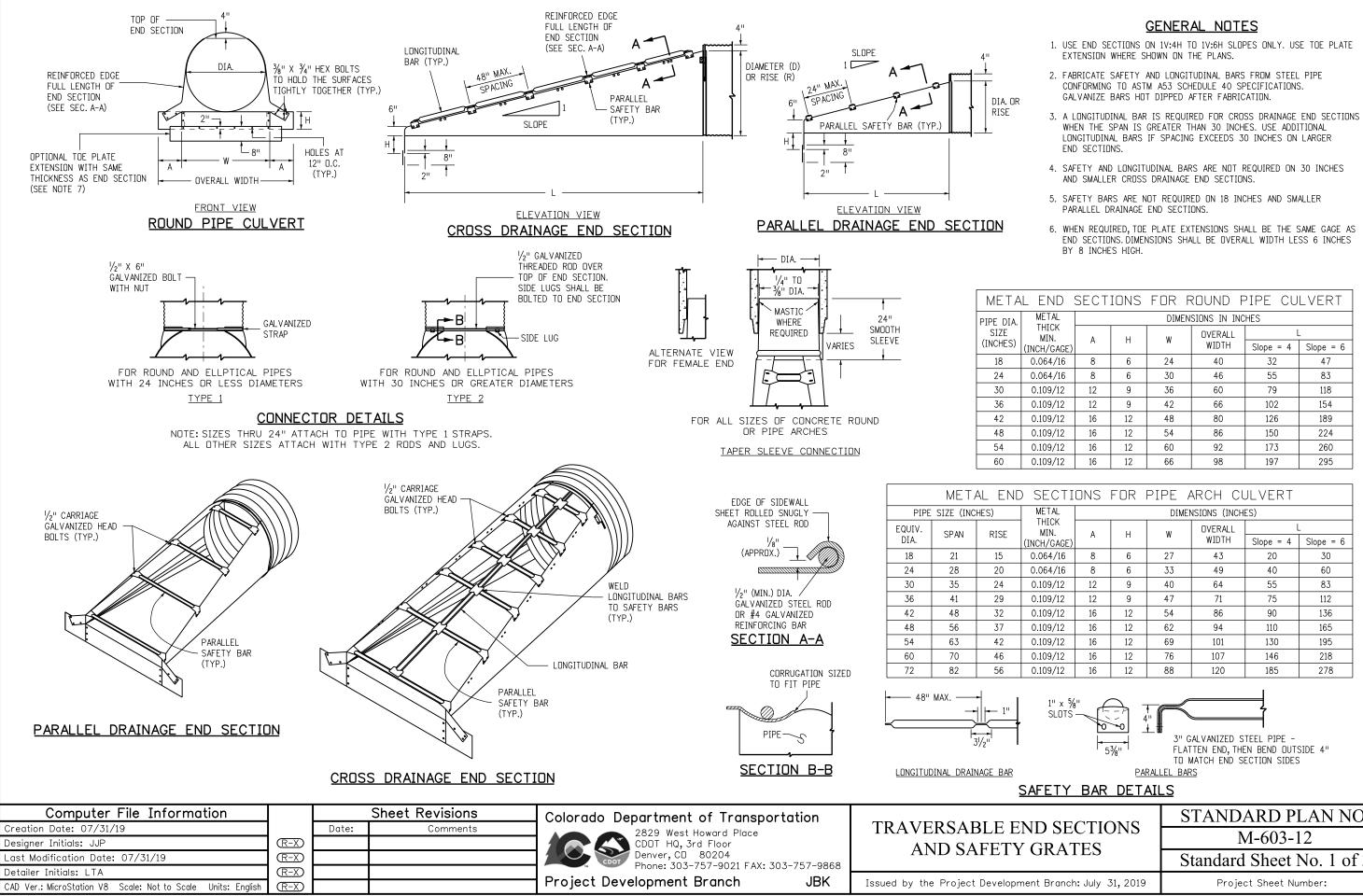
DRILLED INTO THE SOIL


5. STRUCTURE BACKFILL MATERIAL SHALL BE CLASS 1.

GENERAL NOTES

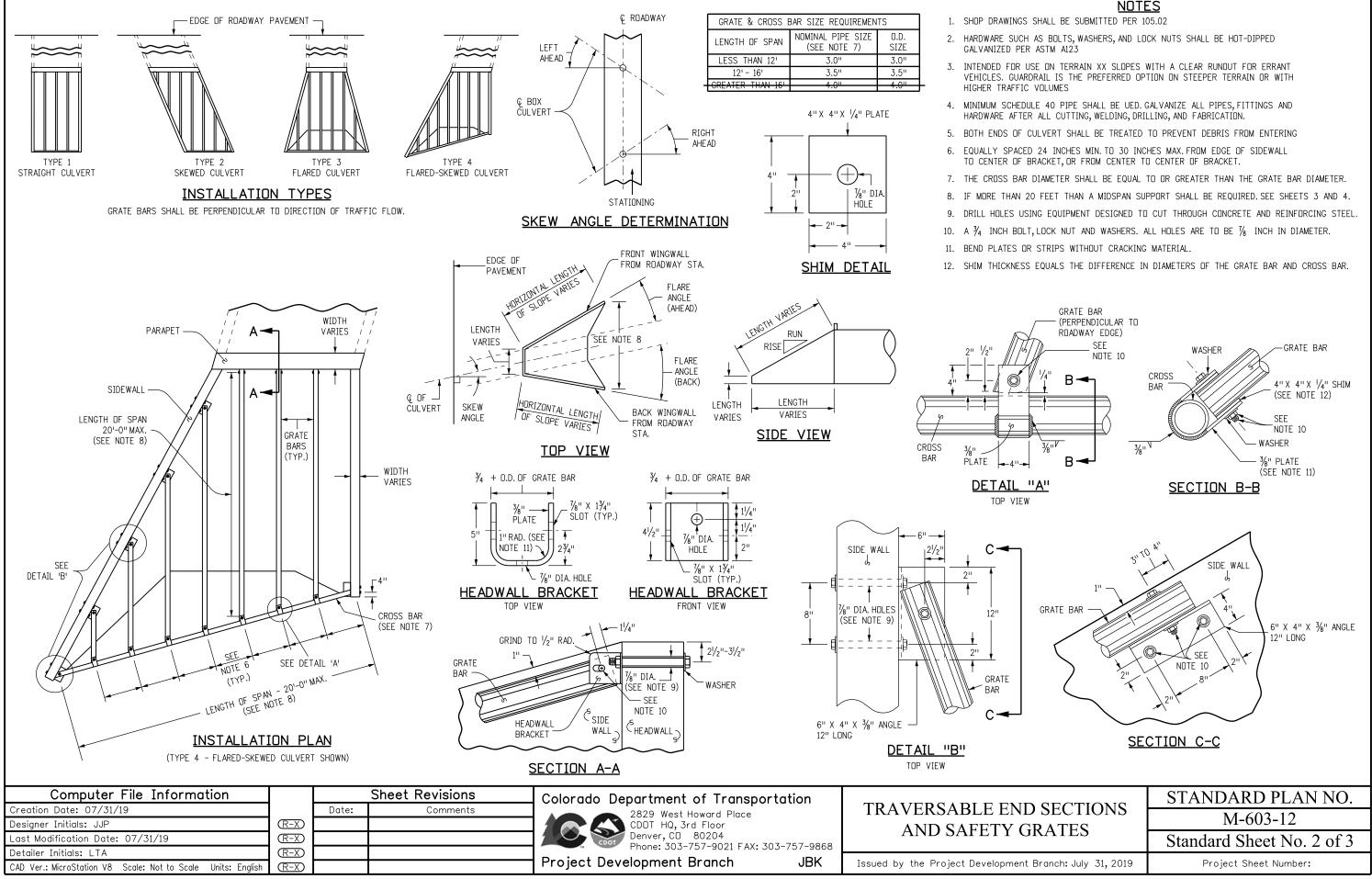
1. ALL PIPES SHALL MEET THE REQUIREMENTS OF AASHTO MP 20 FOR STEEL REINFORCED, POLYETHYLENE, TYPE S RIBBED PIPE WITH SMOOTH INNER SURFACE. INSTALLATION SHALL CONFORM TO AASHTO LRFD BRIDGE CONSTRUCTION SPECIFICATIONS, 3RD EDITION, SECTION 26.


3. MINIMUM COVER SHALL BE PROVIDED DURING CONSTRUCTION TO PROTECT THE PIPE FROM

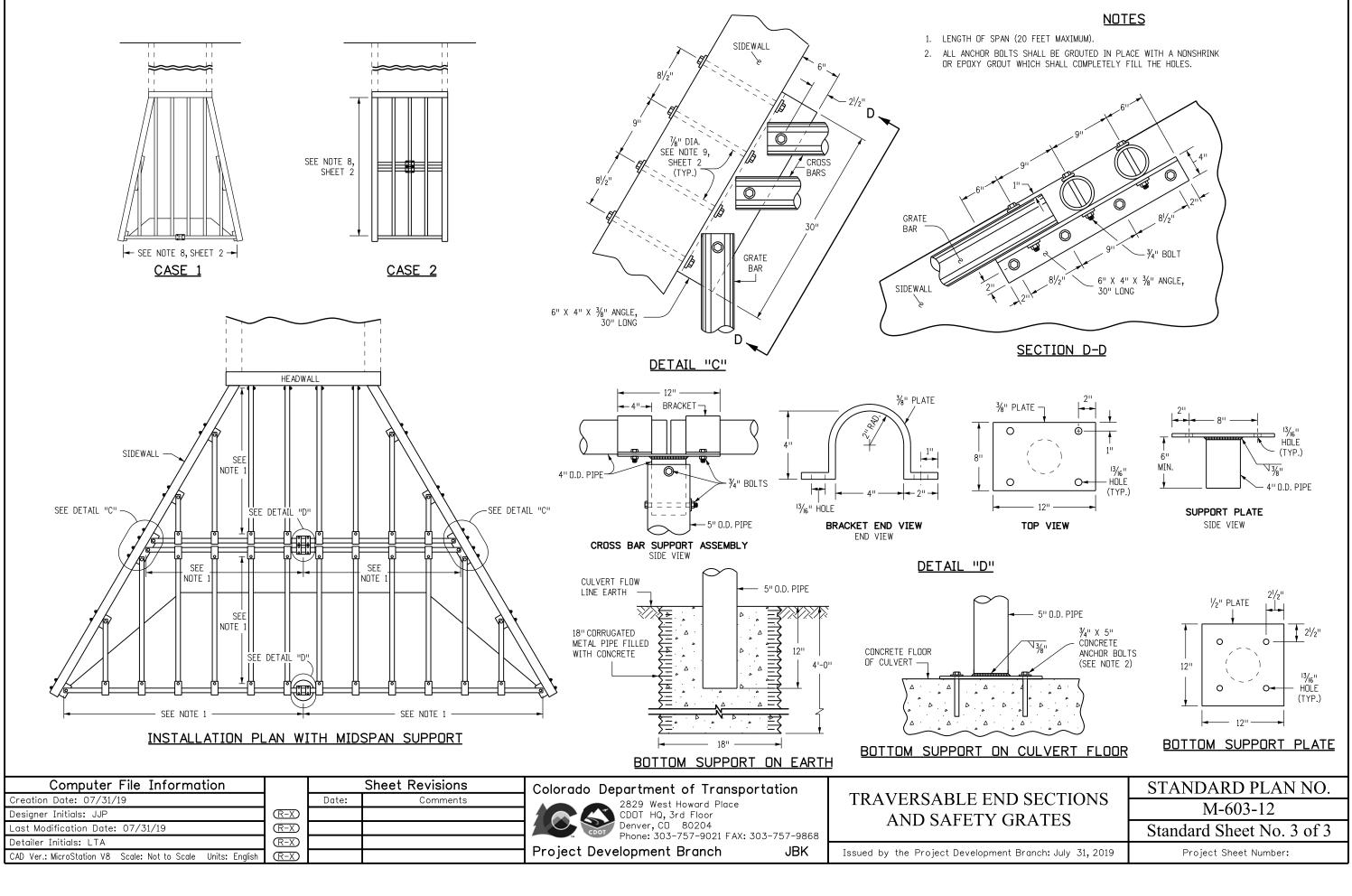

4. WHEN INSTALLING A GUARDRAIL OR A SIGN POST DIRECTLY ABOVE A PIPE, THE POST'S BOTTOM MUST BE AT LEAST 1 FOOT ABOVE THE TOP OF THE PIPE. THE HOLE FOR THE POST SHALL BE

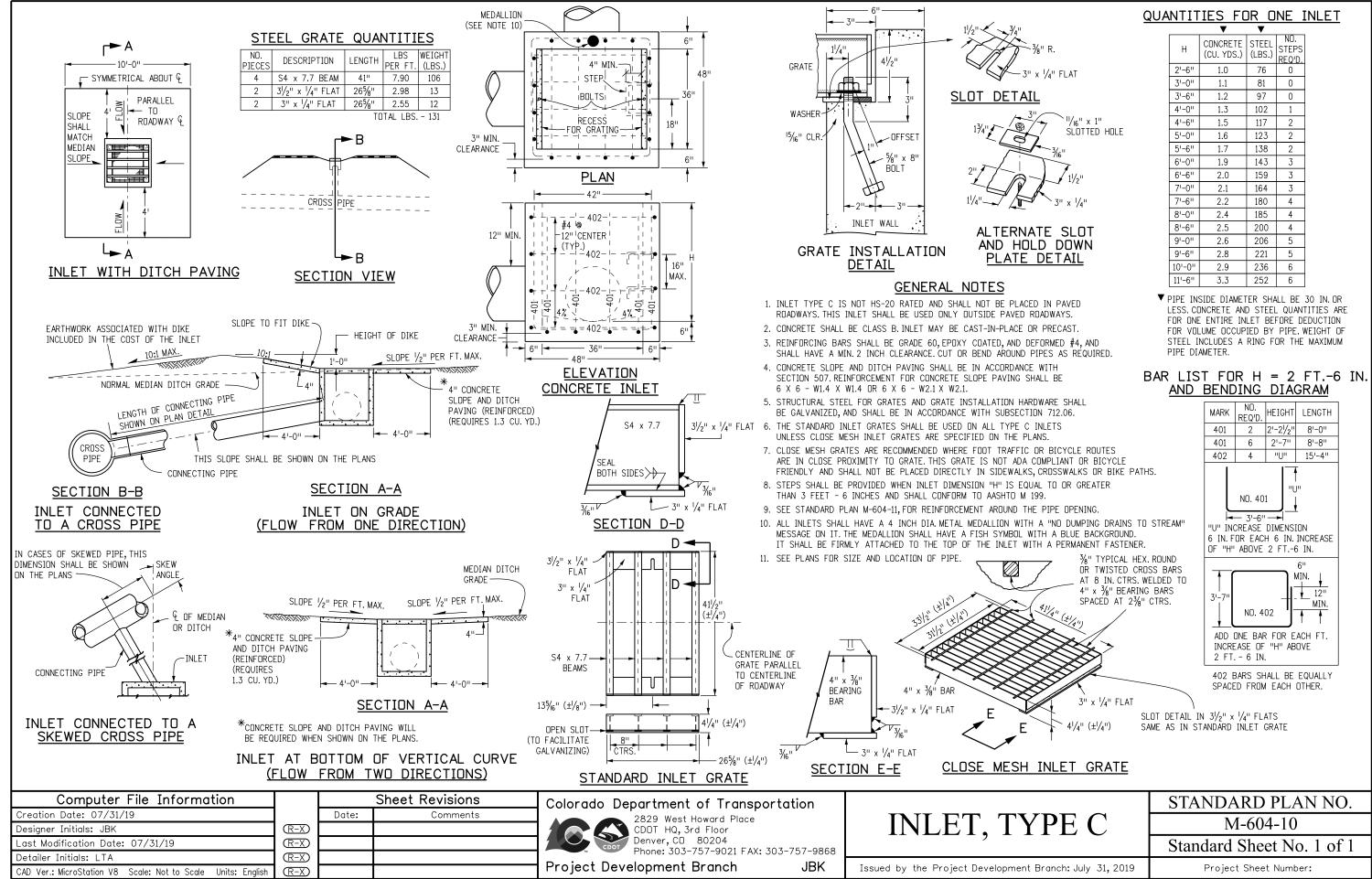
Project Sheet Number:

elopment Branch: July 31, 2019

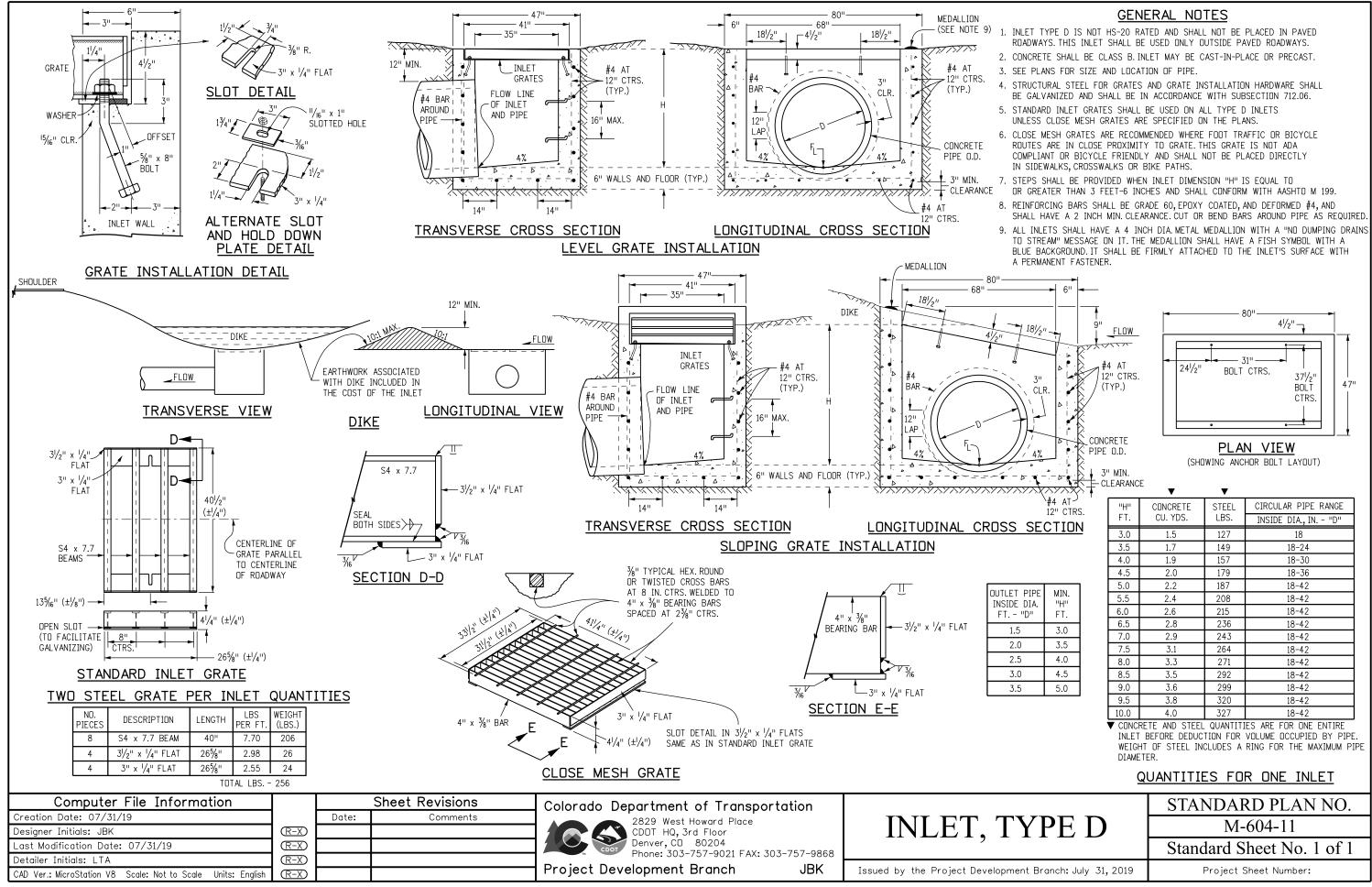


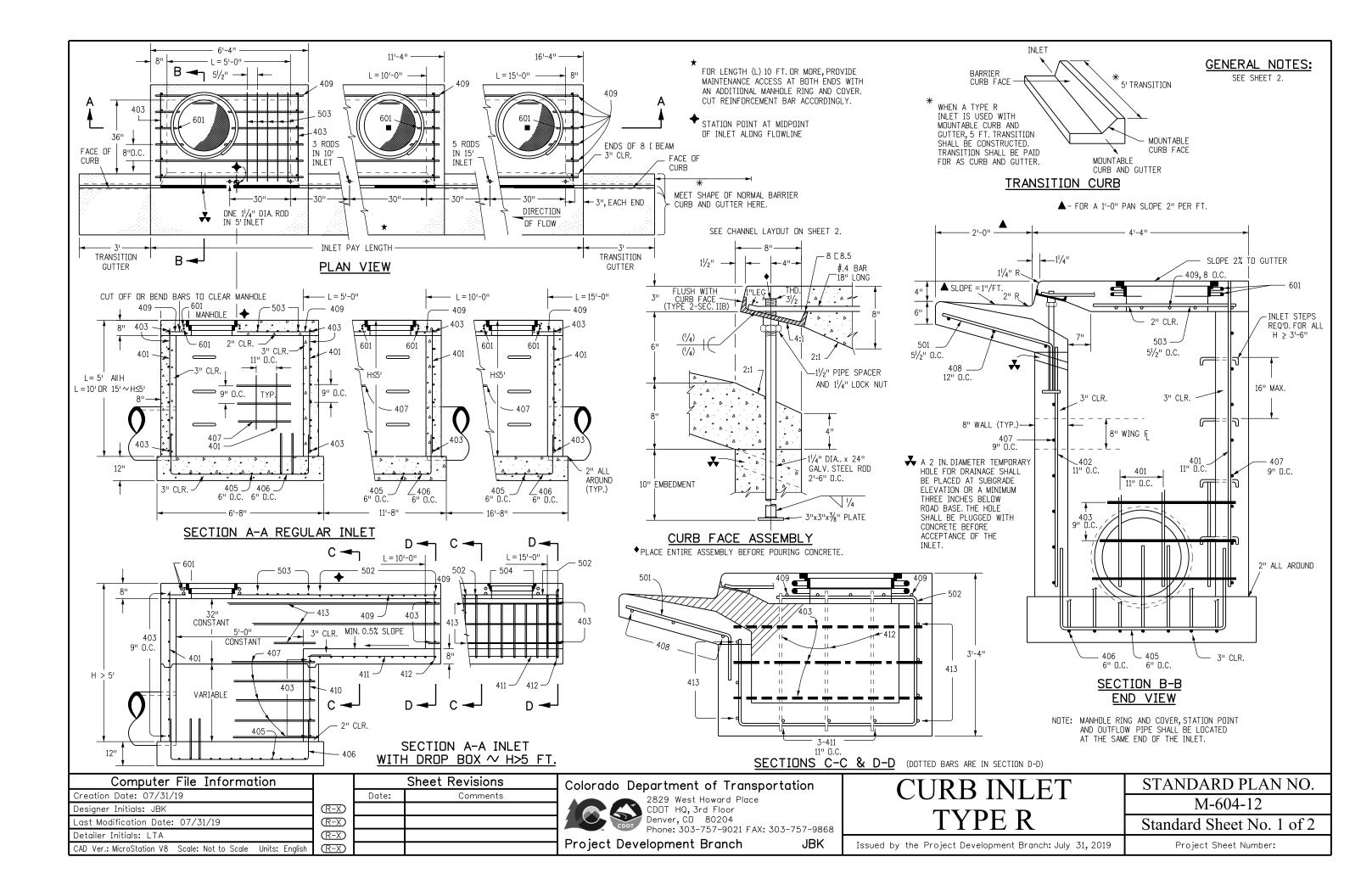
- 6. WHEN REQUIRED, TOE PLATE EXTENSIONS SHALL BE THE SAME GAGE AS END SECTIONS. DIMENSIONS SHALL BE OVERALL WIDTH LESS 6 INCHES

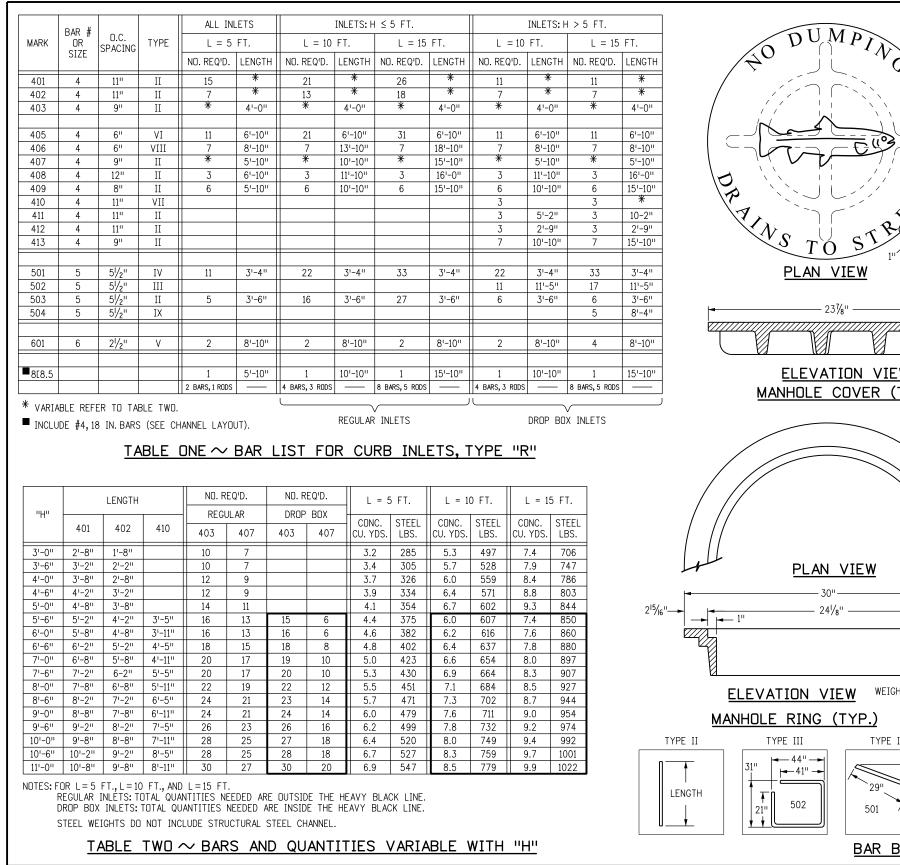

. END SECTIONS FOR ROUND PIPE CULVERT							
METAL			DIME	NSIONS IN INC	HES		
THICK MIN.	А	Н	w	OVERALL	l	-	
INCH/GAGE)	A	П	vv	WIDTH	Slope = 4	Slope = 6	
0.064/16	8	6	24	40	32	47	
0.064/16	8	6	30	46	55	83	
0.109/12	12	9	36	60	79	118	
0.109/12	12	9	42	66	102	154	
0.109/12	16	12	48	80	126	189	
0.109/12	16	12	54	86	150	224	
0.109/12	16	12	60	92	173	260	
0.109/12	16	12	66	98	197	295	


SECTIONS FOR PIPE ARCH CULVERT						
METAL	DIMENSIONS (INCHES)					
THICK MIN.		н	w	OVERALL	L	
INCH/GAGE)	A		vv	WIDTH	Slope = 4	Slope = 6
0.064/16	8	6	27	43	20	30
0.064/16	8	6	33	49	40	60
0.109/12	12	9	40	64	55	83
0.109/12	12	9	47	71	75	112
0.109/12	16	12	54	86	90	136
0.109/12	16	12	62	94	110	165
0.109/12	16	12	69	101	130	195
0.109/12	16	12	76	107	146	218
0.109/12	16	12	88	120	185	278

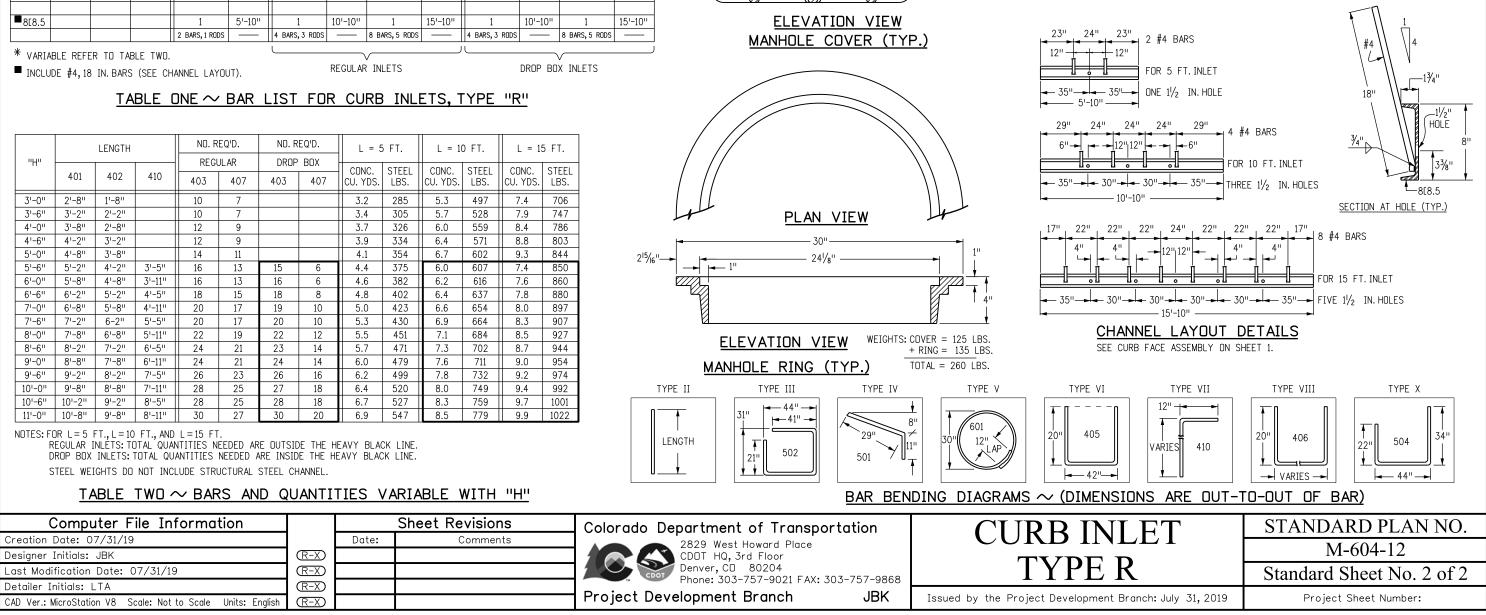
ALETT DAR DETAILS				
ND SECTIONS	STANDARD PLAN NO.			
GRATES	M-603-12			
UKATES	Standard Sheet No. 1 of 3			
ent Branch: July 31, 2019	Project Sheet Number:			




NOTES



	STANDARD PLAN NO.		
YPE C	M-604-10		
	Standard Sheet No. 1 of 1		
ent Branch: July 31, 2019	Project Sheet Number:		



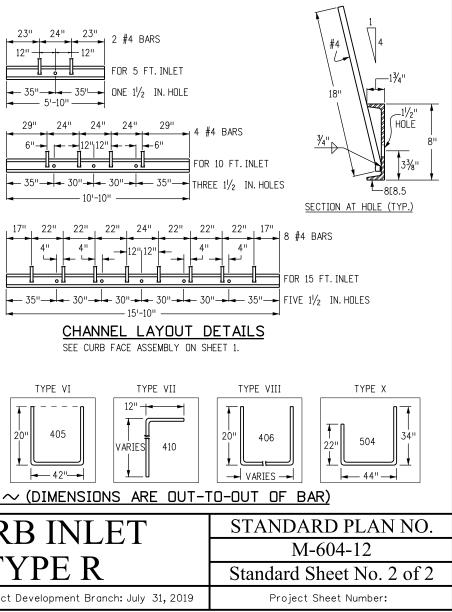
Creation Date: 07/31/19

Designer Initials: JBK

Detailer Initials: LTA

23%"

2.


9.

PIPES

SEE NOTE 11

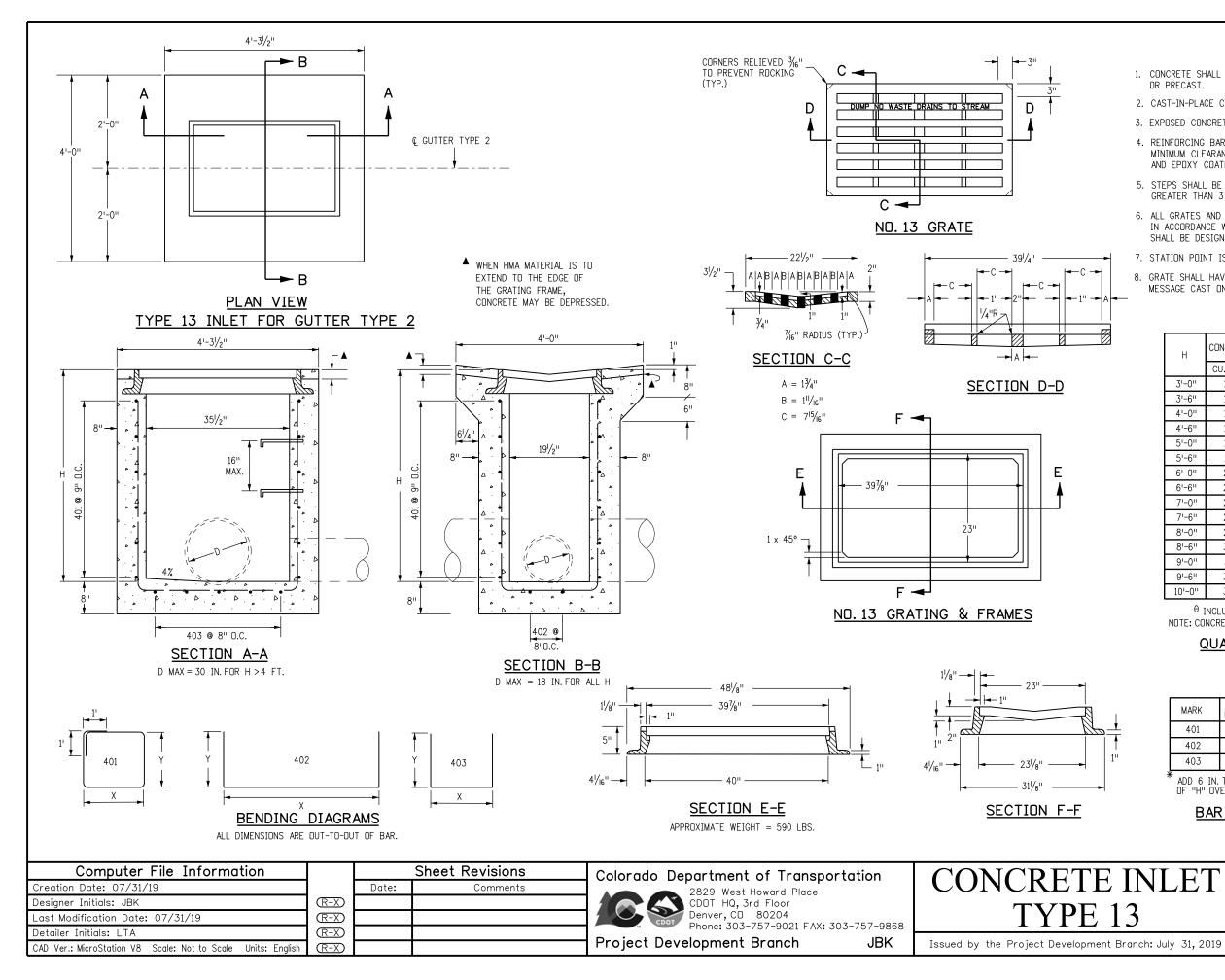
6

29"	24
6"-	
	Ľ
	0
- 35"—	

GENERAL NOTES

CONCRETE SHALL BE CLASS B. INLET MAY BE CAST-IN-PLACE OR PRECAST. CONCRETE WALLS SHALL BE FORMED ON BOTH SIDES AND SHALL BE 8 INCHES THICK. 3. INLET STEPS SHALL BE IN CONFORMANCE WITH AASHTO M 199. 4. CURB FACE ASSEMBLY SHALL BE GALVANIZED AFTER WELDING.

5. EXPOSED CONCRETE CORNERS SHALL BE CHAMFERED $\frac{3}{4}$ OF A INCH. CURB AND GUTTER CORNERS SHALL BE FINISHED TO MATCH THE EXISTING CURB AND GUTTER BEYOND THE TRANSITION GUTTER.


6. REINFORCING BARS SHALL BE DEFORMED AND SHALL HAVE A 2 INCH MINIMUM CLEARANCE. ALL REINFORCING BARS SHALL BE GRADE 60 AND EPOXY COATED. 7. DIMENSIONS AND WEIGHTS OF TYPICAL MANHOLE RING AND COVER ARE NOMINAL.

8. MATERIAL FOR MANHOLE RINGS AND COVERS SHALL BE GRAY OR DUCTILE CAST IRON IN ACCORDANCE WITH SUBSECTION 712.06.

SINCE PIPE ENTRIES INTO THE INLET ARE VARIABLE, THE DIMENSIONS SHOWN ARE TYPICAL. ACTUAL DIMENSIONS AND QUANTITIES FOR CONCRETE AND REINFORCEMENT SHALL BE AS REQUIRED IN THE WORK. QUANTITIES INCLUDE VOLUMES OCCUPIED BY

10. STRUCTURAL STEEL SHALL BE GALVANIZED AND SHALL BE IN ACCORDANCE WITH SUBSECTION 712.06.

11. ALL MANHOLE COVERS SHALL BE CAST WITH A "NO DUMPING DRAINS TO STREAM" MESSAGE AND A FISH SYMBOL. THE SURFACE OF THE MANHOLE COVER SHALL HAVE A NON-SLIP PATTERN.

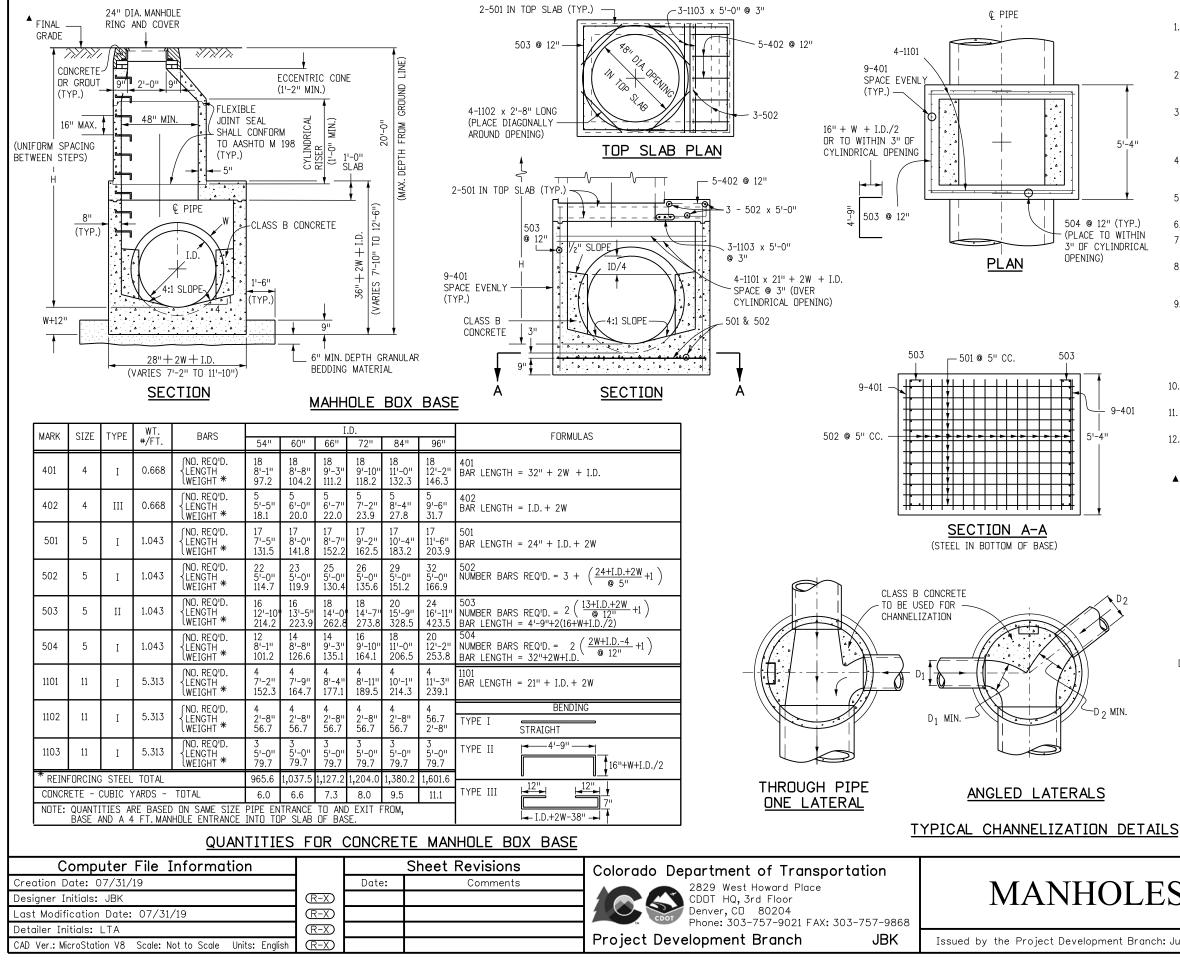
- 1. CONCRETE SHALL BE CLASS B. INLET MAY BE CAST-IN-PLACE OR PRECAST.
- 2. CAST-IN-PLACE CONCRETE WALLS SHALL BE FORMED ON BOTH SIDES.
- 3. EXPOSED CONCRETE CORNERS SHALL BE CHAMFERED $\frac{3}{4}$ OF A INCH.
- 4. REINFORCING BARS SHALL BE DEFORMED #4 AND SHALL HAVE A 2 INCH MINIMUM CLEARANCE. ALL REINFORCING BARS SHALL BE GRADE 60 AND EPOXY COATED.
- 5. STEPS SHALL BE PROVIDED WHEN INLET DIMENSION "H" IS EQUAL TO OR GREATER THAN 3 FEET-6 INCHES AND SHALL CONFORM TO AASHTO M 199.
- 6. ALL GRATES AND FRAMES SHALL BE GRAY OR DUCTILE CAST IRON IN ACCORDANCE WITH SUBSECTION 712.06. GRATES AND FRAMES SHALL BE DESIGNED TO WITHSTAND HS 20 LOADING.
- 7. STATION POINT IS AT THE CENTER OF THE INLET.
- GRATE SHALL HAVE "DUMP NO WASTE DRAINS TO STREAM" 8 MESSAGE CAST ON SURFACE.

	CONCRETE	REINFORCING STEEL	NO. OF	MAXIMUM PIPE I.D.	
Н	CUNCILLE		401 BARS	SEC. A-A	SEC. B-B
	CU. YDS.	θ LB.	REQ'D.	IN.	IN.
3'-0''	1.3	72	4	18	18
3'-6"	1.5	76	4	24	18
4'-0''	1.6	90	5	30	18
4'-6"	1.8	104	6	30	18
5'-0''	1.9	109	6	30	18
5'-6''	2.1	122	7	30	18
6'-0''	2.2	136	8	30	18
6'-6''	2.4	141	8	30	18
7'-0''	2.5	154	9	30	18
7'-6''	2.7	168	10	30	18
8'-0''	2.8	173	10	30	18
8'-6"	3.0	187	11	30	18
9'-0''	3.1	200	12	30	18
9'-6"	3.3	205	12	30	18
10'-0''	3.4	219	13	30	18

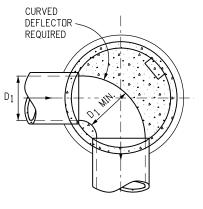
 θ INCLUDES 1% FOR OVERRUN. NOTE: CONCRETE QUANTITIES INCLUDE VOLUME OCCUPIED BY PIPE.

QUANTITIES FOR ONE INLET

	IARK	NO.	DIMENS	IONS	LENGTH	
IV	IARK	REQ'D.	Х	Y	LENGTH	
	401	4	3'-6"	2'-2"	13'-4''	
	402	2	3'-4 /2"	* 2'-6 ^l /2"	8'-5 /2"	
	403	5	2'- /2''	* 2'-7"	7'-2 /2"	

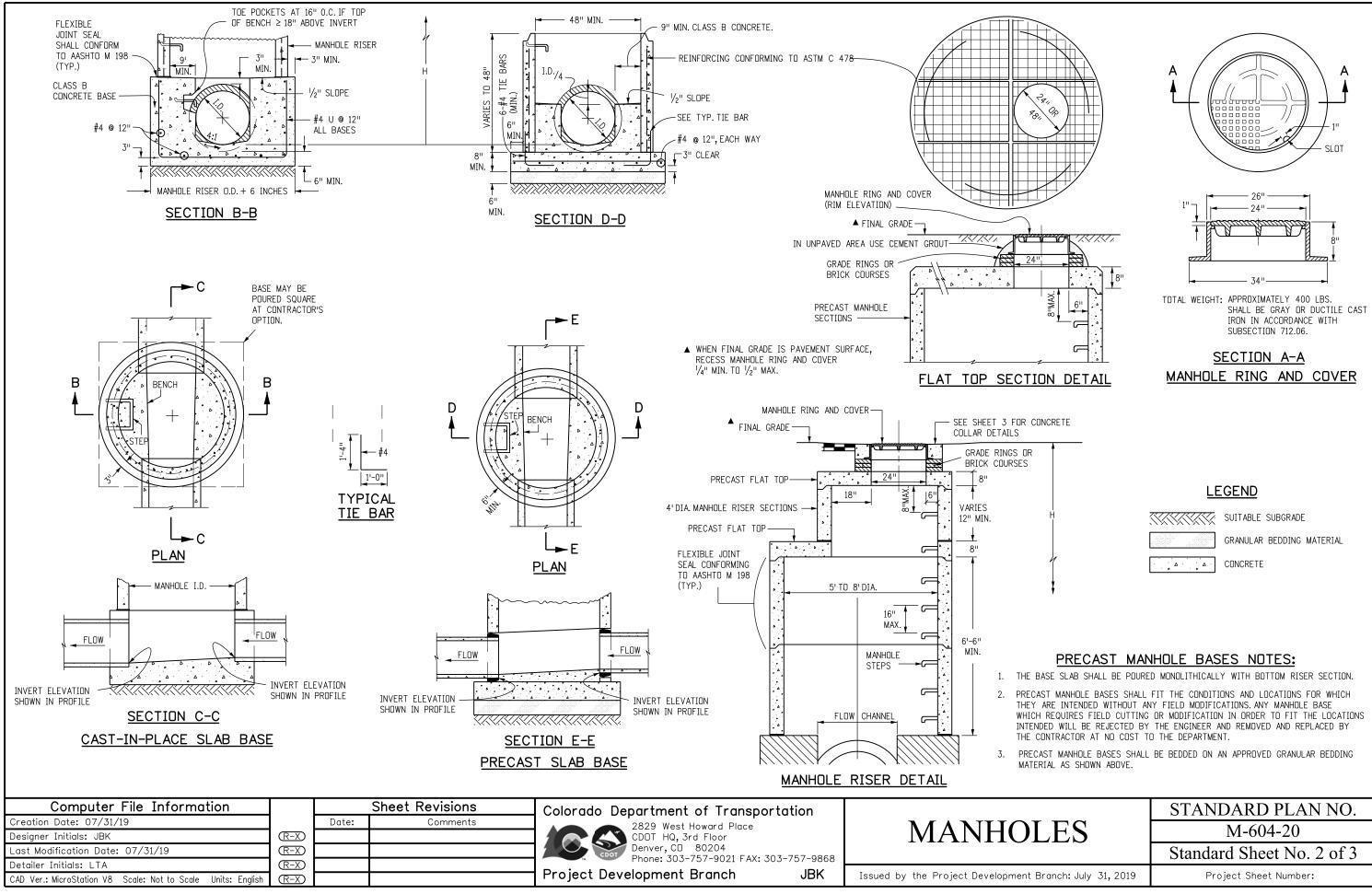

1	ADD 6 IN.	TO THIS	DIMENSION	FOR	EACH	6 I	N. INCREASE
	OF "H" OV	ER 3 FT	0 IN.				

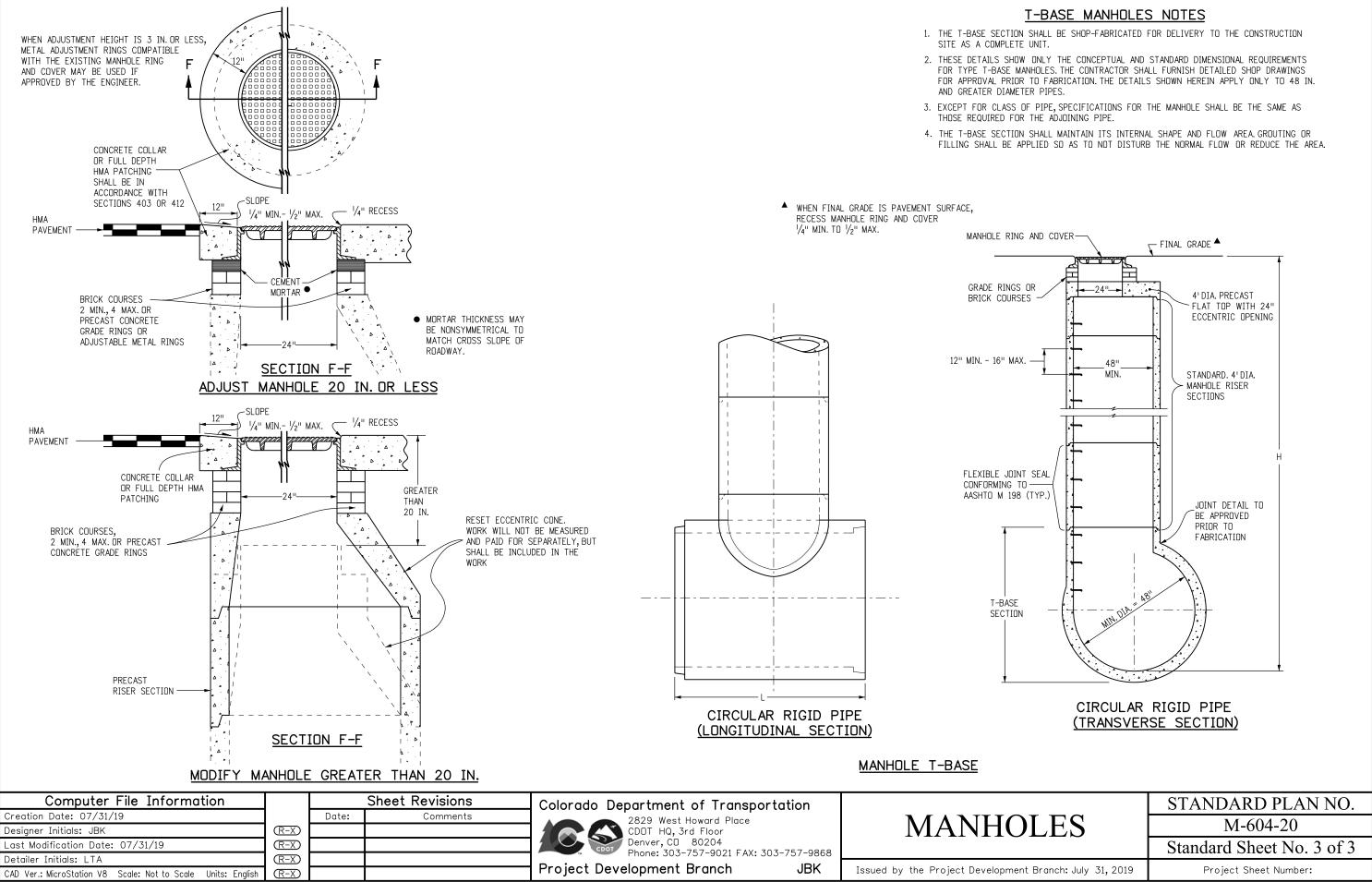
BAR LIST FOR H = 3 FT.-O IN.

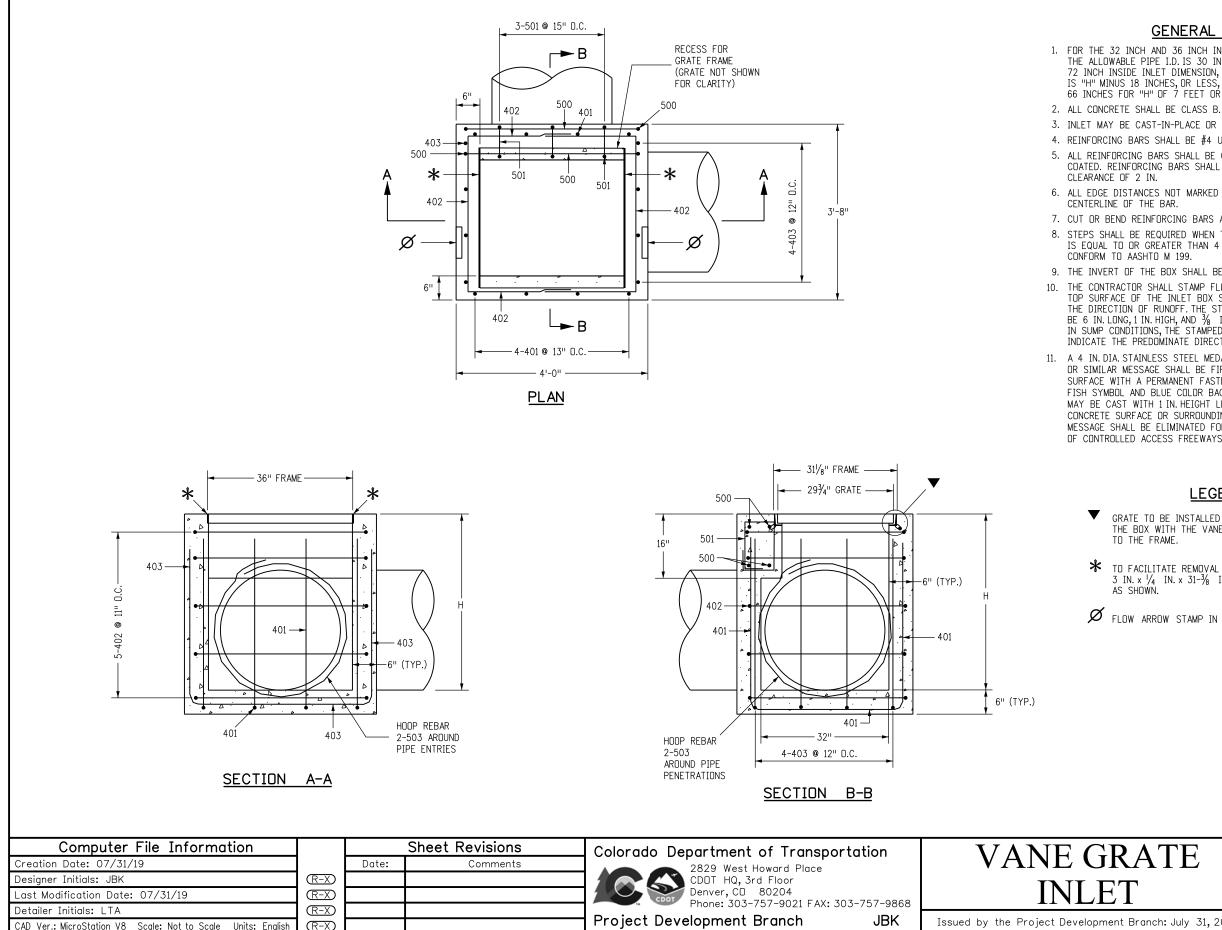

STANDARD PLAN NO.

M-604-13

Standard Sheet No. 1 of 1


- 1. SINCE ALL PIPE ENTRIES INTO THE BASE ARE VARIABLE, THE DIMENSIONS SHOWN ARE TYPICAL. ACTUAL DIMENSIONS AND QUANTITIES FOR CONCRETE AND REINFORCEMENT SHALL BE AS REQUIRED IN THE WORK.
- 2. THE PRECAST FLAT TOP MAY BE USED ON ANY MANHOLE. THE ECCENTRIC CONE MAY BE USED WHEN THE MANHOLE "H" HEIGHT IS AT LEAST 8 FT.
- 3. THE MANHOLE RING FRAME SHALL BE SET IN A BED OF GROUT. THE FRAME SHALL BE SURROUNDED WITH A CEMENT GROUT IN UNPAVED AREA, OR A CONCRETE COLLAR IN PAVED AREA. SEE DETAILS ON SHEETS 2 AND 3.
- 4. DESIGN OF BOX BASE IS BASED ON STRAIGHT RUNS OF PIPE OR CHANGE IN DIRECTION OF LESS THAN 45°. SPECIAL DESIGN IS REQUIRED FOR 45° OR GREATER.
- 5. PRECAST MANHOLES AND REINFORCEMENT SHALL CONFORM TO AASHTO M 199 (ASTM C 478).
- 6. CAST-IN-PLACE MANHOLES SHALL BE CLASS B CONCRETE.
- 7. STEPS SHALL BE REQUIRED WHEN THE MANHOLE DEPTH EXCEEDS 3 FT.-6 IN. AND SHALL CONFORM TO AASHTO M 199.
- 8. ALL REINFORCING STEEL SHALL BE GRADE 60 AND EPOXY COATED. VERTICAL STEEL SHALL BE PLACED AT CENTERLINE OF WALL. ALL BARS SHALL HAVE A 2 IN. MINIMUM CLEARANCE.
- 9. ALL PIPE ENTRIES INTO THE BASE OF MANHOLE SHALL BE CONNECTED BY OPEN CHANNELIZATION ADJUSTED FOR PIPE SIZE, SHAPE, SLOPE, AND DIRECTION OF FLOW. DETAILS SHOWN ARE TYPICAL FOR INSTALLATIONS WITH ALL INVERTS OF SAME RELATIVE ELEVATION. FOR EXCESSIVE ELEVATION DIFFERENCE BETWEEN INVERTS, SPECIAL BASE/CHANNEL DETAILS WILL BE SHOWN ON THE PLANS.
- 10. FLOW CHANNELS AND INVERTS SHALL BE FORMED BY SHAPING WITH CLASS B CONCRETE OR APPROVED GROUT.
- STUB-OUTS SHALL EXTEND 2 FT. MINIMUM BEYOND OUTSIDE WALL 11. SURFACE OF MANHOLE AND BE SATISFACTORILY PLUGGED.
- 12. THE SLOPE OF THE MANHOLE COVER SHALL MATCH THE ROADWAY PROFILE AND CROSS SLOPE.
- WHEN FINAL GRADE IS PAVEMENT SURFACE, RECESS MANHOLE A RING AND COVER $\frac{1}{4}$ " MIN. TO $\frac{1}{2}$ " MAX.


SHARP ANGLE


	STANDARD PLAN NO.		
DLES	M-604-20		
	Standard Sheet No. 1 of 3		
ent Branch: July 31, 2019	Project Sheet Number:		

5'-4"

	STANDARD PLAN NO.	
DLES	M-604-20	
	Standard Sheet No. 2 of 3	
ent Branch: July 31, 2019	Project Sheet Number:	

GENERAL NOTES

1. FOR THE 32 INCH AND 36 INCH INSIDE INLET DIMENSIONS, THE ALLOWABLE PIPE I.D. IS 30 INCHES OR LESS. FOR THE 72 INCH INSIDE INLET DIMENSION, THE ALLOWABLE PIPE I.D. IS "H" MINUS 18 INCHES, OR LESS, UP TO A MAXIMUM OF 66 INCHES FOR "H" OF 7 FEET OR MORE.

3. INLET MAY BE CAST-IN-PLACE OR PRECAST.

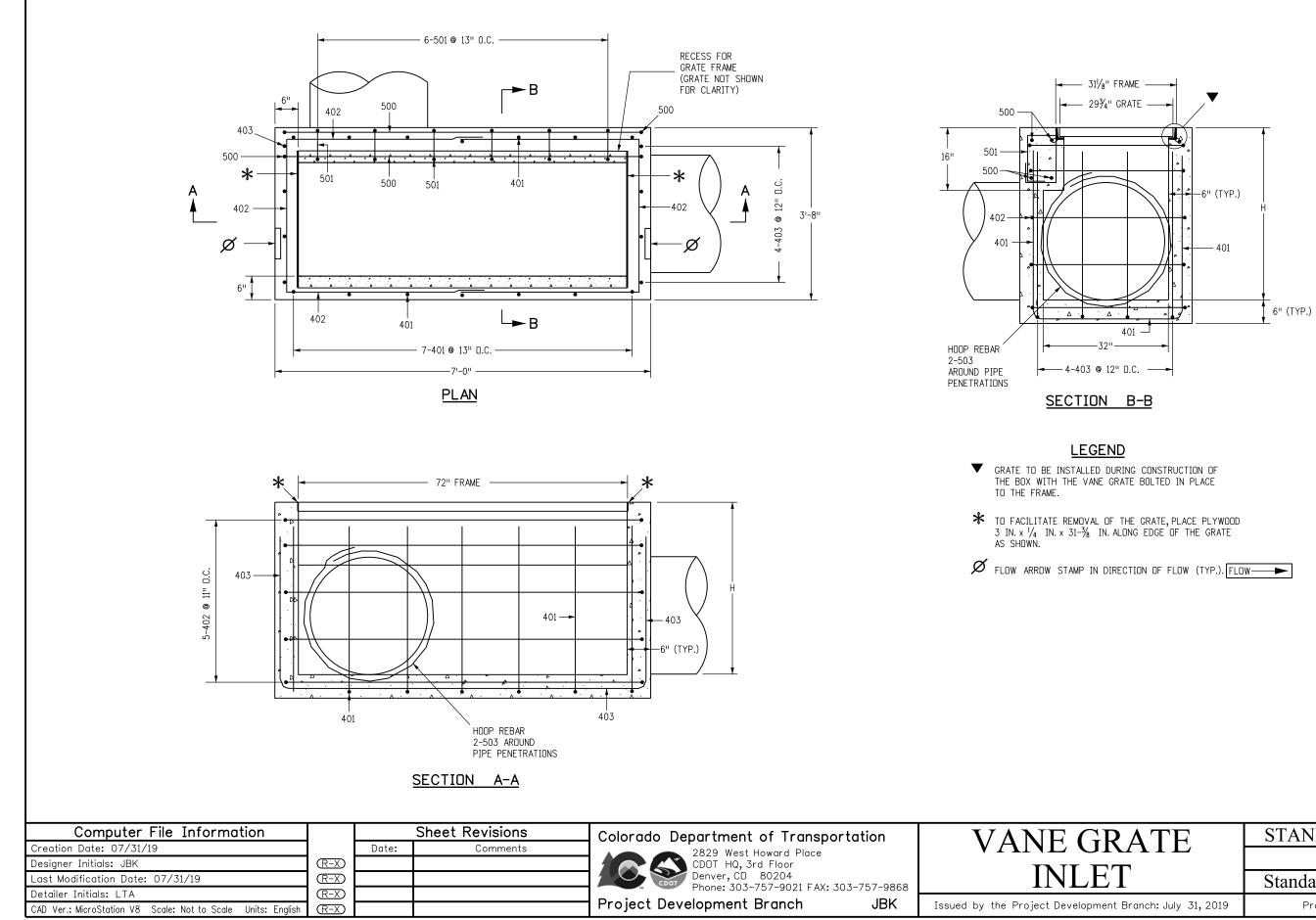
4. REINFORCING BARS SHALL BE #4 UNLESS SHOWN OTHERWISE. 5. ALL REINFORCING BARS SHALL BE GRADE 60 AND EPOXY COATED. REINFORCING BARS SHALL HAVE A MINIMUM

6. ALL EDGE DISTANCES NOT MARKED "CLEAR" ARE TO THE CENTERLINE OF THE BAR.

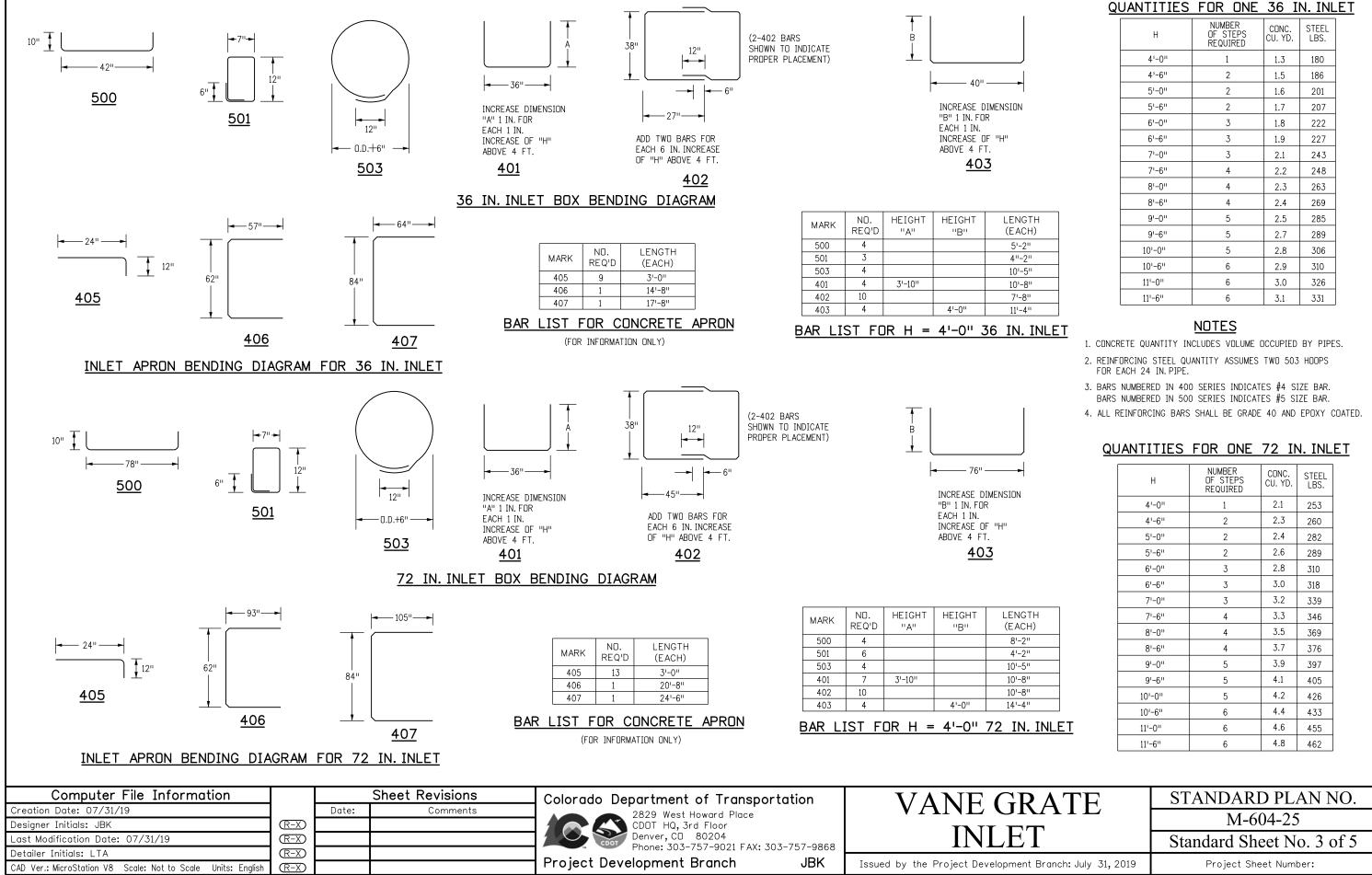
7. CUT OR BEND REINFORCING BARS AROUND PIPES AS REQUIRED. 8. STEPS SHALL BE REQUIRED WHEN THE INLET DEPTH "H" IS EQUAL TO OR GREATER THAN 4 FT. AND SHALL CONFORM TO AASHTO M 199.

9. THE INVERT OF THE BOX SHALL BE SLOPED TO DRAIN. 10. THE CONTRACTOR SHALL STAMP FLOW ARROWS INTO THE TOP SURFACE OF THE INLET BOX SIDEWALLS TO INDICATE THE DIRECTION OF RUNOFF. THE STAMPED ARROWS SHALL BE 6 IN. LONG, 1 IN. HIGH, AND $\frac{3}{8}$ IN. DEEP. FOR INLETS IN SUMP CONDITIONS, THE STAMPED FLOW ARROWS SHALL INDICATE THE PREDOMINATE DIRECTION OF RUNOFF FLOW.

11. A 4 IN. DIA. STAINLESS STEEL MEDALLION WITH "NO DUMPING DRAINS TO STREAM" OR SIMILAR MESSAGE SHALL BE FIRMLY ATTACHED TO TOP OF THE INLET SURFACE WITH A PERMANENT FASTENER. THE MEDALLION WILL HAVE A FISH SYMBOL AND BLUE COLOR BACKGROUND. ALTERNATIVELY, THIS MESSAGE MAY BE CAST WITH 1 IN. HEIGHT LETTERS INTO THE TOP OF THE INLET'S CONCRETE SURFACE OR SURROUNDING CONCRETE APRON. THE NO DUMPING MESSAGE SHALL BE ELIMINATED FOR INLETS LOCATED WITHIN THE SHOULDER OF CONTROLLED ACCESS FREEWAYS WHEN SPECIFIED IN THE PLANS.


LEGEND

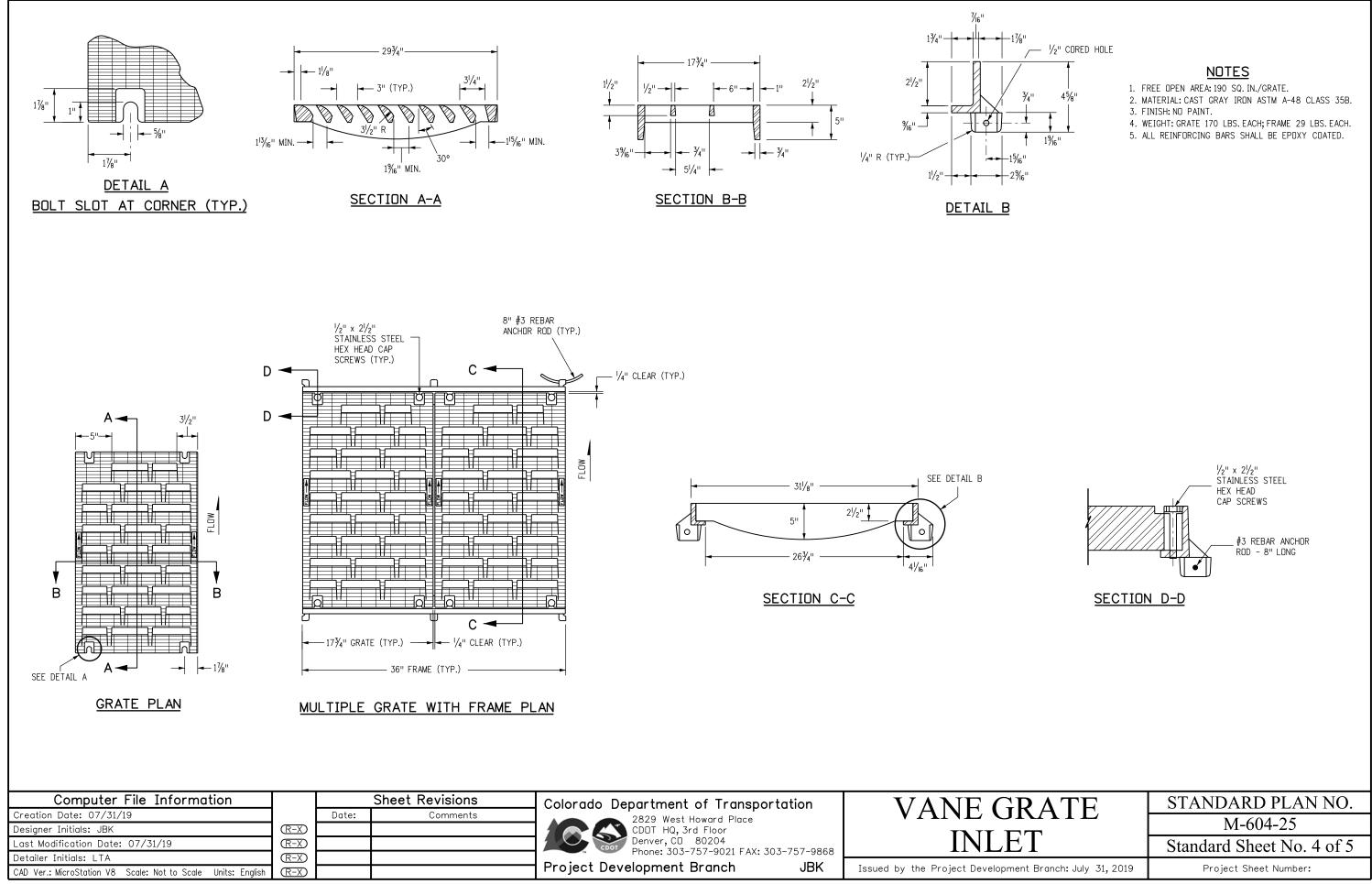
GRATE TO BE INSTALLED DURING CONSTRUCTION OF THE BOX WITH THE VANE GRATE BOLTED IN PLACE TO THE FRAME.

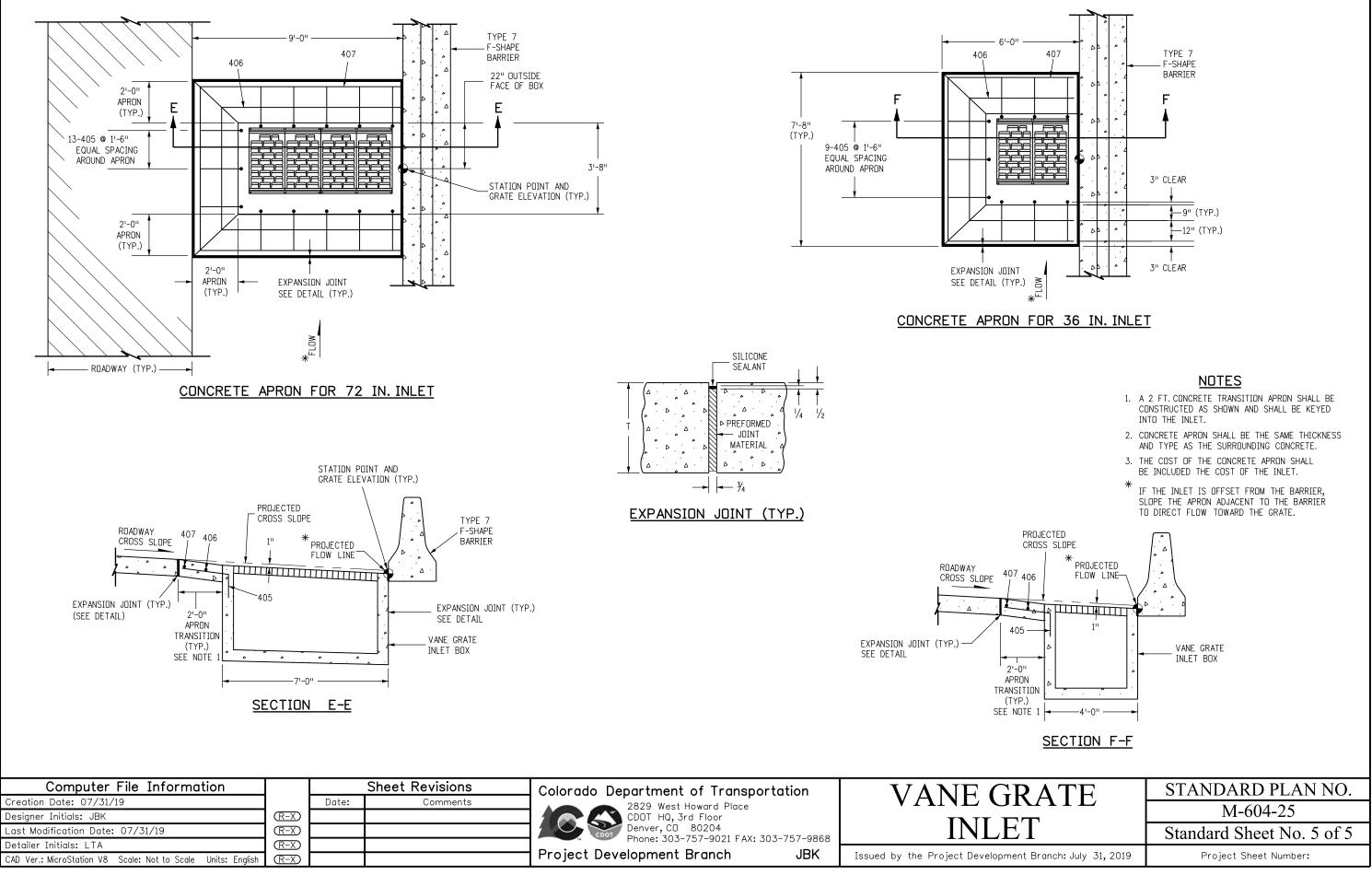

* TO FACILITATE REMOVAL OF THE GRATE, PLACE PLYWOOD 3 IN. x $\frac{1}{4}$ IN. x 31- $\frac{3}{8}$ IN. ALONG EDGE OF THE GRATE AS SHOWN.

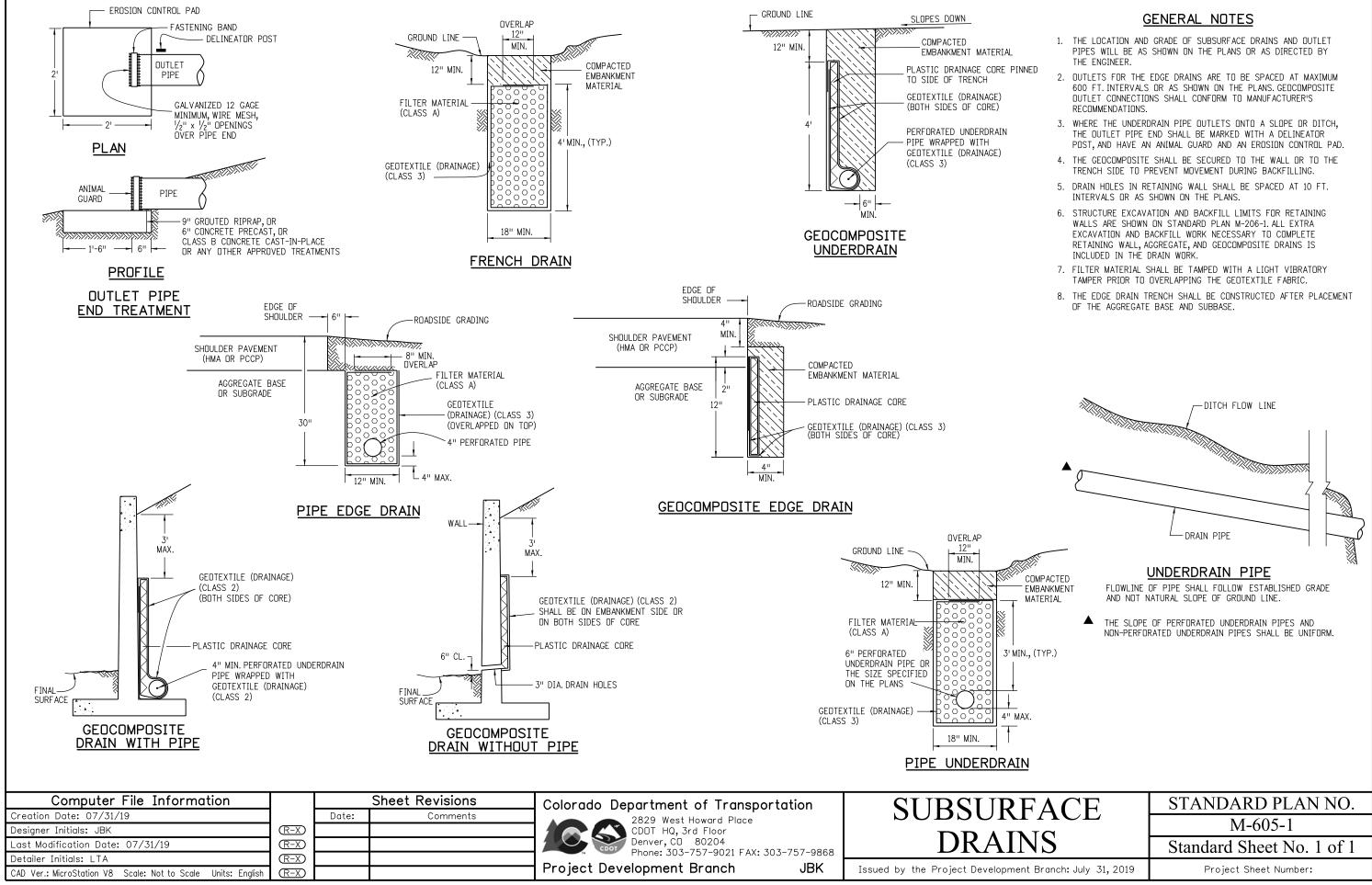
 \varnothing flow arrow stamp in direction of flow (typ.). Flow —

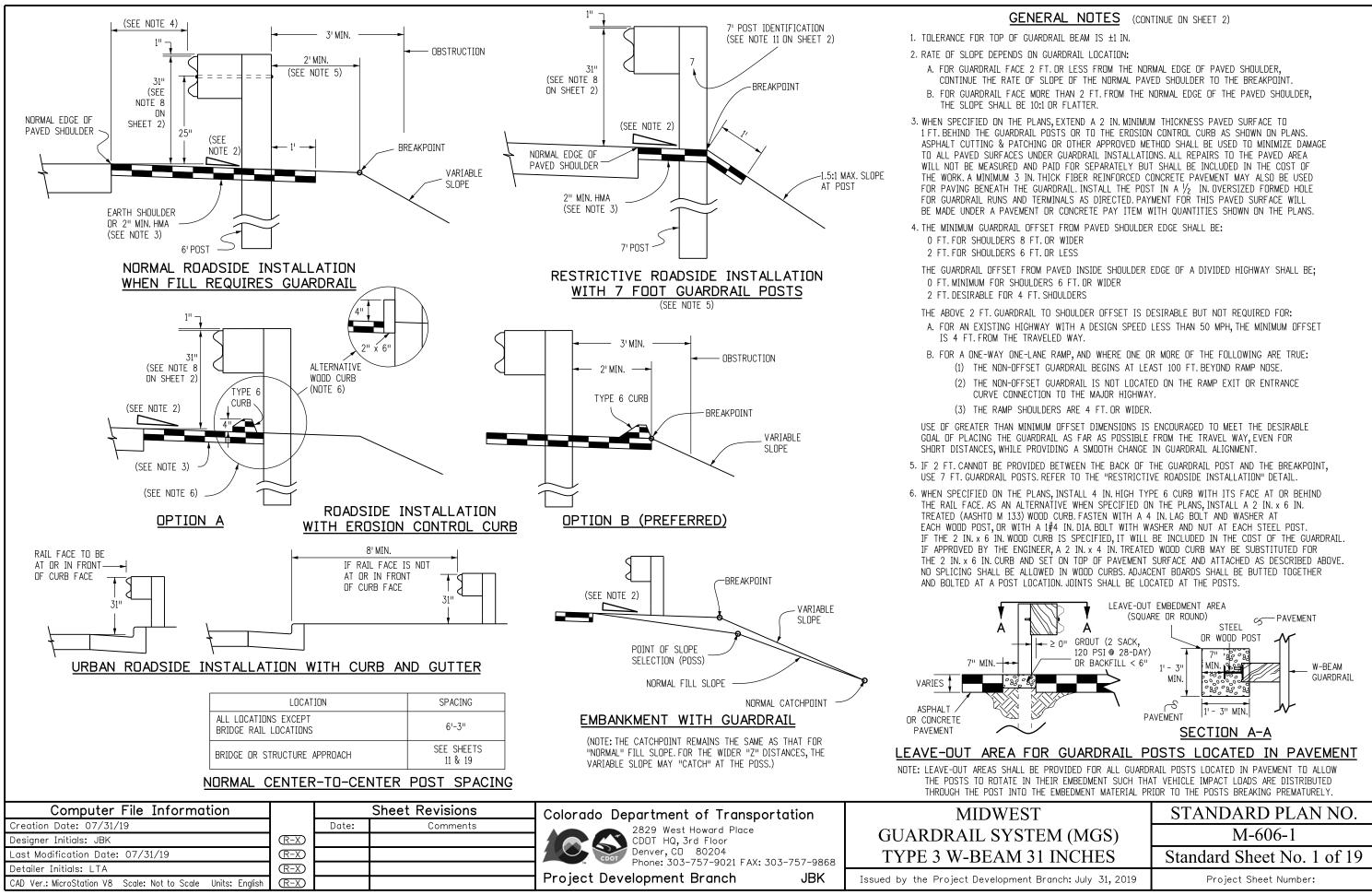
RATE	STANDARD PLAN NO.	
	M-604-25	
	Standard Sheet No. 1 of 5	
ent Branch: July 31, 2019	Project Sheet Number:	

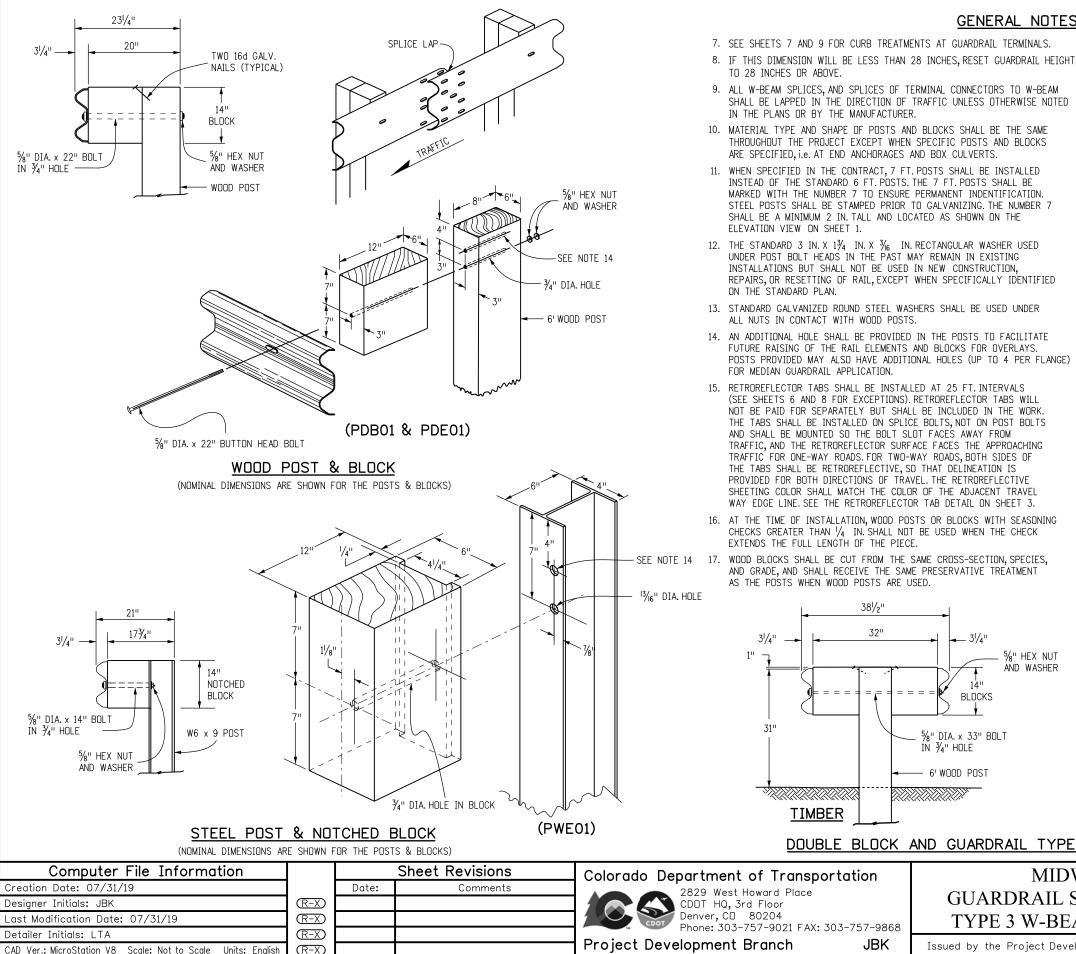
RATE	STANDARD PLAN NO.
	M-604-25
	Standard Sheet No. 2 of 5
ent Branch: July 31, 2019	Project Sheet Number:

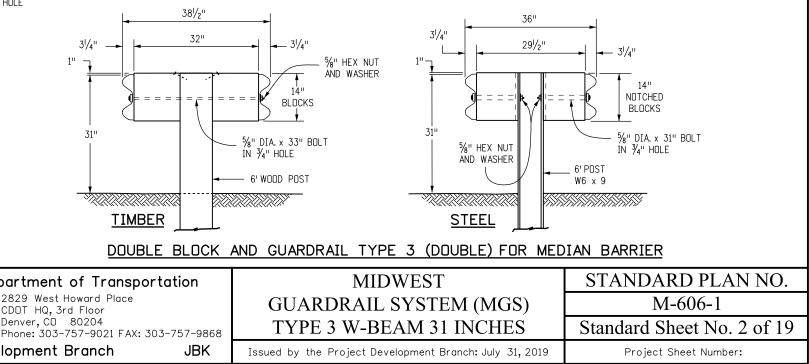

ļ		


GTH CH)	
·2''	
-2"	
-5"	
-8''	
-8"	
-4"	

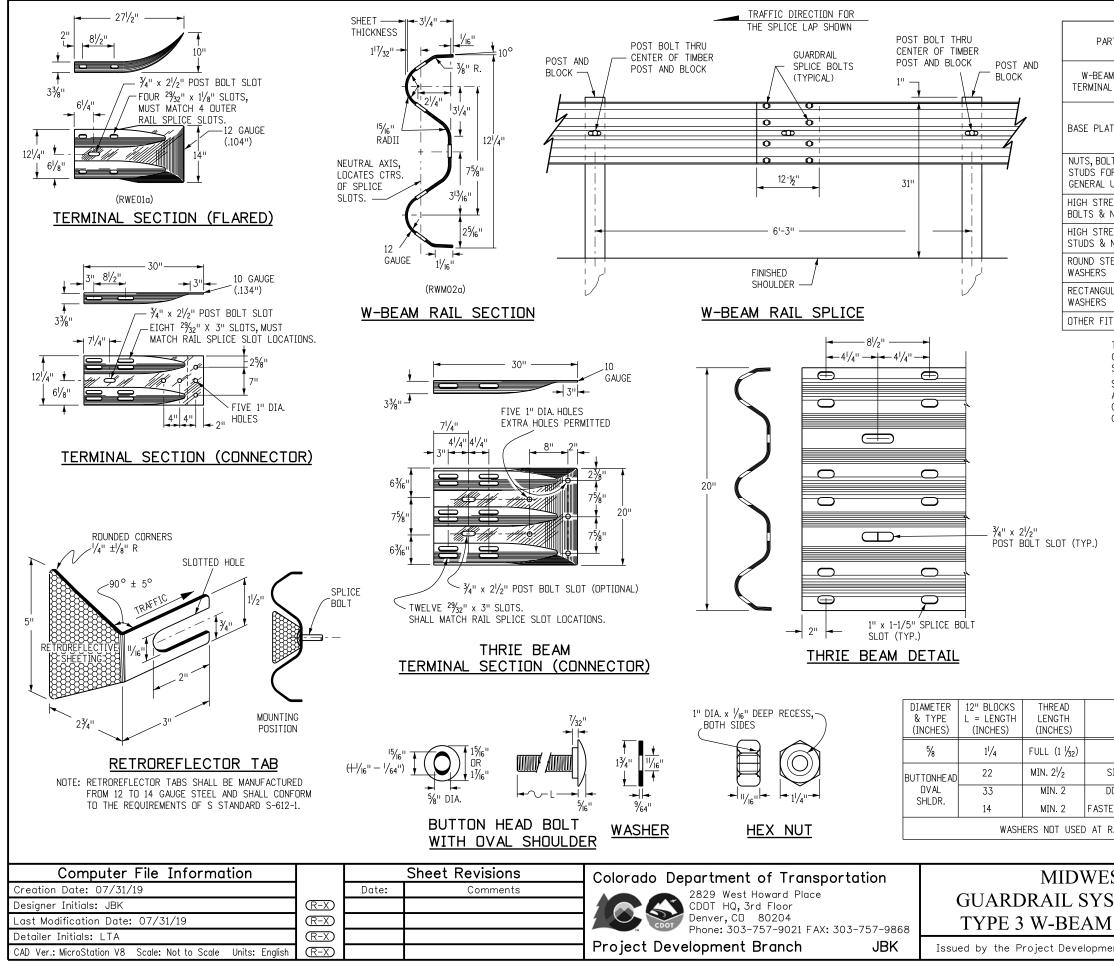

N	דכ	Ē	S


н	NUMBER OF STEPS REQUIRED	CONC. CU. YD.	STEEL LBS.
4'-0''	1	2.1	253
4'-6"	2	2.3	260
5'-0"	2	2.4	282
5'-6"	2	2.6	289
6'-0''	3	2.8	310
6'-6''	3	3.0	318
7'-0"	3	3.2	339
7'-6"	4	3.3	346
8'-0"	4	3.5	369
8'-6"	4	3.7	376
9'-0''	5	3.9	397
9'-6''	5	4.1	405
10'-0''	5	4.2	426
10'-6''	6	4.4	433
11'-0''	6	4.6	455
11'-6"	6	4.8	462


CH)	
2"	
2"	
·5''	
.8''	
.8''	
·4''	

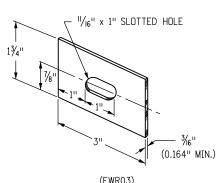


GENERAL NOTES (CONTINUED FROM SHEET 1)


- IN THE PLANS OR BY THE MANUFACTURER. THAT THE BLOCKS HAVE RECEIVED FHWA APPROVAL. 10. MATERIAL TYPE AND SHAPE OF POSTS AND BLOCKS SHALL BE THE SAME 20. WOOD POSTS SHALL BE MADE OF TIMBER WITH AN EXTREME FIBER STRESS THROUGHOUT THE PROJECT EXCEPT WHEN SPECIFIC POSTS AND BLOCKS IN BENDING OF 1200 PSI STRESS GRADING AND POST DIMENSIONS SHALL ARE SPECIFIED, i.e. AT END ANCHORAGES AND BOX CULVERTS. CONFORM WITH THE RULES OF THE WEST COAST INSPECTION BUREAU, OR THE SOUTHERN PINE BUREAU, OR THE WESTERN WOOD PRODUCTS ASSOCIATION. 11. WHEN SPECIFIED IN THE CONTRACT, 7 FT. POSTS SHALL BE INSTALLED TIMBER FOR POSTS SHALL BE EITHER ROUGH SAWN (UNPLANED) OR INSTEAD OF THE STANDARD 6 FT. POSTS. THE 7 FT. POSTS SHALL BE MARKED WITH THE NUMBER 7 TO ENSURE PERMANENT INDENTIFICATION. S4S (SURFACED FOUR SIDES) WITH NOMINAL DIMENSIONS INDICATED. STEEL POSTS SHALL BE STAMPED PRIOR TO GALVANIZING. THE NUMBER 7 ONLY ONE TYPE OF SURFACE FINISH SHALL BE USED FOR POSTS AND BLOCKS IN ANY ONE CONTINUOUS LENGTH OF GUARDRAIL. SHALL BE A MINIMUM 2 IN. TALL AND LOCATED AS SHOWN ON THE ELEVATION VIEW ON SHEET 1. 21. GLULAM POSTS AND BLOCKS WILL BE ACCEPTED AS ALTERNATIVES PROVIDED THAT THE SUPPLIED MATERIALS HAVE RECEIVED FHWA APPROVAL AND ARE 12. THE STANDARD 3 IN. X 13/4 IN. X 3/6 IN. RECTANGULAR WASHER USED CERTIFIED AS IDENTICAL TO THE SPECIMENS USED FOR TESTING AND APPROVAL. UNDER POST BOLT HEADS IN THE PAST MAY REMAIN IN EXISTING INSTALLATIONS BUT SHALL NOT BE USED IN NEW CONSTRUCTION. 22. PRESSURE TREATMENT OF POSTS AND BLOCKS SHALL CONFORM TO REPAIRS, OR RESETTING OF RAIL, EXCEPT WHEN SPECIFICALLY IDENTIFIED AASHTO M 133 EXCEPT THAT BLOCKS NEED NOT BE INCISED. PRESERVATION ON THE STANDARD PLAN. ASSAY RETENTION REPORTS SHALL BE SUBMITTED TO THE ENGINEER. THE CONTRACTOR SHALL CERTIFY THAT THE SPECIES AND GRADE MEET 13. STANDARD GALVANIZED ROUND STEEL WASHERS SHALL BE USED UNDER THE REQUIREMENTS OF THE CONTRACT.
- ALL NUTS IN CONTACT WITH WOOD POSTS.
- 14. AN ADDITIONAL HOLE SHALL BE PROVIDED IN THE POSTS TO FACILITATE FUTURE RAISING OF THE RAIL ELEMENTS AND BLOCKS FOR OVERLAYS. POSTS PROVIDED MAY ALSO HAVE ADDITIONAL HOLES (UP TO 4 PER FLANGE) FOR MEDIAN GUARDRAIL APPLICATION.
- 15. RETROREFLECTOR TABS SHALL BE INSTALLED AT 25 FT. INTERVALS (SEE SHEETS 6 AND 8 FOR EXCEPTIONS). RETROREFLECTOR TABS WILL NOT BE PAID FOR SEPARATELY BUT SHALL BE INCLUDED IN THE WORK THE TABS SHALL BE INSTALLED ON SPLICE BOLTS. NOT ON POST BOLTS AND SHALL BE MOUNTED SO THE BOLT SLOT FACES AWAY FROM TRAFFIC, AND THE RETROREFLECTOR SURFACE FACES THE APPROACHING TRAFFIC FOR ONE-WAY ROADS.FOR TWO-WAY ROADS, BOTH SIDES OF THE TABS SHALL BE RETROREFLECTIVE SO THAT DELINEATION IS PROVIDED FOR BOTH DIRECTIONS OF TRAVEL. THE RETROREFLECTIVE SHEETING COLOR SHALL MATCH THE COLOR OF THE ADJACENT TRAVEL WAY EDGE LINE. SEE THE RETROREFLECTOR TAB DETAIL ON SHEET 3.
- 16. AT THE TIME OF INSTALLATION, WOOD POSTS OR BLOCKS WITH SEASONING CHECKS GREATER THAN $\frac{1}{4}$ IN. SHALL NOT BE USED WHEN THE CHECK EXTENDS THE FULL LENGTH OF THE PIECE.
- SEE NOTE 14 17. WOOD BLOCKS SHALL BE CUT FROM THE SAME CROSS-SECTION, SPECIES, AND GRADE, AND SHALL RECEIVE THE SAME PRESERVATIVE TREATMENT AS THE POSTS WHEN WOOD POSTS ARE USED.

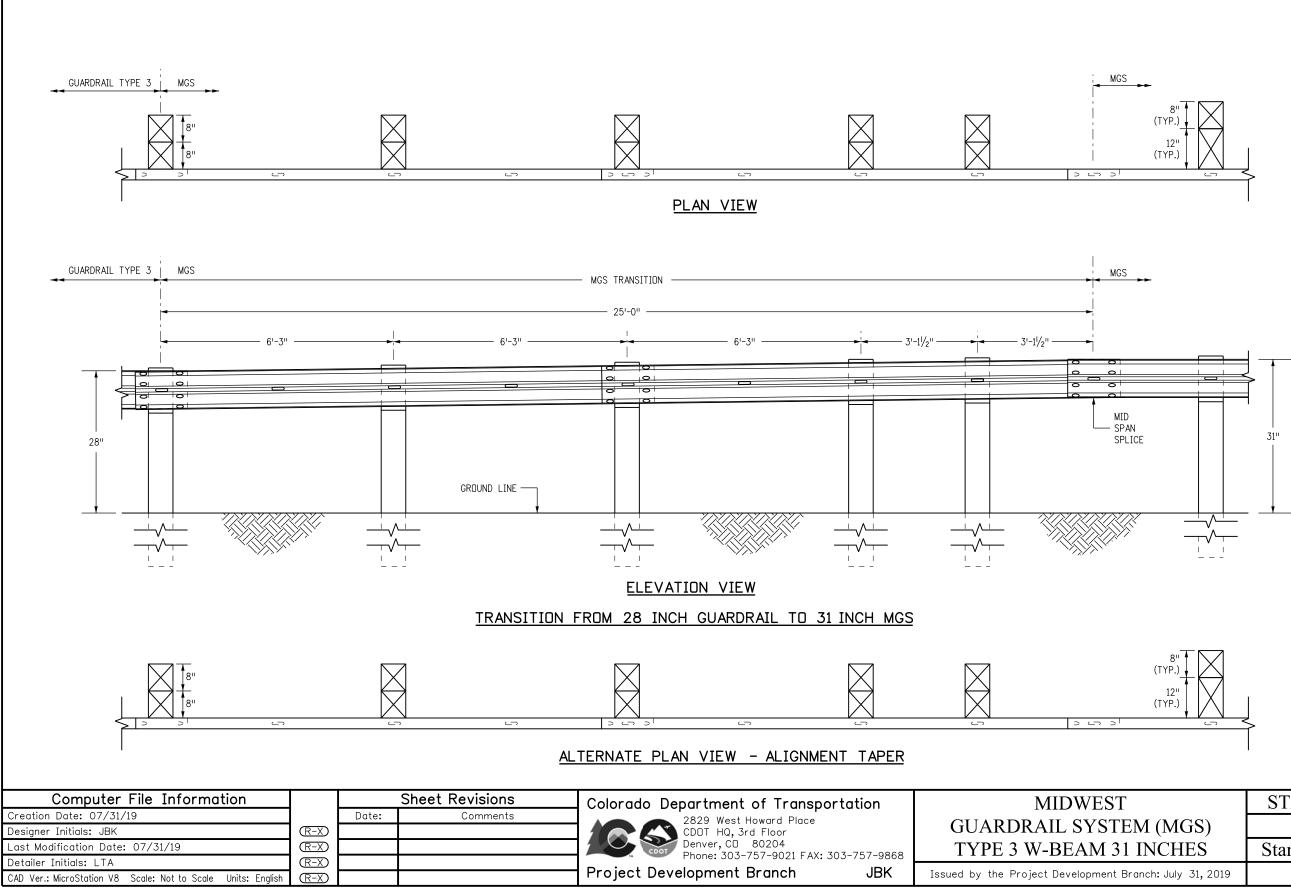
MIDWES
GUARDRAIL SYS
TYPE 3 W-BEAM

- 18. REFERENCES SUCH AS 00PDB01", 00PDE01", AND 00PWE01" IN THIS STANDARD PLAN SPECIFY HARDWARE DETAILS FROM OOA GUIDE TO STANDARDIZED HIGHWAY BARRIER HARDWARE" PREPARED BY THE AASHTO-AGC-ARTBA JOINT COOPERATIVE COMMITTEE.
- 19. RAIL BLOCKS MANUFACTURED FROM SYNTHETIC MATERIAL WILL BE ACCEPTED AS ALTERNATIVES TO WOOD BLOCKS FOR USE WITH STEEL POSTS PROVIDED

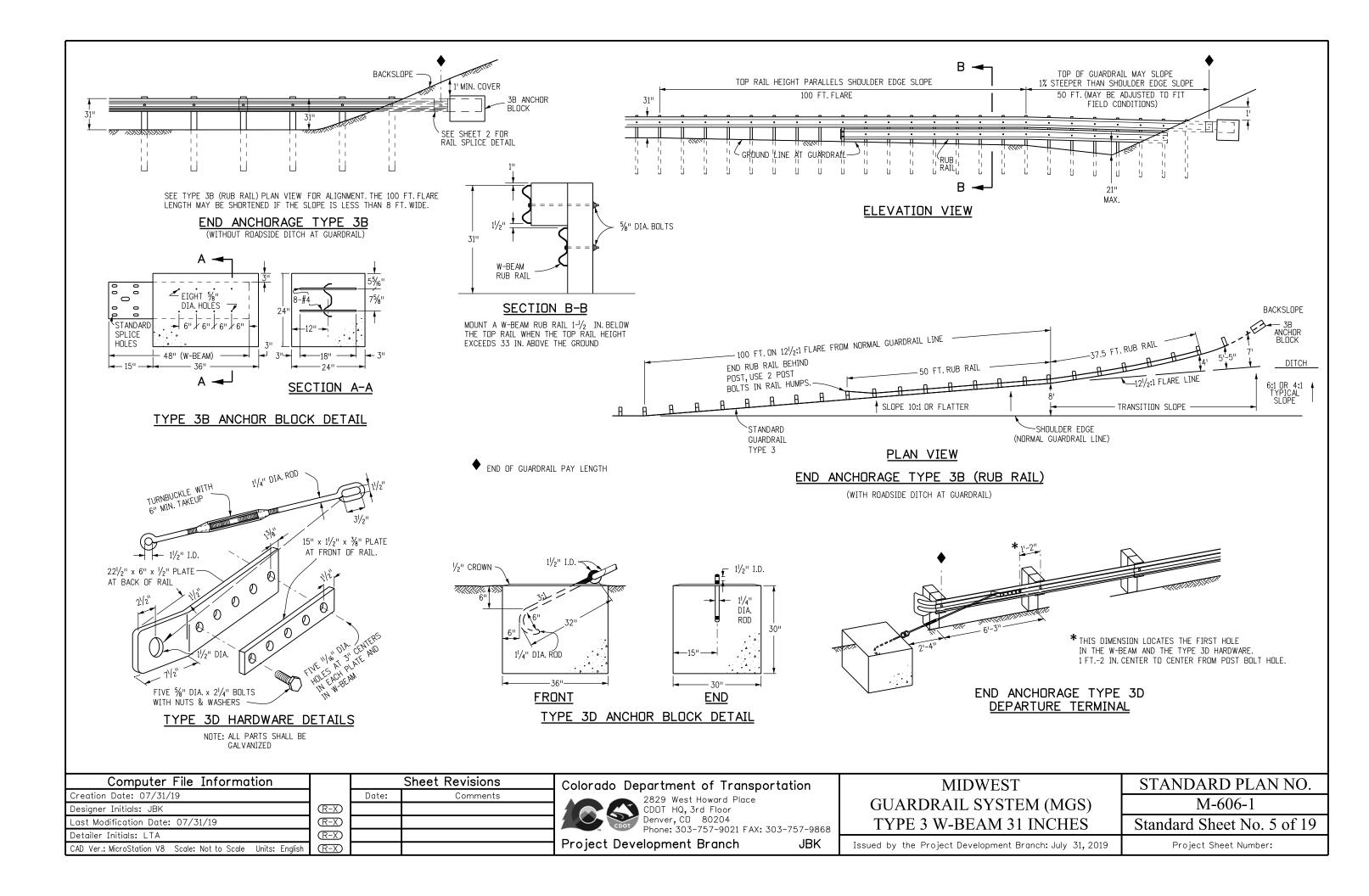

- 23. W-BEAM AND THRIE-BEAM GUARDRAIL POSTS SHALL BE MANUFACTURED USING AASHTD M 270 (ASTM A 709) GRADE 36 STEEL UNLESS CORROSION RESISTANT STEEL IS REQUIRED, IN WHICH CASE THE POST SHALL BE MANUFACTURED FROM AASHTO M 270 (ASTM A 709) GRADE 50W STEEL. THE DIMENSIONS OF THE CROSS-SECTION SHALL CONFORM TO A W6 X 9 SECTION AS DEFINED IN AASHTO M 160 (ASTM A 6). W6 X 8.5 WIDE FLANGE STEEL POSTS ARE AN ACCEPTABLE ALTERNATIVE TO THE W6 X 9.
- 24. AFTER THE SECTION IS CUT AND ALL HOLES ARE DRILLED OR PUNCHED THE COMPONENT SHALL BE ZINC-COATED CONFORMING TO AASHTO M 111 (ASTM A 123) UNLESS CORROSION-RESISTANT STEEL IS USED. WHEN CORROSION-RESISTANT STEEL IS USED THE PORTION OF THE POST TO BE EMBEDDED IN SOIL SHALL BE ZINC-COATED CONFORMING TO AASHTO M 111 (ASTM A 123) AND THE PORTION ABOVE THE SOIL SHALL NOT BE ZINC-COATED, PAINTED OR OTHERWISE TREATED.
- 25. FIELD MODIFICATION TO RAIL ELEMENTS IS ALLOWED PER MANUFACTURER'S RECOMMENDATIONS, OR WITH THE APPROVAL OF THE STANDARDS AND SPECIFICATIONS UNIT. POSTS SHALL NOT BE MODIFIED. COMPONENTS ON WHICH THE SPELTER COATING HAS BEEN DAMAGED SHALL BE EITHER REGALVANIZED OR RECOATED IN CONFORMANCE WITH AASHTO M 36, OR PAINTED WITH ONE FULL BRUSH COAT OF ZINC RICH PAINT CONFORMING TO MILITARY SPECIFICATION DOD-P-21035A.

RT	MATERIAL SPEC.	GALVANIZING SPEC.	CORROSION- RESISTANT SPEC.
M RAIL & L SECTIONS	AASHTO M 180, CLASS A OR B	AASHTO M 180, TYPE 1 OR 2	AASHTO M 180, TYPE 4
ΛTE	ASTM A 36	AASHTO M 111	N.A.
_TS & JR USE	ASTM A 307		1
ENGTH NUTS	ASTM A 325	AASHTO M 232, CLASS C	
ENGTH NUTS	ASTM A 449		
ſEEL	ASTM F 436	ASTM B 695 CLASS 50 TYPE 1	
JLAR	AASHTO M 180		
TTINGS	ASTM A 36	AASHTO M 111	

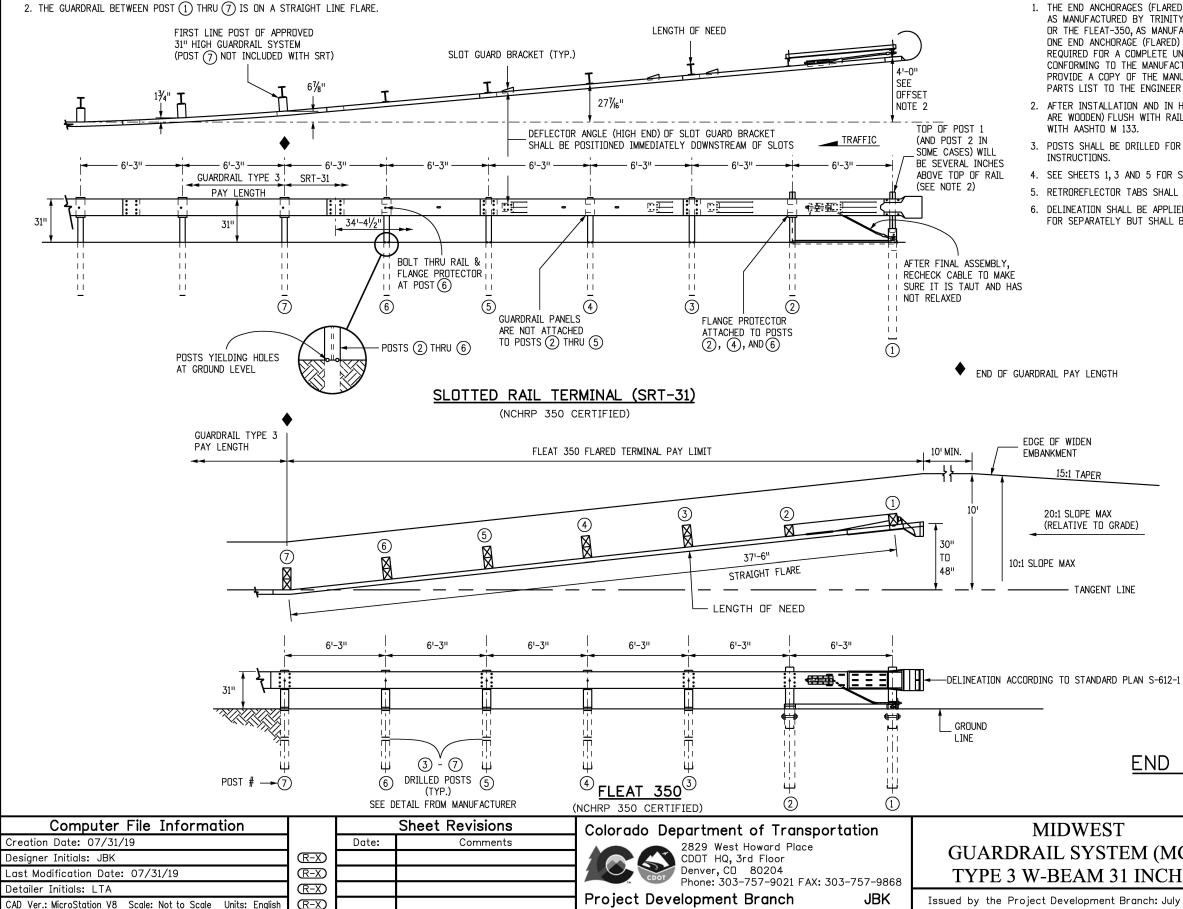
THE TABULATION OF GUARDRAIL WILL SPECIFY THE TYPE OF CORROSION PROTECTION: GALVANIZED OR CORROSION - RESISTANT STEEL.


STEEL POSTS SHALL HAVE THE SAME CORROSION PROTECTION AS SPECIFIED FOR THE METAL BEAM RAIL.PUNCHING, DRILLING, CUTTING, OR WELDING OF POSTS WILL NOT BE PERMITTED AFTER GALVANIZING.

RECTANGULAR WASHER (TO BE USED ONLY WHERE SPECIFIED.)


INTENDED USE	AASHTD-AGC-ARTBA STANDARD NUMBER	ND. BOLTS, NUTS & WASHERS
ALL RAIL SPLICES	FBB01	8 PER SPLICE*
SINGLE BLOCK & POST (TIMBER)	FBB04	1 PER POST
DOUBLE BLOCK & POST (TIMBER)	FBB05	1 PER POST
EN NOTCHED BLOCK TO STEEL POST	FBB03	1 PER BLOCK
RATI SPLICES		

EST	STANDARD PLAN NO.
STEM (MGS)	M-606-1
1 31 INCHES	Standard Sheet No. 3 of 19
ent Branch: July 31, 2019	Project Sheet Number:


1. THE MGS TRANSITION FROM A TYPE 3 GUARDRAIL SHALL BE COMPLETED OUTSIDE THE MGS END ANCHORAGE LIMITS.

EST	STANDARD PLAN NO.
STEM (MGS)	M-606-1
1 31 INCHES	Standard Sheet No. 4 of 19
ent Branch: July 31, 2019	Project Sheet Number:

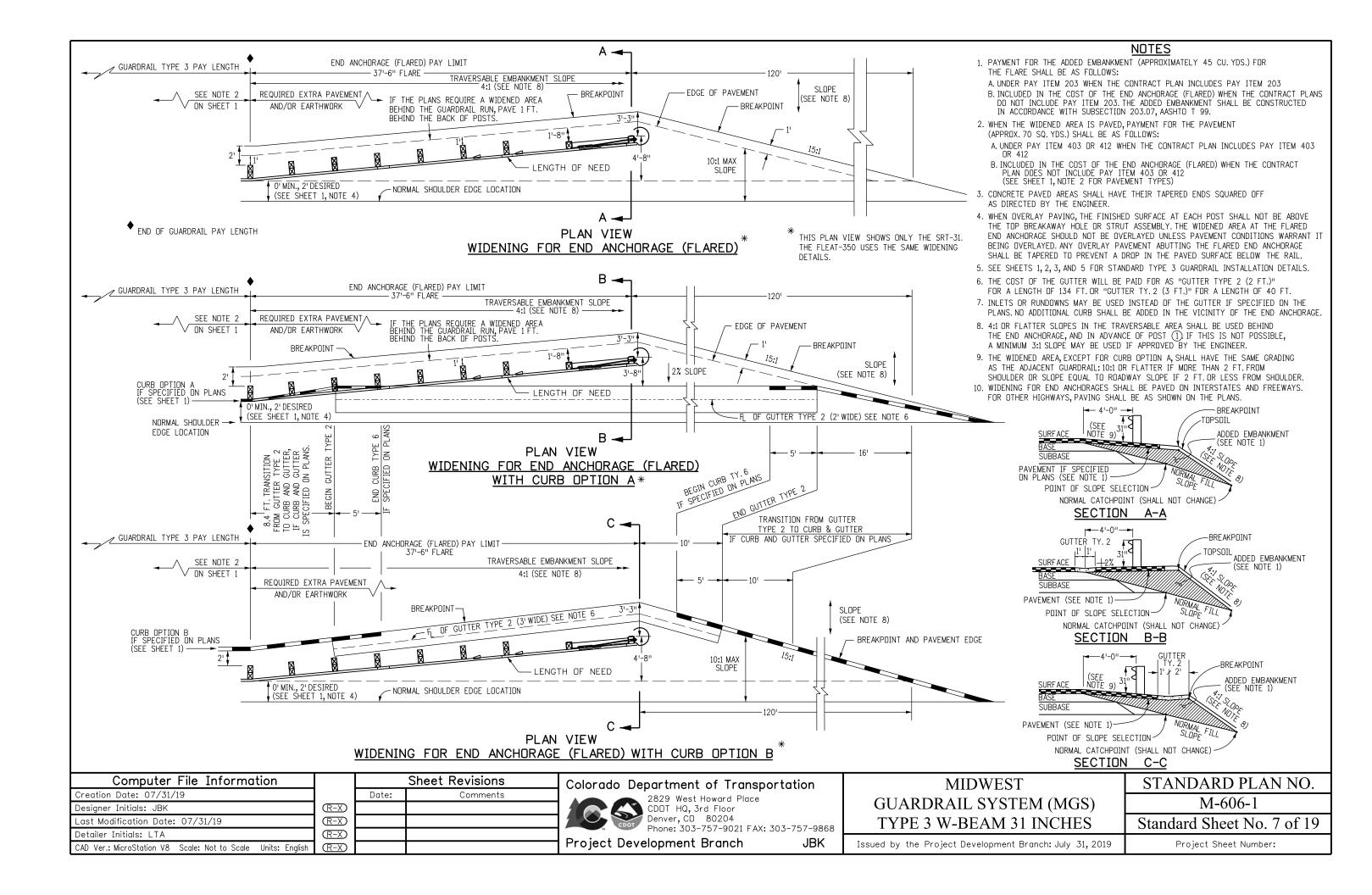
OFFSET NOTES

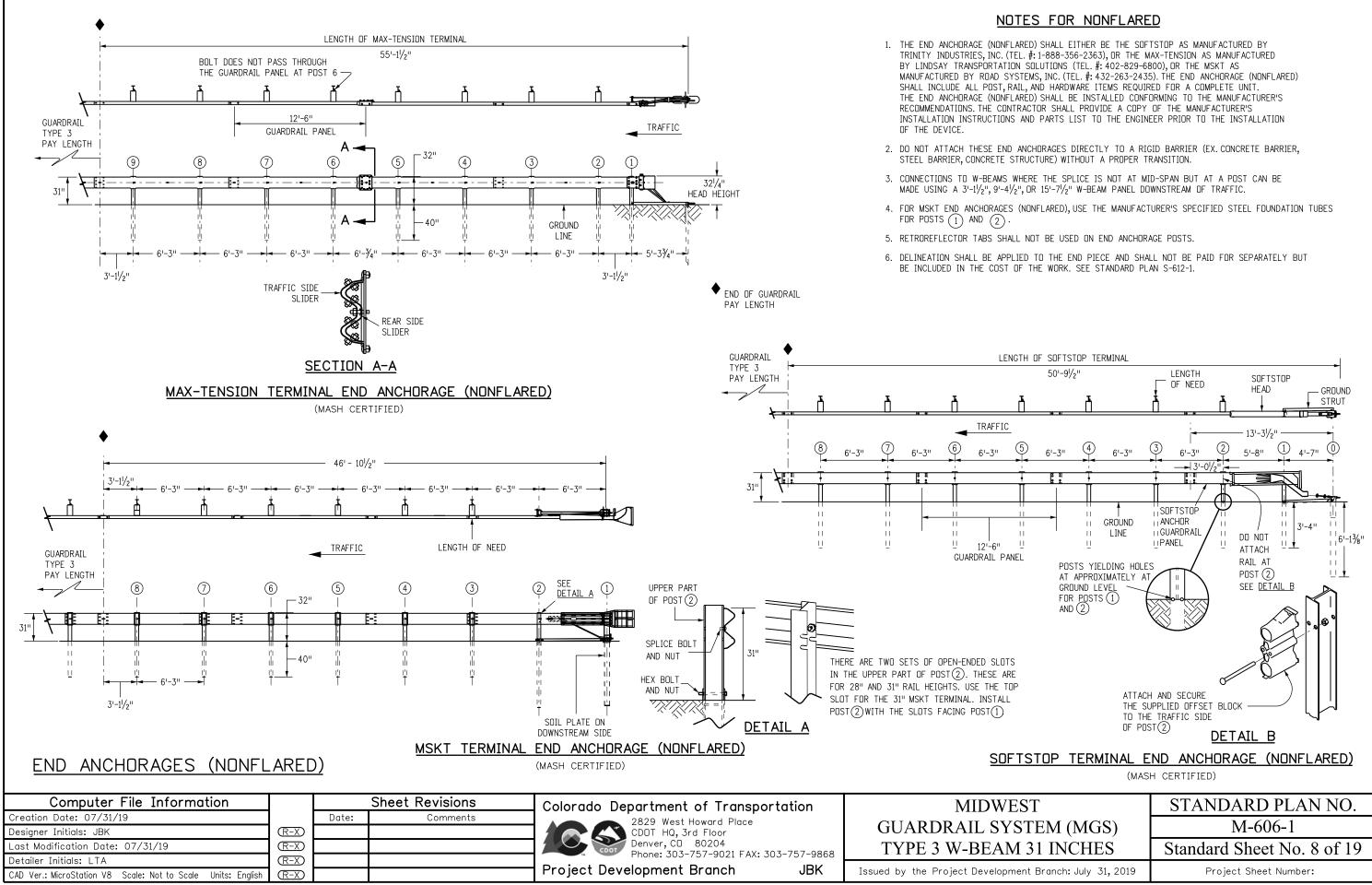
1. POST OFFSET DIMENSIONS ARE GIVEN TO THE CENTER OF THE TRAFFIC FACE OF POSTS.

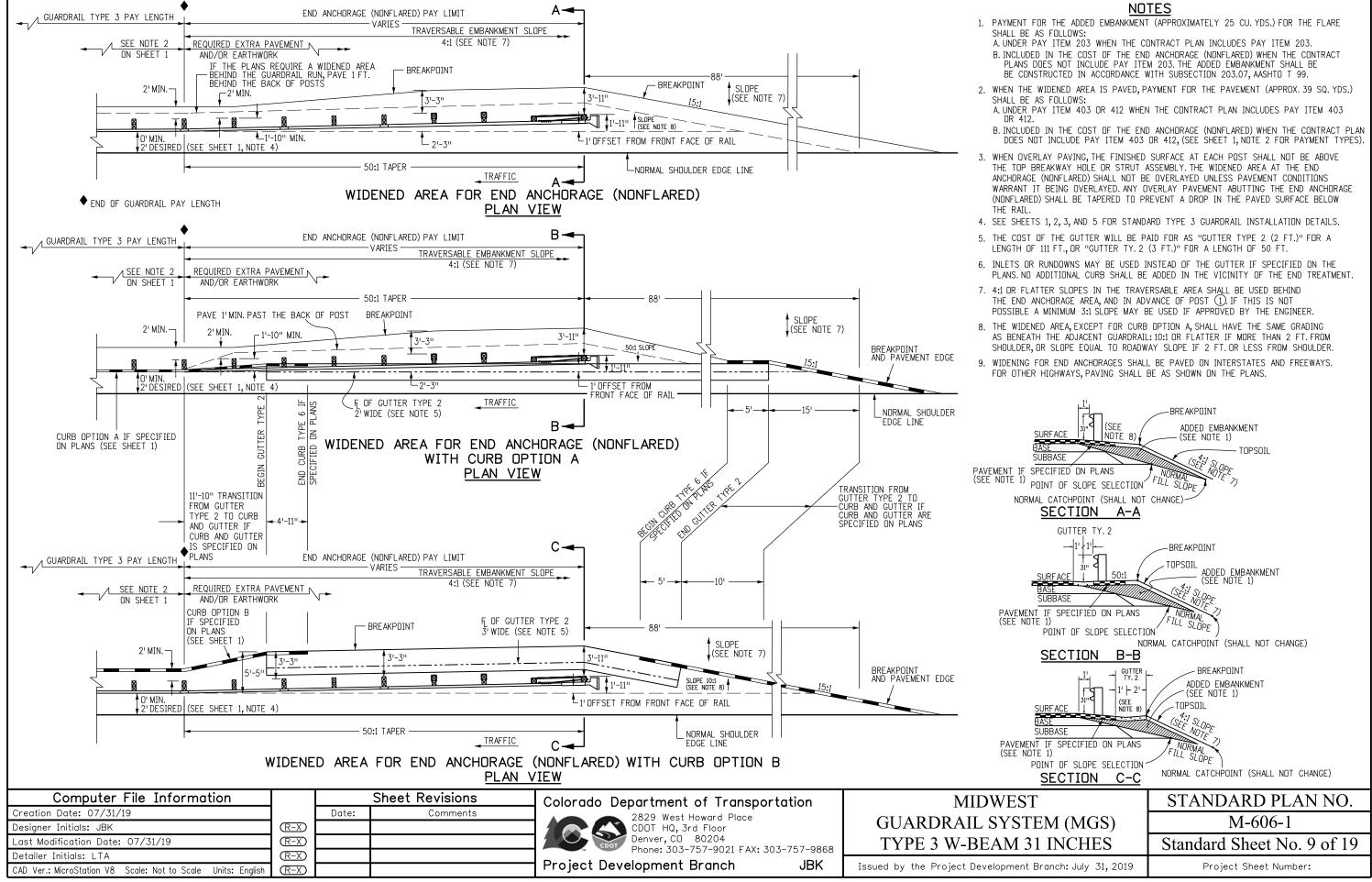
NOTES

1. THE END ANCHORAGES (FLARED) SHALL EITHER BE THE SLOTTED RAIL TERMINAL SRT-31 AS MANUFACTURED BY TRINITY HIGHWAY PRODUCTS LLC (TELEPHONE #:1-888-356-2363), OR THE FLEAT-350, AS MANUFACTURED BY ROAD SYSTEMS INC. (TELEPHONE #: 432-263-2435). ONE END ANCHORAGE (FLARED) SHALL INCLUDE ALL POST, RAIL, AND ALL HARDWARE ITEMS REQUIRED FOR A COMPLETE UNIT. THE END ANCHORAGE (FLARES) SHALL BE INSTALLED CONFORMING TO THE MANUFACTURER'S RECOMMENDATIONS. THE CONTRACTOR SHALL PROVIDE A COPY OF THE MANUFACTURER'S INSTALLATION INSTRUCTIONS AND PARTS LIST TO THE ENGINEER PRIOR TO INSTALLATION OF THE DEVICE.

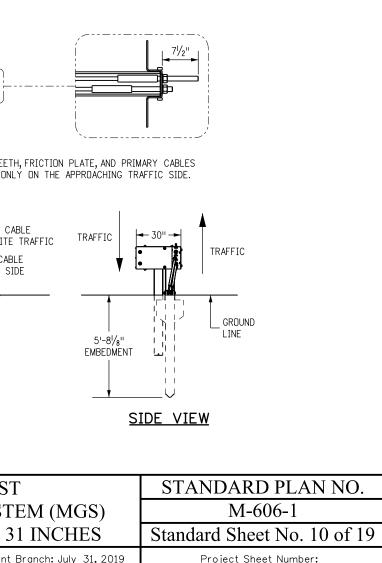
2. AFTER INSTALLATION AND IN HEAVY SNOW LOCATIONS, TRIM POSTS $\fbox{1}$ and $\fbox{2}$ (IF THEY ARE WODDEN) FLUSH WITH RAIL TOP AND TREAT END WITH SEALANT, IN CONFORMANCE

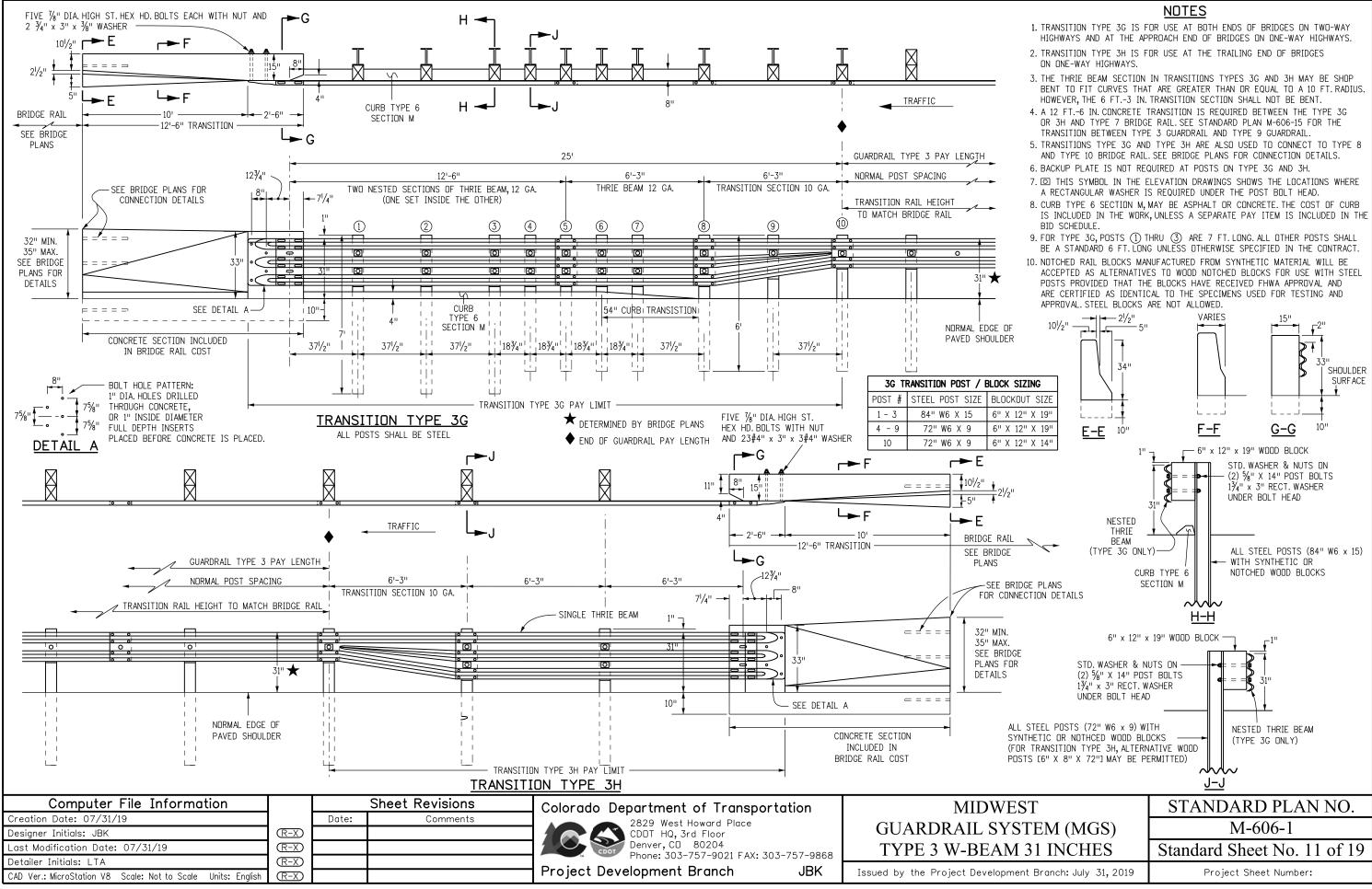

3. POSTS SHALL BE DRILLED FOR BREAKAWAY ACCORDING TO THE MANUFACTURER'S

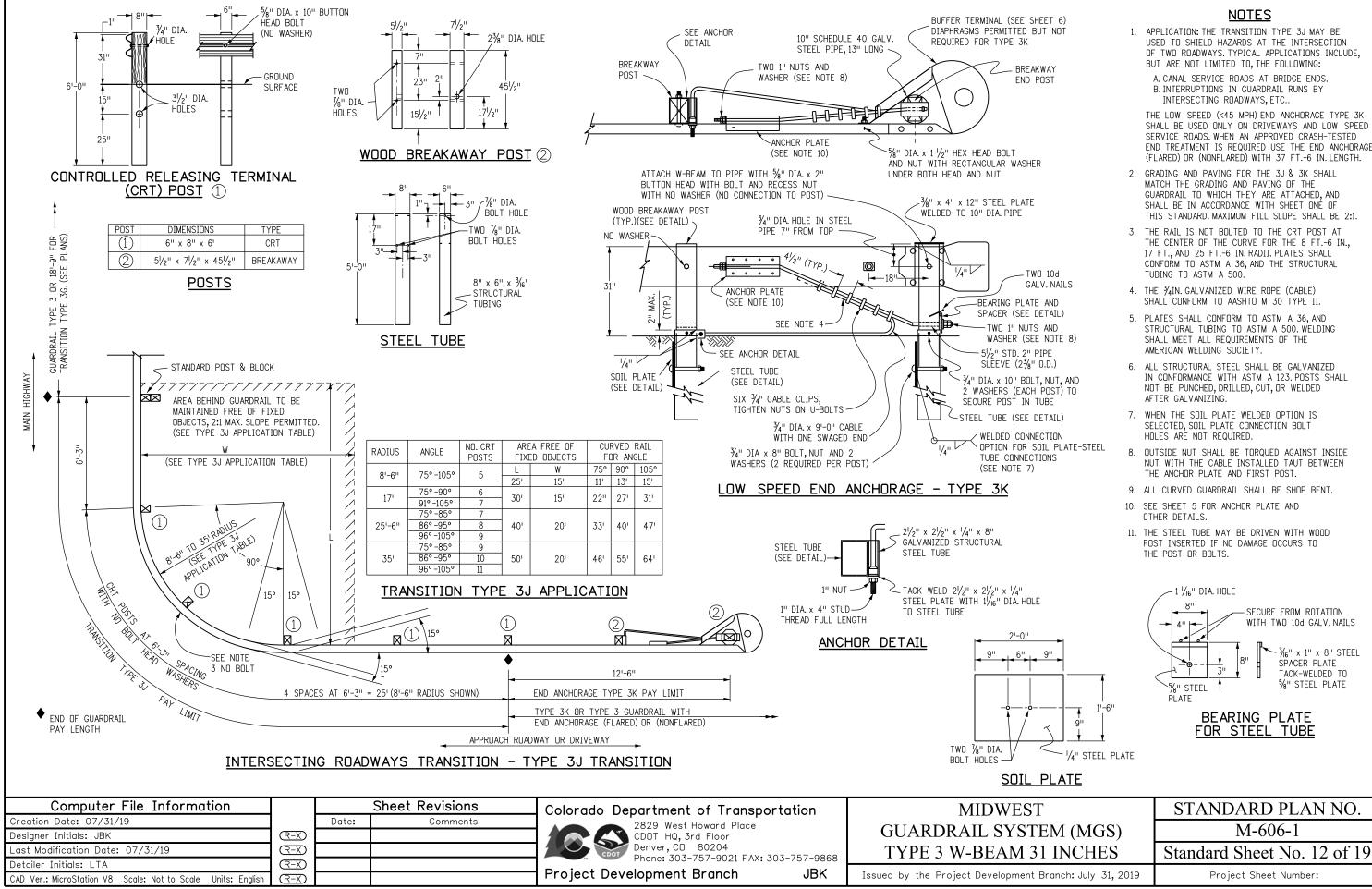

4. SEE SHEETS 1, 3 AND 5 FOR STANDARD GUARDRAIL TYPE 3 AND INSTALLATION DETAILS. 5. RETROREFLECTOR TABS SHALL NOT BE USED ON END ANCHORAGE POSTS.

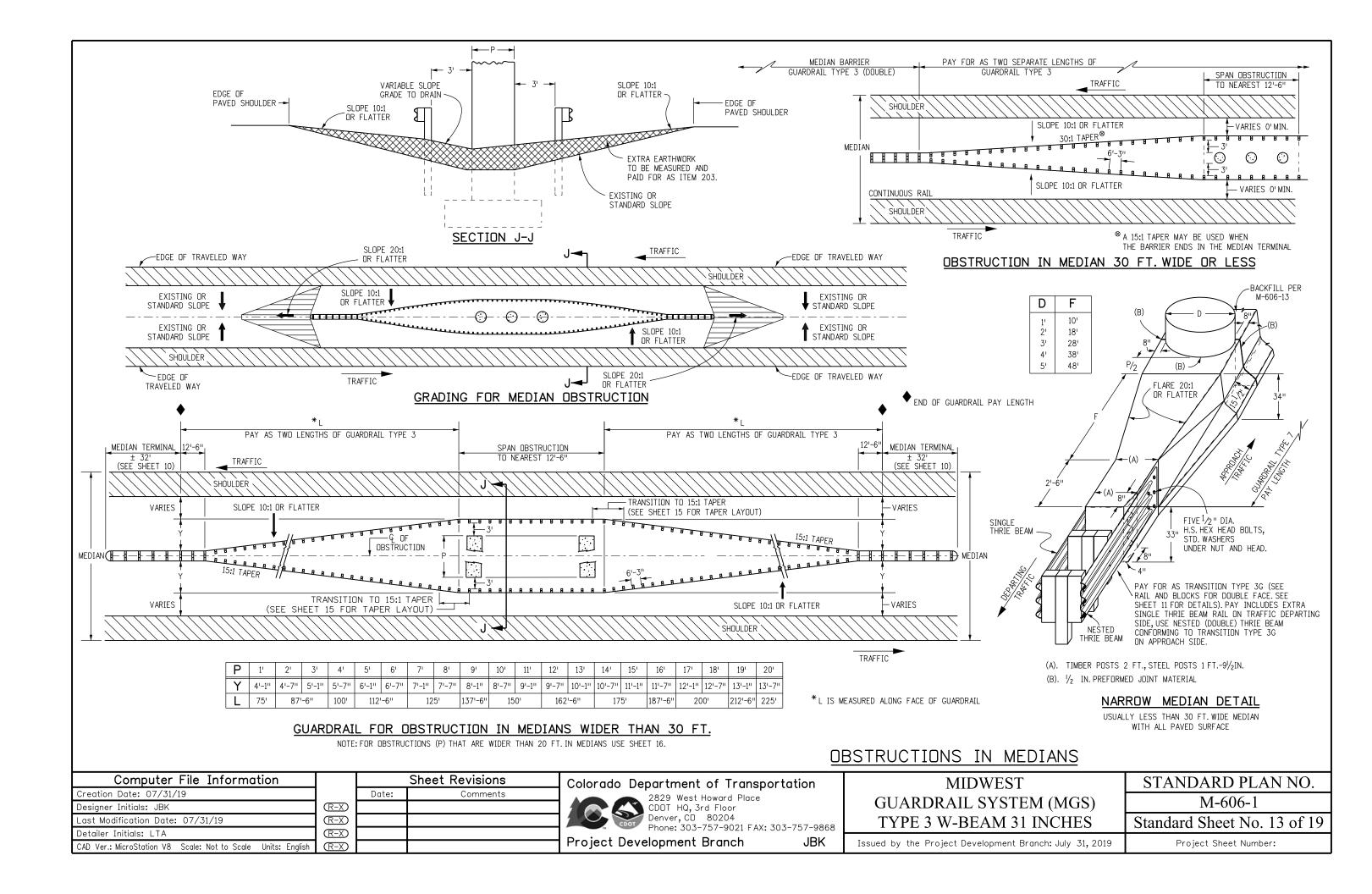

6. DELINEATION SHALL BE APPLIED TO THE END PIECE, AND SHALL NOT BE PAID FOR SEPARATELY BUT SHALL BE INCLUDED IN THE WORK.

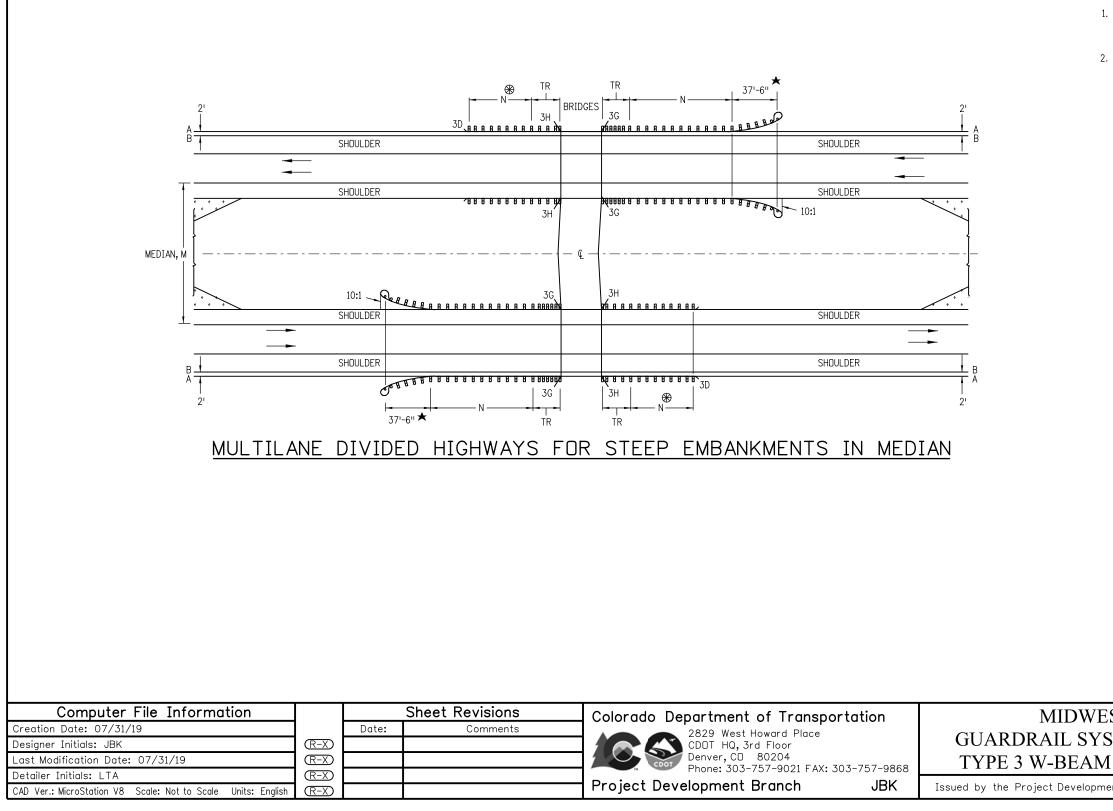
END ANCHORAGES (FLARED)


ST	STANDARD PLAN NO.
STEM (MGS)	M-606-1
I 31 INCHES	Standard Sheet No. 6 of 19
ent Branch: July 31, 2019	Project Sheet Number:

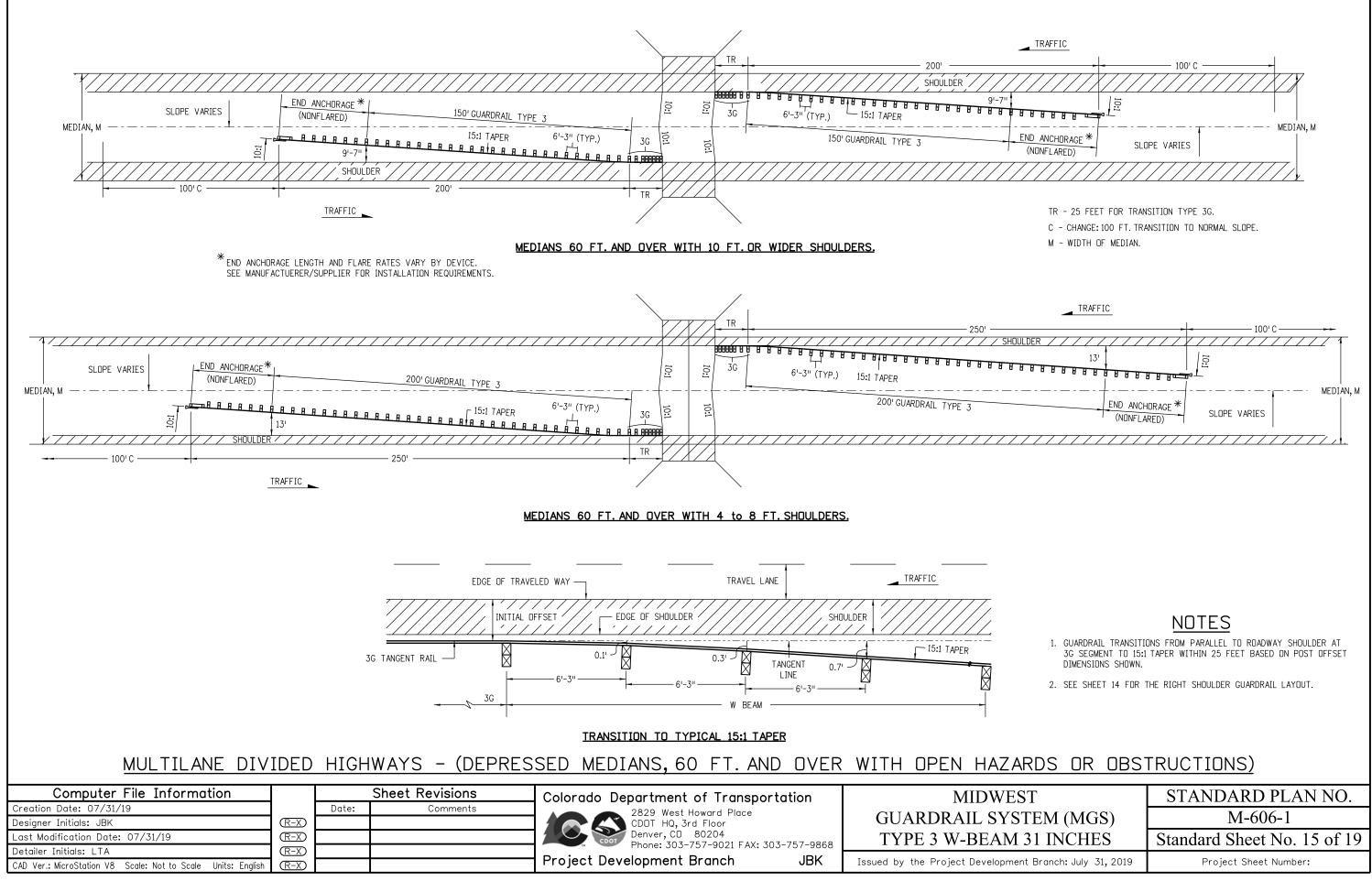


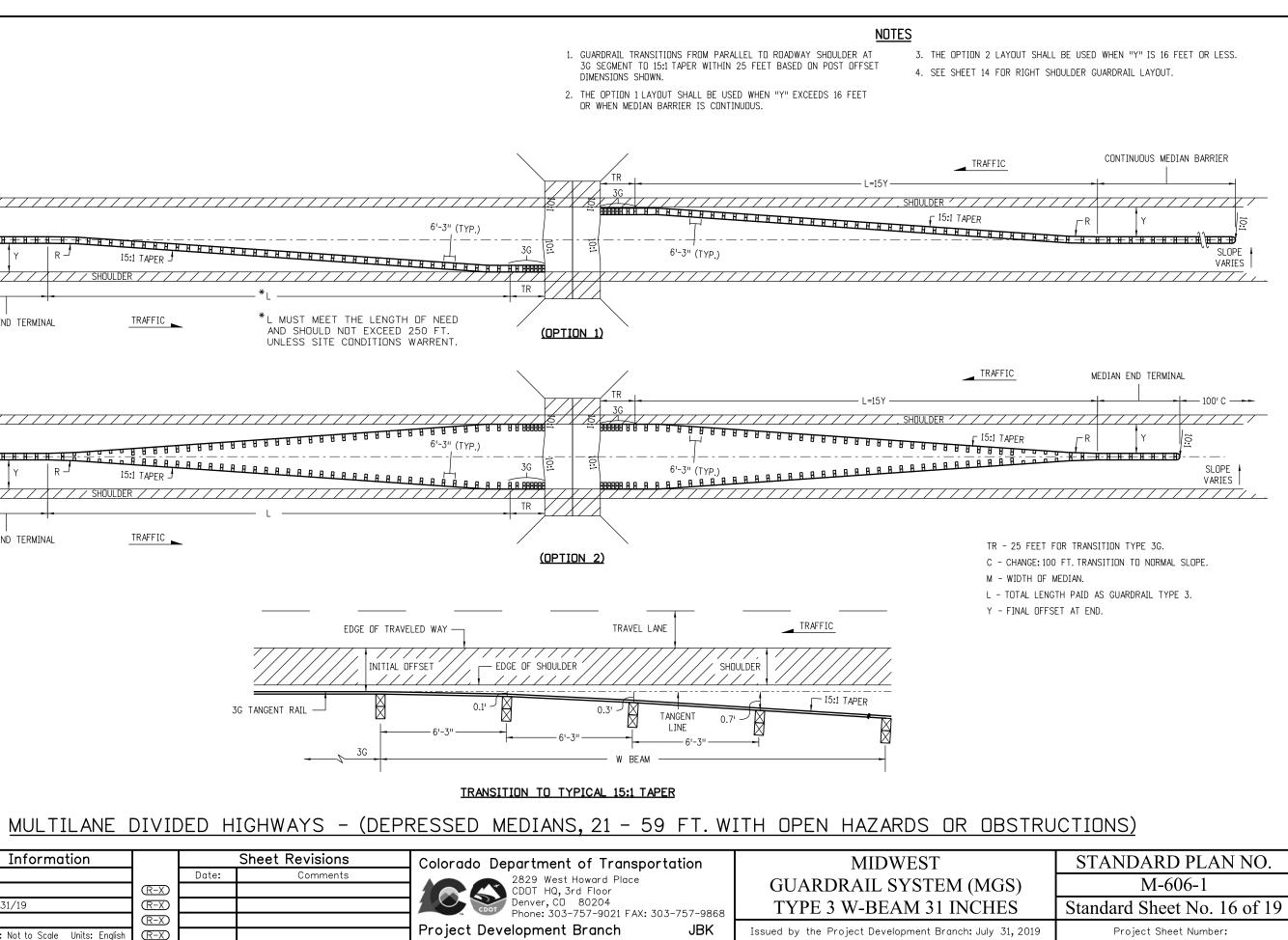


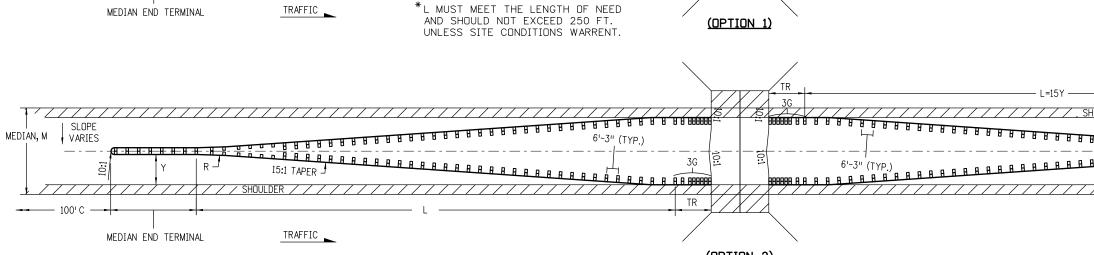

MEDIAN TERMINAL NOTES 1. THE MEDIAN TERMINAL SHALL BE THE MAX-TENSION MEDIAN AS MANUFACTURED BY 7. ALL STEEL COMPONENTS SHALL BE GALVANIZED PER ASTM A123 BY BARRIER SYSTEM BY LINDSAY (LINDSAY TRANSPORTATION SOLUTIONS) OR EQUIVALENT UNLESS OTHERWISE STATED. (TEL #: 888 800-3691). 8. ONE MEDIAN TERMINAL SHALL INCLUDE ALL POSTS, RAIL, AND HARDWARE 2. THE MAX-TENSION SHALL BE APPLIED DIRECTLY TO W-BEAM GUARDRAIL SYSTEMS ITEMS REQUIRED FOR A COMPLETE UNIT. THE DEVICE SHALL BE INSTALLED AT, OR TRANSITIONED TO, 31 INCH WITH PANELS AND POST SPACING CONFIGURED IN CONFORMANCE WITH THE MANUFACTURER'S INSTRUCTIONS. THE CONTRACTOR THE TRAFFIC SIDE SLIDER AND THE REAR SIDE SLIDER AT MID-SPAN SPLICE. TRANSITIONS TO STRONG POST W-BEAM GUARDRAIL SYSTEMS SHALL PROVIDE A COPY OF THE MANUFACTURER'S INSTALLATION INSTRUCTIONS INSTALLED WITH ARROWS POINTING TOWARDS OR OTHER BARRIERS WHERE THE SPLICE IS NOT MID-SPAN SHALL BE ACCOMPLISHED AND PARTS LISTS TO THE ENGINEER PRIOR TO THE INSTALLATION OF THE THE HEAD OF THE SYSTEM ON BOTH SIDES OF TRAFFIC USING A 3 FT. 1-1/2 INCH, 9 FT. 4-1/2 INCH OR 15 FT. 7-1/2 INCH PANELS AFTER DEVICE. THE MAX-TENSION SYSTEM (MIN. OF 50 FT. DOWNSTREAM OF THE FIRST POST). 9. UNLESS OTHERWISE SPECIFIED ON THE PLANS. THE MEDIAN TERMINAL SHALL TRANSITIONS TO OTHER BARRIER SYSTEMS SHALL ALSO BE AT A MIN. OF 50 FT. 0 ംറിത് BE INSTALLED FOR BIDIRECTIONAL TRAFFIC APPLICATION. DOWNSTREAM FROM THE FIRST POST. SEE SHEET 4. <u>-</u>8 8 10. EACH INSTALLATION SHALL BE SUPERVISED AND CERTIFIED AS CORRECT 3. THE MAX-TENSION SHALL NOT BE ATTACHED DIRECTLY TO RIGID BARRIERS SUCH AS CONCRETE BARRIERS, STEEL BARRIERS OR CONCRETE STRUCTURES WITHOUT PROPER UPON COMPLETION BY A REPRESENTATIVE OF THE DEVICE MANUFACTURER θ HEX BOLTS SHALL BE INSTALLED TRANSITION. IF ROCK OR STIFF SOIL IS ENCOUNTERED, THE POSTS AND SOIL ANCHOR OR BY AN EMPLOYEE OF THE CONTRACTOR WHO IS A CERTIFIED INSTALLER. WITH THE BOLT HEADS ON THE THE CERTIFIED INSTALLER SHALL HAVE COMPLETED DEVICE TRAINING AND MAY BE INSTALLED BY AUGURING AND BACKFILLING THE HOLE. TRAFFIC SIDE AND THE HEX NUTS SHALL BE REGISTERED WITH THE MANUFACTURER AS A CERTIFIED INSTALLER. ON THE NON-TRAFFIC SIDE 4. EITHER 8 INCH OR 12 INCH COMPOSITE OR TIMBER BLOCKOUTS SHALL BE USED DETAIL A PER MANUFACTURE'S RECOMMENDATIONS. 11. DELINEATION, IF REQUIRED, SHALL BE APPLIED TO THE END PIECE AND WILL SECTION A-A NOT BE PAID FOR SEPARATELY BUT SHALL BE INCLUDED IN THE COST OF 5. EITHER 12 FT.-6 INCH OR 25 FOOT PANELS SHALL BE USED DEPENDING ON SITE THE WORK SEE STANDARD PLAN S-612-1. CONDITIONS OR CONNECTED BARRIER SYSTEMS. 6. RAIL PANELS SHALL BE LAPPED PER MANUFACTURER'S INSTALLATION MANUAL, REGARDLESS OF AN UPSTREAM OR DOWNSTREAM END SYSTEM POSITION. END OF GUARDRAIL PAY LENGTH MEDIAN TERMINAL PAY ITEM 12-1/2". 55'-1/2" TRAFFIC PANEL 4 PANEL 3 PANEL 2 PANEL 1 71/2" (TYP.) (TYP.) (TYP.) (TYP.) ¥ WIDTH 28.5 POST 1 BOLTS ARE NOT PLAN OFFSET 71/2 TRAFFIC PASSED THROUGH THE GUARDRAIL * THE CUTTING TEETH, FRICTION PLATE, AND PRIMARY CABLES PANELS AT ARE INSTALLED ONLY ON THE APPROACHING TRAFFIC SIDE. POSTS 4, 5, 5 4 2 AND 6 FOR BOTH SIDES. 12 GA. Α 🔫 TRAFFIC RAIL 9'- 4" LENGTH OF NEED UPEPR CABLE TRAFFIC OPPOSITE TRAFFIC TRAFFIC . . :.: :-: :+: . LOWER CABLE .31 TRAFFIC SIDE SEE DETAIL A STEEL GROUND 11 Α 3'-4'' TRAFFIC LINE 11 11 GROUND LINE EMBEDMENT 5'-8' GROUND POSTS 1.1 11 11 LINE (TYP.) 1 INF 5'-81/8" (TYP.) 1 EMBEDMENT -5'-3¾ 52 SIDE VIEW ELEVATION MAX-TENSION MEDIAN (MASH CERTIFIED) **Computer File Information** Sheet Revisions MIDWEST STANDARD PLAN NO. Colorado Department of Transportation Creation Date: 07/31/19 Date: Comments 2829 West Howard Place **GUARDRAIL SYSTEM (MGS)** M-606-1 Designer Initials: JBK (R-X)CDDT HQ, 3rd Floor Denver, CO 80204 (R-X) Last Modification Date: 07/31/19 **TYPE 3 W-BEAM 31 INCHES** Phone: 303-757-9021 FAX: 303-757-9868 (R-X) Detailer Initials: LTA Project Development Branch JBK Issued by the Project Development Branch: July 31, 2019 Project Sheet Number: CAD Ver.: MicroStation V8 Scale: Not to Scale Units: English (R-X)



END TREATMENT IS REQUIRED USE THE END ANCHORAGE




1. MEDIAN BARRIERS TANGENT TO THE ROADWAY MAY BE USED WHERE THE SHOULDER SLOPES IN THE MEDIAN ARE STEEP.

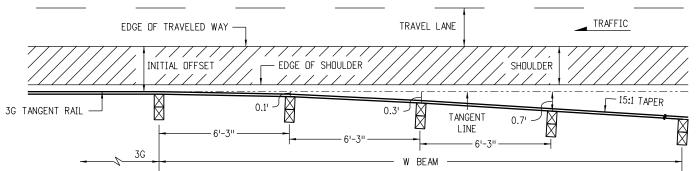

2. BARRIER LENGTHS SHALL BE INCREASED TO ACCOUNT FOR STEEP EMBANKMENTS OR OTHER HAZARDS WITHIN CLOSE PROXIMITY OF BRIDGES.

- DO NOT CONSTRUCT THE TR AND GUARDRAIL ON THE TRAILING BRIDGE ENDS IF SITE CONDITIONS DO NOT WARRANT THE USE OF GUARDRAIL.
- N SHOWN ON PLANS.LENGTH TO SHIELD ALL HAZARDS IS BASED ON GUARDRAIL'S LENGTH OF NEED COMPUTATION.SEE AASHTO ROADWAY DESIGN GUIDE.THE MINIMUM SHALL BE 12 FT. - 6 IN., WHERE SITE CONDITIONS ALLOW. THE TOTAL LENGTH OF NEED WILL INCLUDE THE LENGTH OF TRANSITION, THE LENGTH OF RAIL (N), AND ANY REDIRECTIVE LENGTH IN THE RAIL END TREATMENT.
- TR 25 FEET FOR TRANSITION TYPES 3G AND 3H.
- A EDGE OF 8 FT. OR 10 FT. SHOULDER.
- B EDGE OF 6 FT. OR LESS SHOULDER.
- ★ END ANCHORAGE CAN BE FLARED OR NONFLARED.

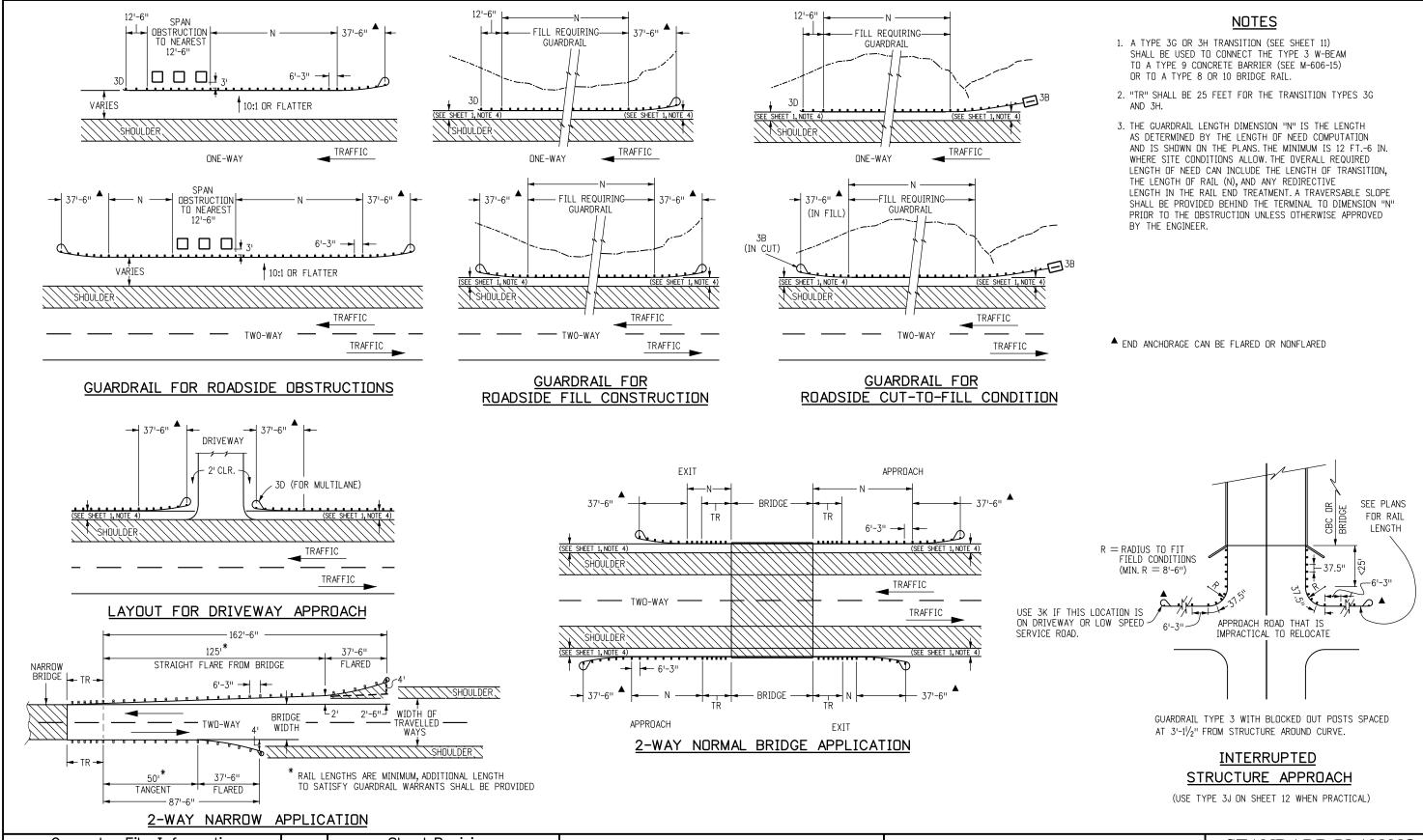
ST	STANDARD PLAN NO.
STEM (MGS)	M-606-1
31 INCHES	Standard Sheet No. 14 of 19
ent Branch: July 31, 2019	Project Sheet Number:

MEDIAN, M VARIES

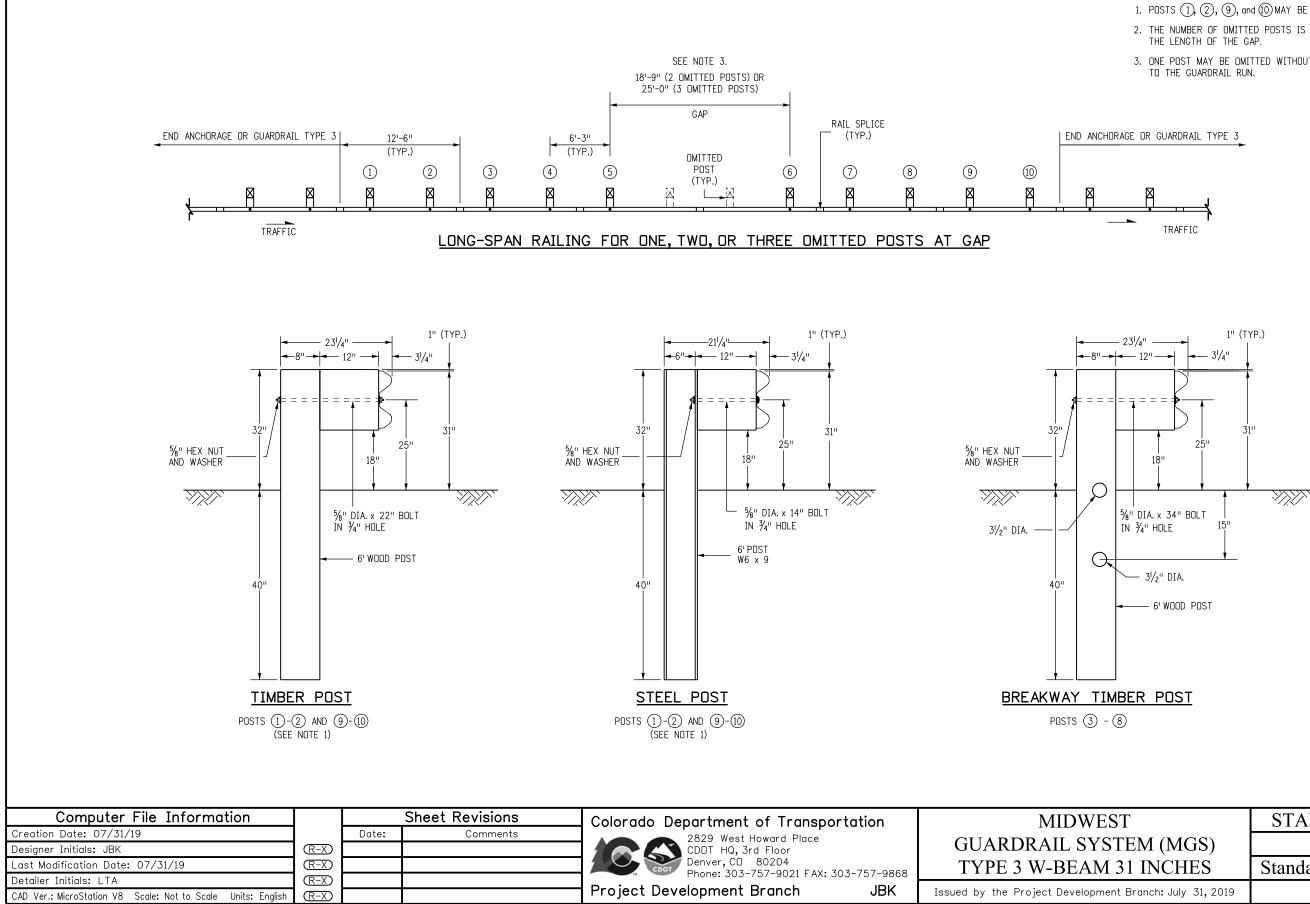
100' C


0:1

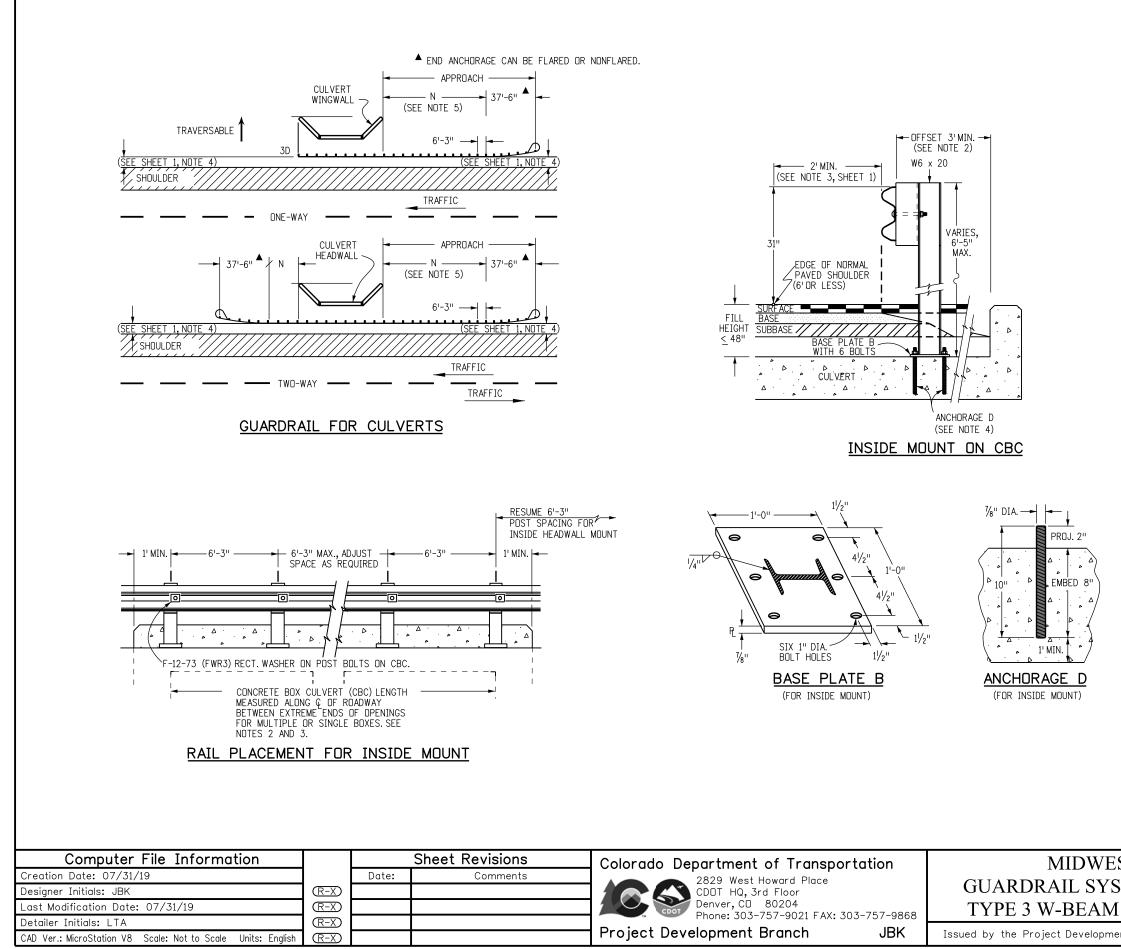
R


HHHHH

15:1 TAPER 🚽

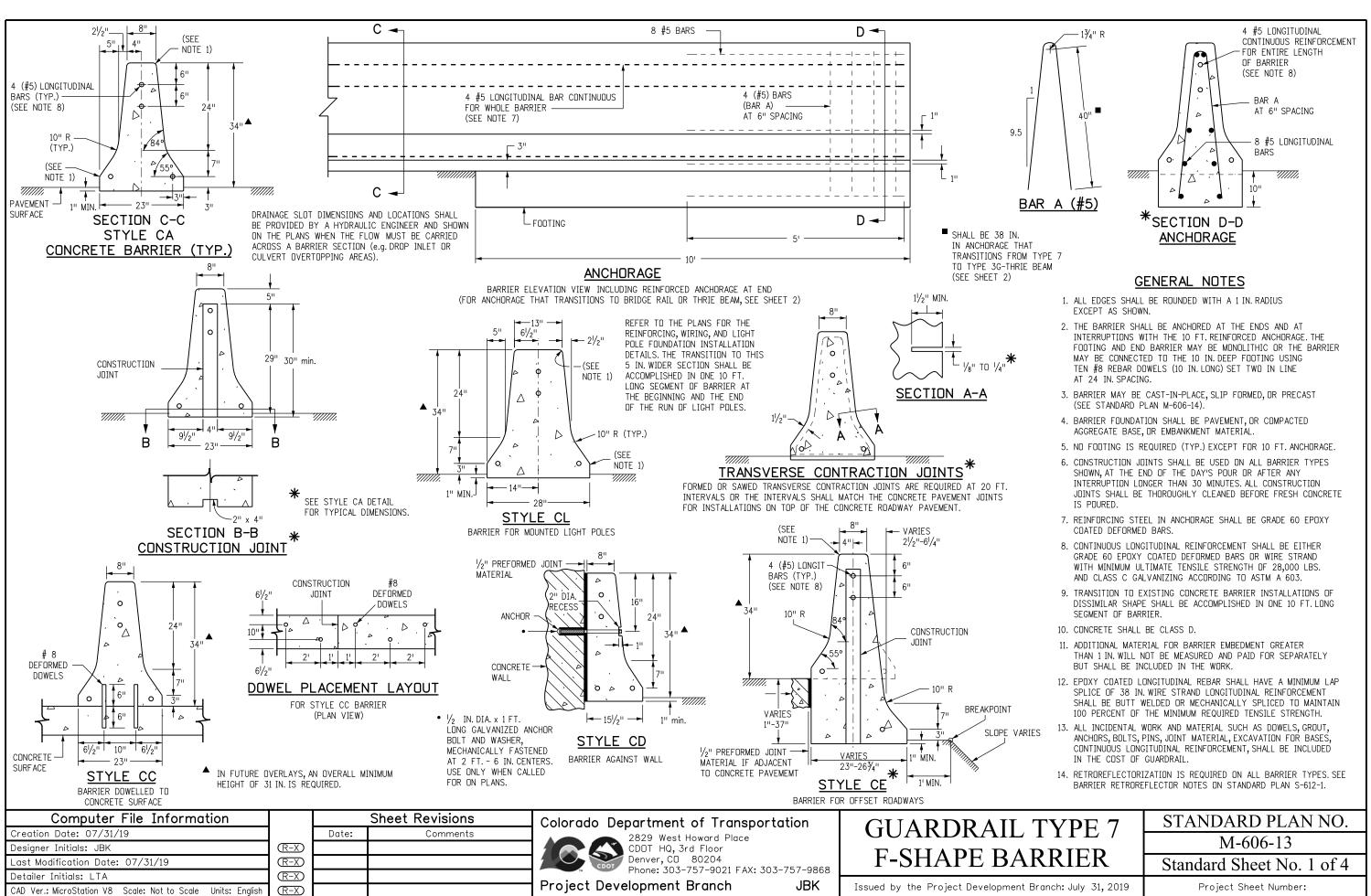

R / / /

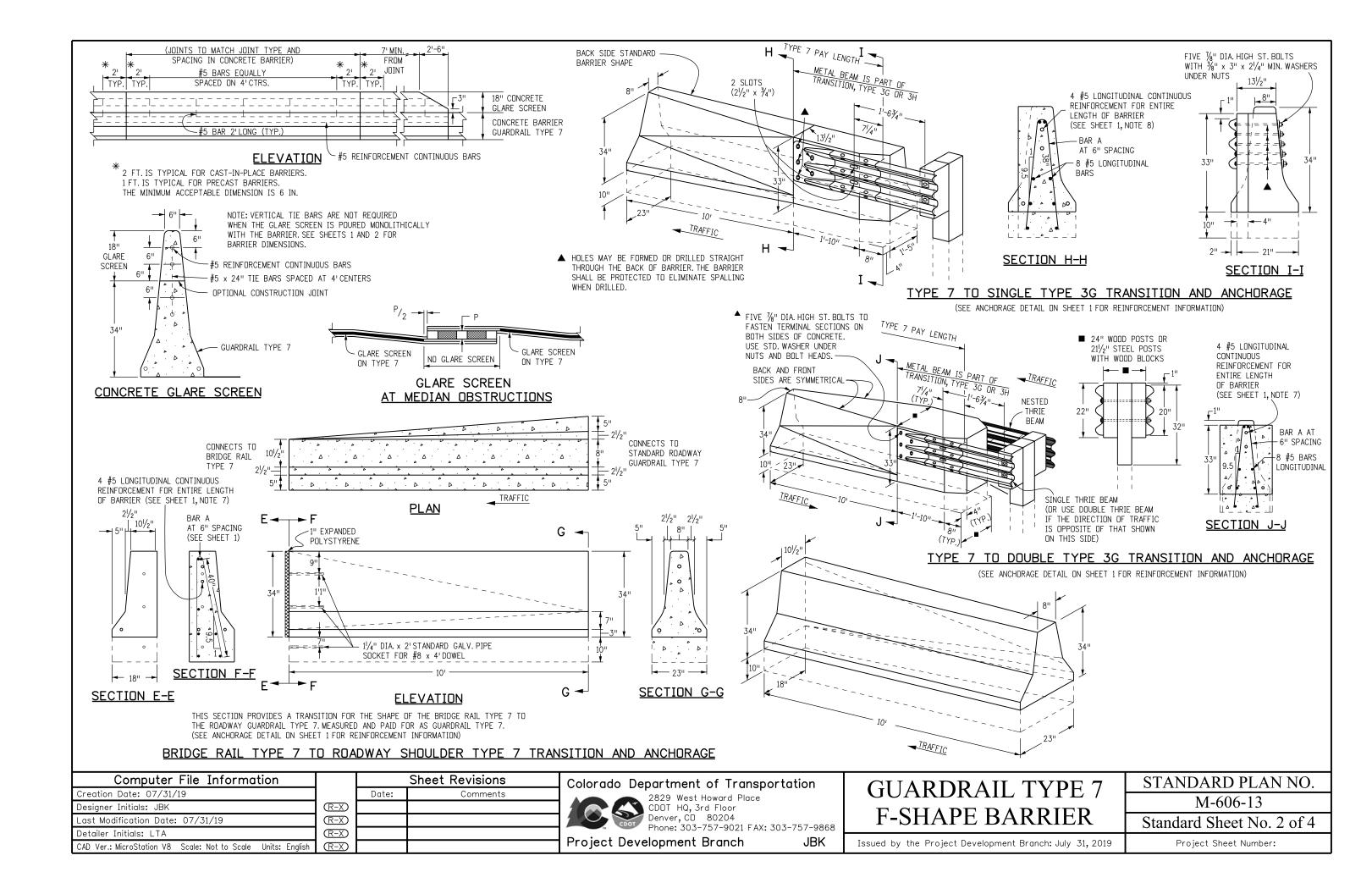
Computer File Information			Sheet Revisions	Colorado Department of Transportation	MIDWES
Creation Date: 07/31/19		Date:	Comments	2829 West Howard Place	
Designer Initials: JBK	(R-X)			CDDT HQ. 3rd Floor	GUARDRAIL SYST
Last Modification Date: 07/31/19	R-X			Denver, CD 80204 Phone: 303-757-9021 FAX: 303-757-980	TYPE 3 W-BEAM 3
Detailer Initials: LTA	R-X				
CAD Ver.: MicroStation V8 Scale: Not to Scale Units: English	R-X)			Project Development Branch JBK	Issued by the Project Development

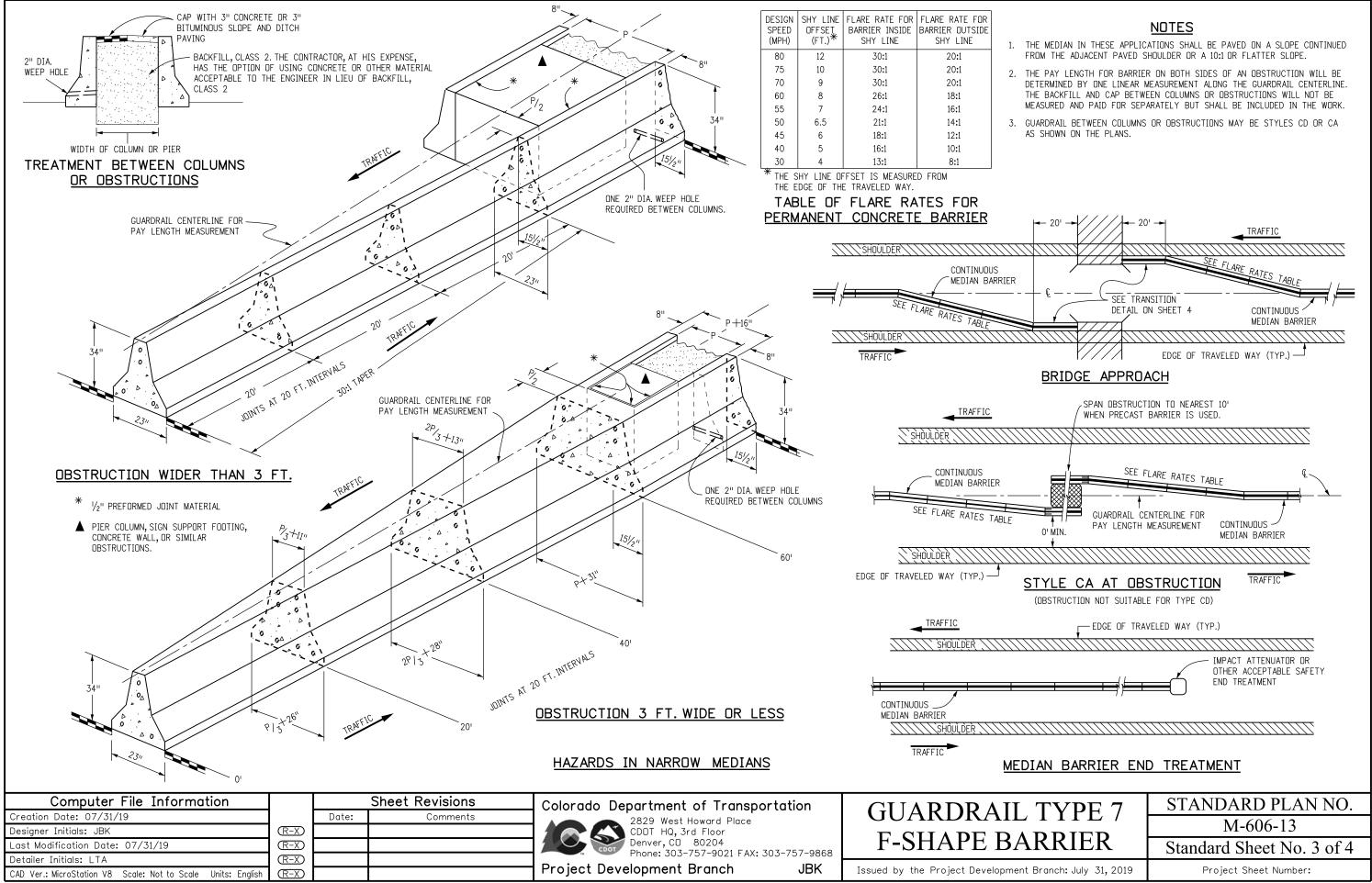


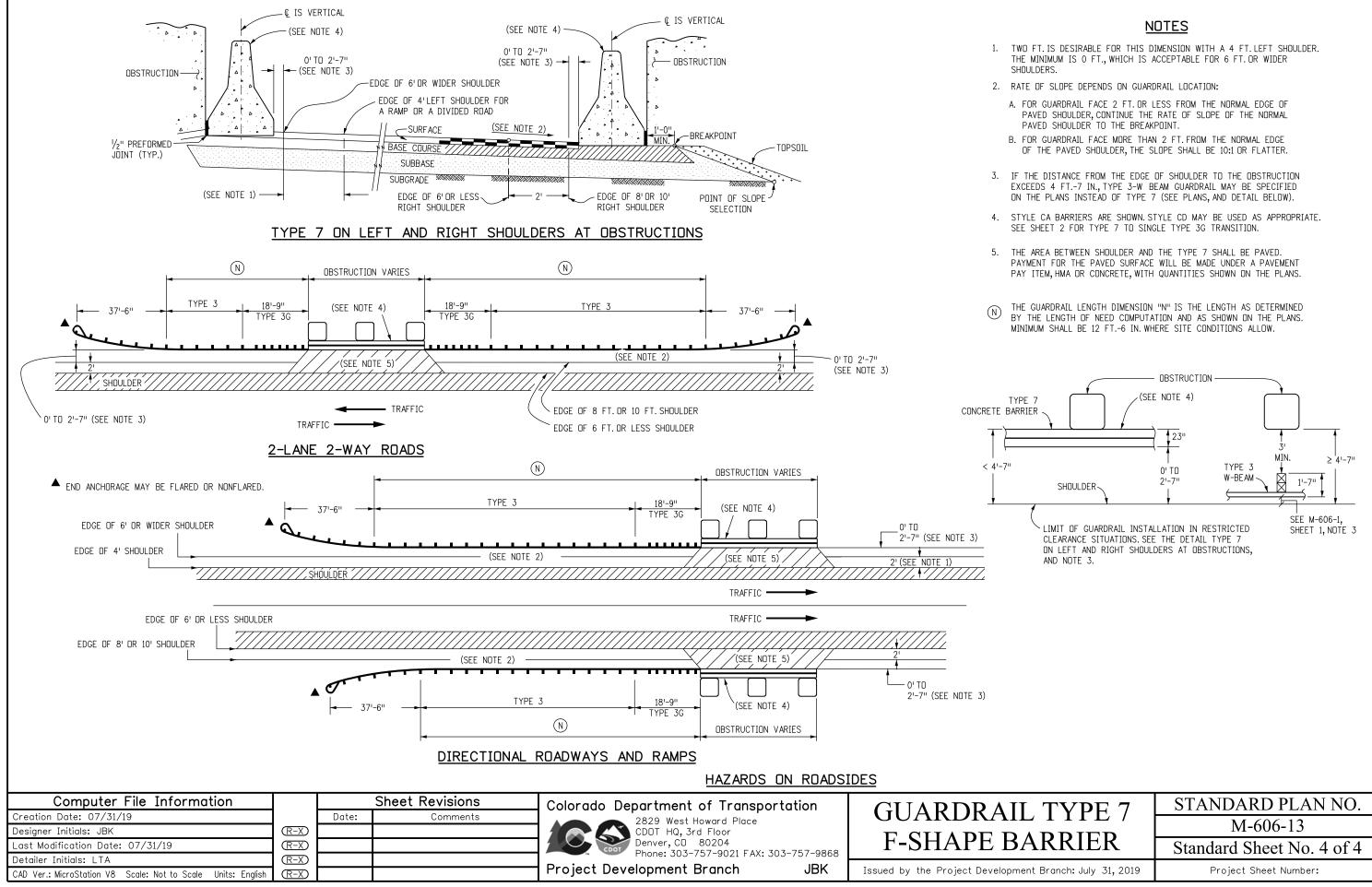
Computer File Information			Sheet Revisions	Colorado Department of Transportation	MIDWEST	STANDARD PLAN NO.
Creation Date: 07/31/19		Date:	Comments	2829 West Howard Place		M-606-1
Designer Initials: JBK	(R-X)			CDDT HQ, 3rd Floor	GUARDRAIL SYSTEM (MGS)	IVI-000-1
Last Modification Date: 07/31/19	(R-X)			Denver, CD 80204 Phone: 303-757-9021 FAX: 303-757-9868	TYPE 3 W-BEAM 31 INCHES	Standard Sheet No. 17 of 19
Detailer Initials: LTA	(R-X)					
CAD Ver.: MicroStation V8 Scale: Not to Scale Units: English	(R-X)			Project Development Branch JBK	Issued by the Project Development Branch: July 31, 2019	Project Sheet Number:

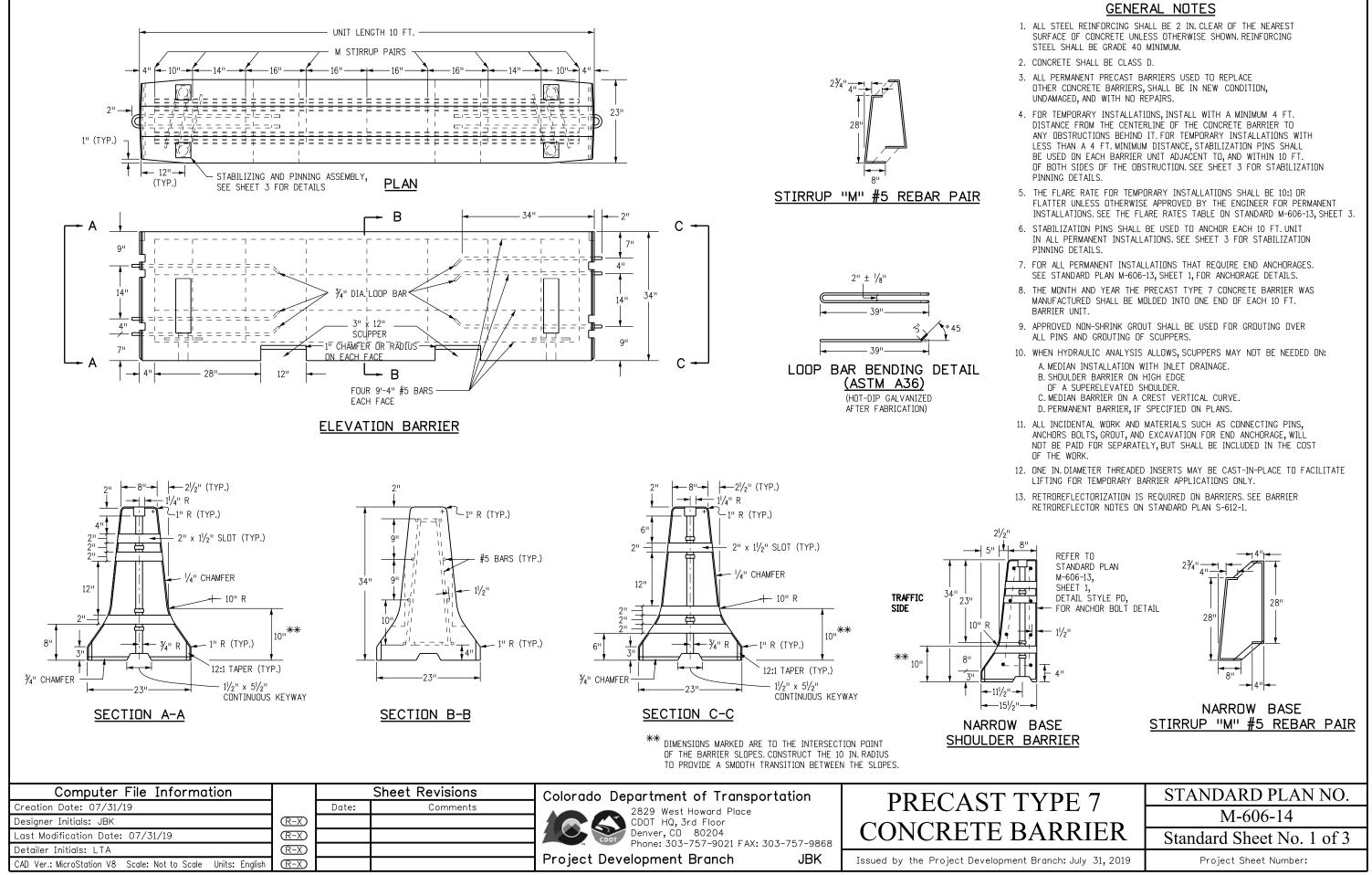
- 1. POSTS (1), (2), (9), and (10) MAY BE TIMBER OR STEEL.
- 2. THE NUMBER OF OMITTED POSTS IS DEPENDENT ON
- 3. ONE POST MAY BE OMITTED WITHOUT ANY MODIFICATION

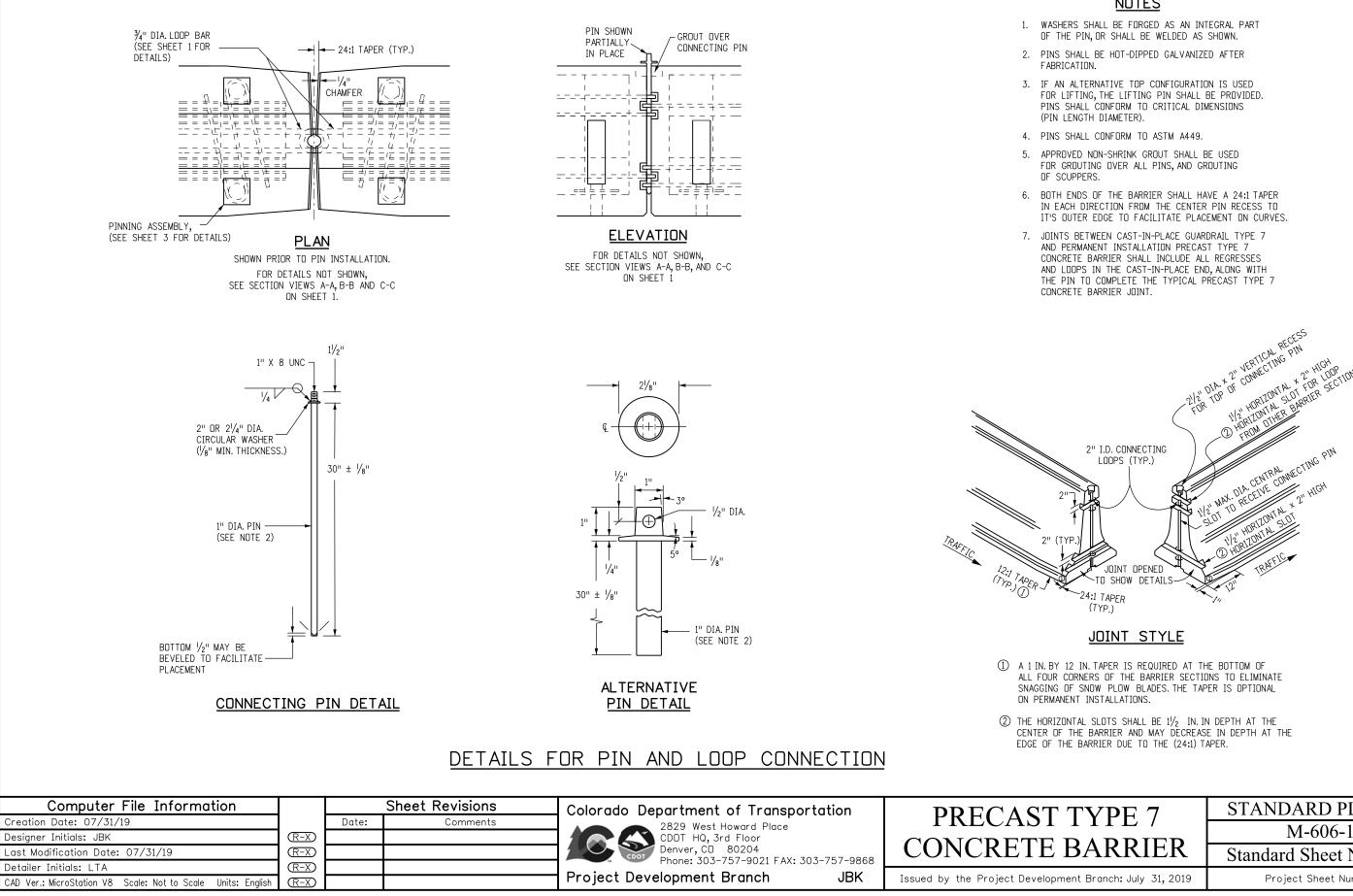

EST	STANDARD PLAN NO.
STEM (MGS)	M-606-1
1 31 INCHES	Standard Sheet No. 18 of 19
ent Branch: July 31, 2019	Project Sheet Number:

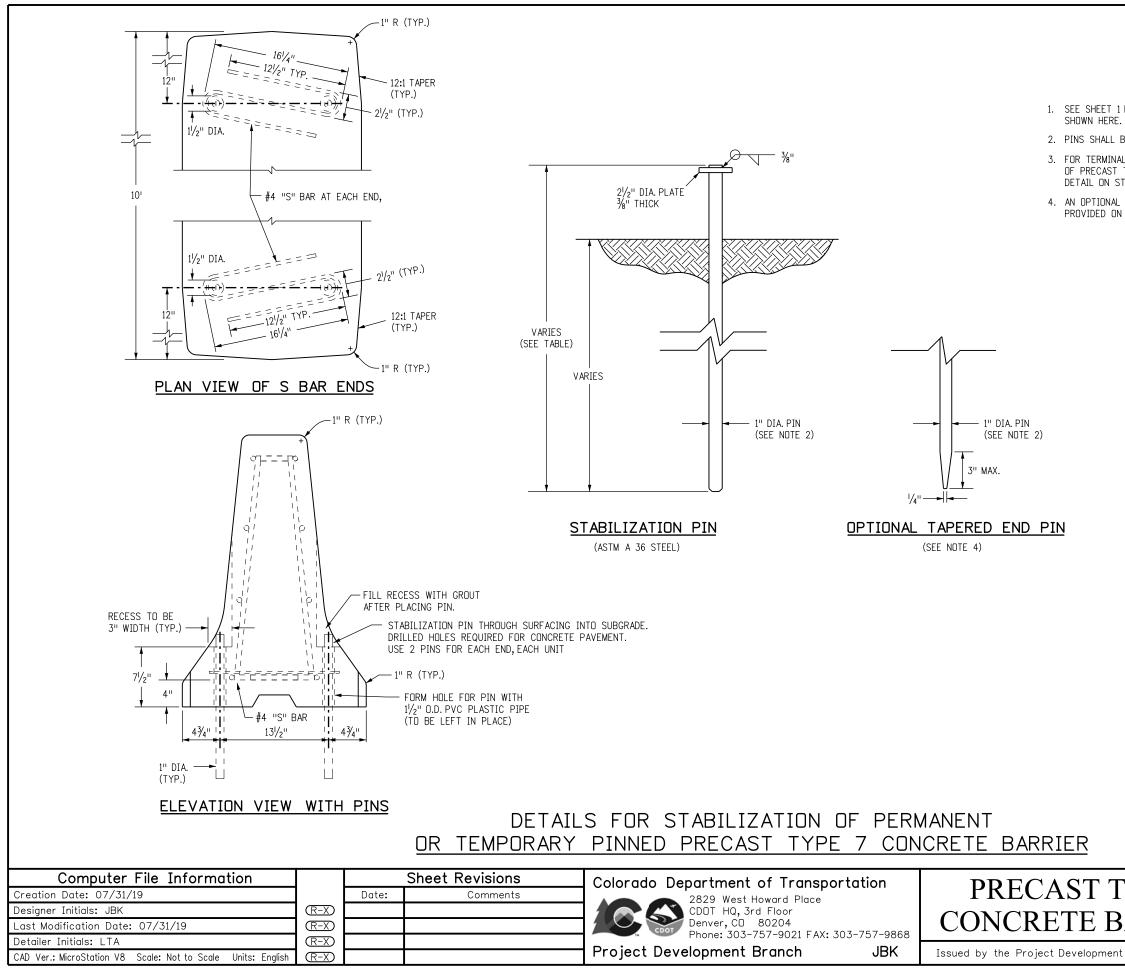

<u>NOTES</u>


- 1. LOCATION AND LENGTH OF MEDIAN GUARDRAIL APPROACHES TO CULVERTS WITH FULL HEADWALL AND WINGWALLS SHALL BE AS SHOWN FOR BRIDGES ON SHEET 15. THE GUARDRAIL TYPE 3 SHALL CONTINUE ACROSS THE CULVERT AS SHOWN ON THIS SHEET.
- 2. RIGHT SHOULDER BOX CULVERT TREATMENT IS SHOWN ON THIS SHEET FOR CULVERTS 20 FT. OR LESS IN LENGTH.
- 3. CONSTRUCTION AND PAYMENT FOR FILL HEIGHTS SHALL BE INCLUDED IN THE COST OF THE GUARDRAIL TYPE 3.
- 4. ANCHORAGE D: SIX BOLTS FOR BASE PLATE "B" WITH INSIDE MOUNT. THE BOLTS SHALL BE 7/8 IN. DIA X 10 IN. HIGH STRENGTH RODS THREADED FULL LENGTH AND ALL GALVANIZED. RODS SHALL BE CAST-IN-PLACE FOR NEW STRUCTURES. FOR EXISTING STRUCTURES, THE RODS SHALL BE INSTALLED IN 1-1/4 IN. DIA HOLES WITH NON-SHRINK GROUT OR EPOXY CONFORMING TO ASTM C 881. IF THE THICKNESS OF A CULVERT'S TOP PANEL REQUIRES BOLTS TO BE LESS THAN 10 IN. HIGH, THE BOLTS SHALL BE APPROVED BY THE ENGINEER.
- 5. THE GUARDRAIL LENGTH DIMENSION "N" IS THE LENGTH AS DETERMINED BY THE LENGTH OF NEED COMPUTATION AND IS SHOWN ON THE PLANS. THE MINIMUM IS 12 FT.-6 IN. WHERE SITE CONDITIONS ALLOW. THE OVERALL REQUIRED LENGTH OF NEED CAN INCLUDE THE LENGTH OF TRANSITION, THE LENGTH OF RAIL (N), AND ANY REDIRECTIVE LENGTH IN THE RAIL END TREATMENT.
- 6. ALL POSTS, BASE PLATES, AND ANCHOR BOLTS SHALL BE FABRICATED FROM ASTM A 36 STEEL. THE ABOVE MATERIAL, W-BEAM, AND ALL ANCHOR BOLTS AND MISCELLANEOUS BOLTS, NUTS, AND WASHERS SHALL BE GALVANIZED AFTER FABRICATION INACCORDANCE WITH SECTION 509. CONCRETE, REINFORCING STEEL, AND STRUCTURAL STEEL ELEMENTS SHALL BE IN ACCORDANCE WITH SECTIONS 601, 602, AND 509, RESPECTIVELY.
- 7. POST ANCHORS, ENCASED IN CONCRETE, SHALL BE ASTM A 36 STEEL, AND NEED NOT BE GALVANIZED.
- 8. PRIOR TO INSTALLATION OF GUARDRAIL ON CULVERTS, THREE SETS OF WORKING DRAWINGS WHICH COMPLY WITH THE REQUIREMENTS OF SECTION 105 SHALL BE SUBMITTED TO THE ENGINEER FOR INFORMATION ONLY.


ST	STANDARD PLAN NO.
STEM (MGS)	M-606-1
31 INCHES	Standard Sheet No. 19 of 19
ent Branch: July 31, 2019	Project Sheet Number:




L TYPE 7 ARRIER	STANDARD PLAN NO.
	M-606-13
	Standard Sheet No. 1 of 4
ent Branch: July 31, 2019	Project Sheet Number:

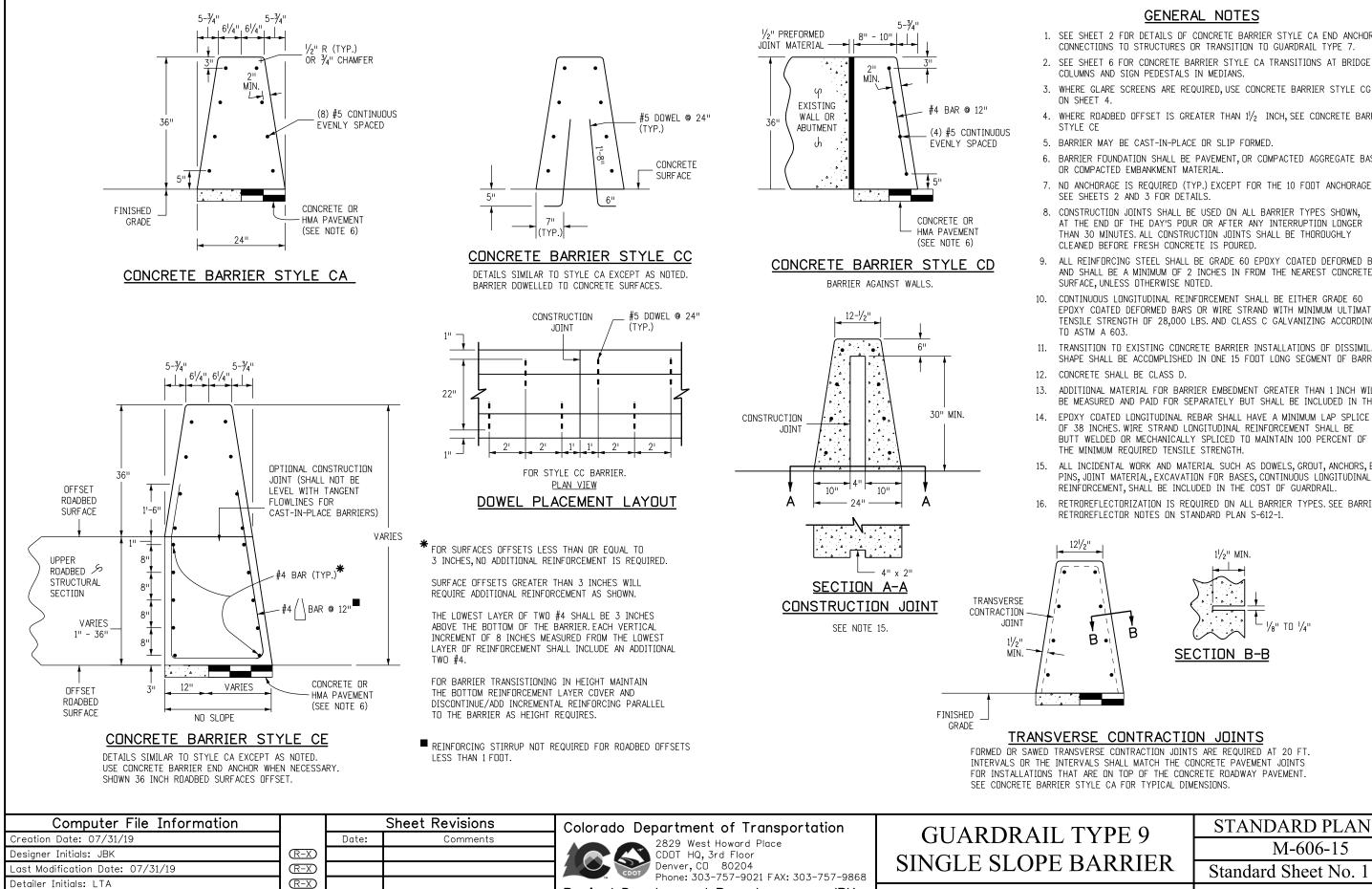


TYPE 7	STANDARD PLAN NO.
BARRIER	M-606-14
	Standard Sheet No. 2 of 3
ent Branch: July 31, 2019	Project Sheet Number:

<u>NOTES</u>

1. SEE SHEET 1 FOR REINFORCEMENT AND OTHER DETAILS NOT SHOWN HERE.

2. PINS SHALL BE HOT-DIPPED GALVANIZED AFTER FABRICATION


 FOR TERMINAL ANCHORING OF THE PERMANENT INSTALLATION OF PRECAST TYPE 7 CONCRETE BARRIER, SEE THE END ANCHORAGE DETAIL ON STANDARD PLAN M-606-13, SHEET 1.

4. AN OPTIONAL 3 IN MAXIMUM TAPERED END POINT MAY BE PROVIDED ON THE STABILIZATION PIN TO FACILITATE DRIVING.

ROAD SURFACE	PIN LENGTH
CONCRETE	2 FT6 IN.
НМА	3 FT.
SOIL	3 FT6 IN.

TABLE OF STABILIZATION PIN LENGTHS

TYPE 7	STANDARD PLAN NO.
BARRIER	M-606-14
	Standard Sheet No. 3 of 3
ent Branch: July 31, 2019	Project Sheet Number:

	GUARDRAIL TYPE 9	STANDARD PLAN NO.		
8		M-606-15		
	SINGLE SLOPE BARRIER	Standard Sheet No. 1 of 11		
	Issued by the Project Development Branch: July 31, 2019	Project Sheet Number:		

Project Development Branch

(R-X)

CAD Ver.: MicroStation V8 Scale: Not to Scale Units: English

JBK

1. SEE SHEET 2 FOR DETAILS OF CONCRETE BARRIER STYLE CA END ANCHOR CONNECTIONS TO STRUCTURES OR TRANSITION TO GUARDRAIL TYPE 7.

2. SEE SHEET 6 FOR CONCRETE BARRIER STYLE CA TRANSITIONS AT BRIDGE

3. WHERE GLARE SCREENS ARE REQUIRED, USE CONCRETE BARRIER STYLE CG

4. WHERE ROADBED OFFSET IS GREATER THAN $1\frac{1}{2}$ INCH, SEE CONCRETE BARRIER

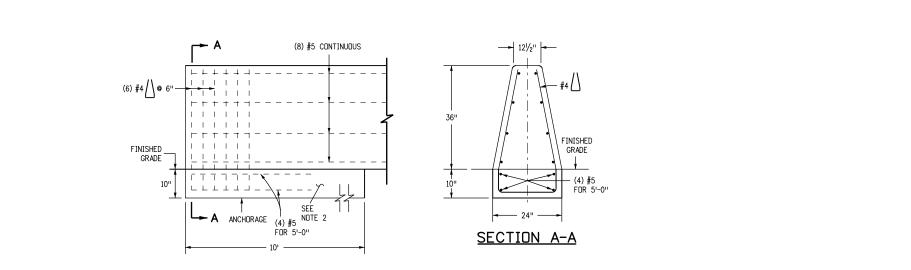
6. BARRIER FOUNDATION SHALL BE PAVEMENT, OR COMPACTED AGGREGATE BASE,

7. NO ANCHORAGE IS REQUIRED (TYP.) EXCEPT FOR THE 10 FOOT ANCHORAGE.

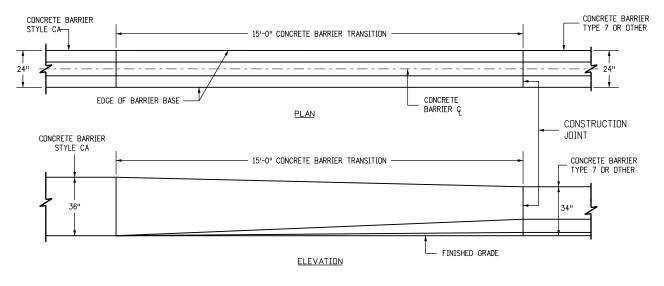
8. CONSTRUCTION JOINTS SHALL BE USED ON ALL BARRIER TYPES SHOWN, AT THE END OF THE DAY'S POUR OR AFTER ANY INTERRUPTION LONGER THAN 30 MINUTES. ALL CONSTRUCTION JOINTS SHALL BE THOROUGHLY

9. ALL REINFORCING STEEL SHALL BE GRADE 60 EPOXY COATED DEFORMED BARS AND SHALL BE A MINIMUM OF 2 INCHES IN FROM THE NEAREST CONCRETE

CONTINUOUS LONGITUDINAL REINFORCEMENT SHALL BE EITHER GRADE 60 EPOXY COATED DEFORMED BARS OR WIRE STRAND WITH MINIMUM ULTIMATE TENSILE STRENGTH OF 28,000 LBS. AND CLASS C GALVANIZING ACCORDING


11. TRANSITION TO EXISTING CONCRETE BARRIER INSTALLATIONS OF DISSIMILAR SHAPE SHALL BE ACCOMPLISHED IN ONE 15 FOOT LONG SEGMENT OF BARRIER.

ADDITIONAL MATERIAL FOR BARRIER EMBEDMENT GREATER THAN 1 INCH WILL NOT BE MEASURED AND PAID FOR SEPARATELY BUT SHALL BE INCLUDED IN THE WORK.


OF 38 INCHES. WIRE STRAND LONGITUDINAL REINFORCEMENT SHALL BE BUTT WELDED OR MECHANICALLY SPLICED TO MAINTAIN 100 PERCENT OF

ALL INCIDENTAL WORK AND MATERIAL SUCH AS DOWELS, GROUT, ANCHORS, BOLTS, PINS, JOINT MATERIAL, EXCAVATION FOR BASES, CONTINUOUS LONGITUDINAL REINFORCEMENT, SHALL BE INCLUDED IN THE COST OF GUARDRAIL.

RETROREFLECTORIZATION IS REQUIRED ON ALL BARRIER TYPES. SEE BARRIER

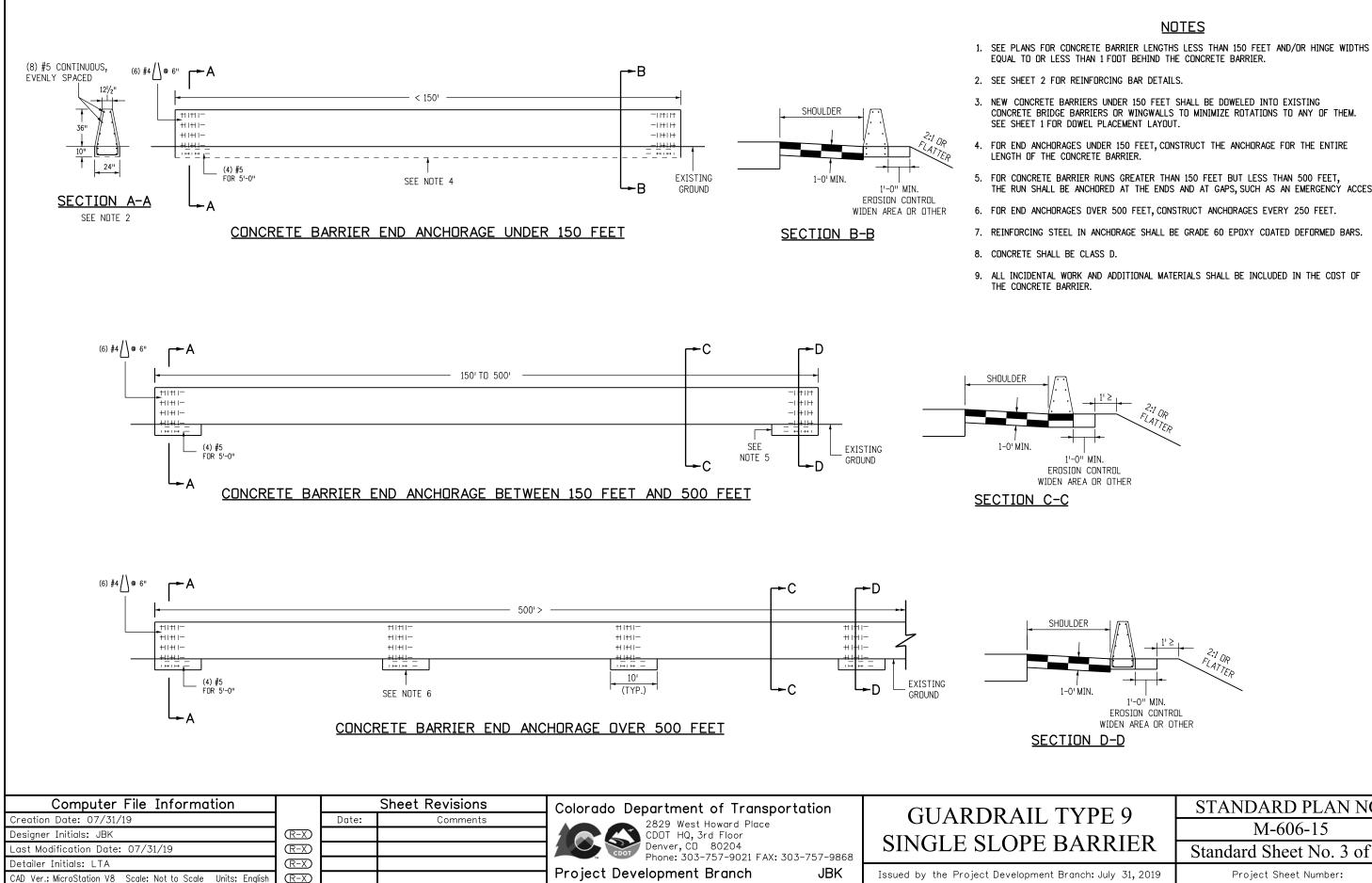
END ANCHORAGE

TRANSITION CONCRETE BARRIER TYPE 9 TO CONCRETE BARRIER TYPE 7 OR EXISTING

	Computer File Information		Sheet Revisions		Colorado Department of Transportation		
	Creation Date: 07/31/19		Date:	Comments	2829 West Howard Place	•	GUARDRAIL '
	Designer Initials: JBK	(R-X)			CDDT HQ, 3rd Floor		SINCLE SLODE I
	Last Modification Date: 07/31/19	(R-X)			Denver, CD 80204 Phone: 303-757-9021 FAX: 303-75	7 0000	SINGLE SLOPE I
	Detailer Initials: LTA	R-X					
[CAD Ver.: MicroStation V8 Scale: Not to Scale Units: English	R-X			Project Development Branch	JBK	Issued by the Project Development

NOTES

 SEE SHEET 3 FOR END ANCHORAGE REQUIREMENTS. AT A MINIMUM, THE BARRIER SHALL BE ANCHORED AT THE ENDS AND AT INTERRUPTIONS WITH THE A 10 FOOT ANCHORAGE. THE ANCHORAGE. SHALL BE MONOLITHIC OR DOWELED WITH 2-#8 X 8" @ 2'-0 BARS.


2. SEE SHEET 1 FOR CONCRETE BARRIER STYLE CA AND STYLE CC.

 TRANSITION TO EXISTING CONCRETE BARRIER INSTALLATIONS OF DISSIMILAR SHAPE SHALL BE ACCOMPLISHED IN ONE 15 FOOT LONG SEGMENT OF BARRIER.

4. SEE SHEET 6 FOR CONCRETE BARRIER STYLE CA TRANSITIONS AT BRIDGE COLUMNS AND SIGN PEDESTALS IN MEDIANS.

5. FOR STYLE CA CONNECTIONS TO STRUCTURES, SEE THE BRIDGE PLANS.

L TYPE 9	STANDARD PLAN NO.		
	M-606-15		
EBARRIER	Standard Sheet No. 2 of 11		
ent Branch: July 31, 2019	Project Sheet Number:		

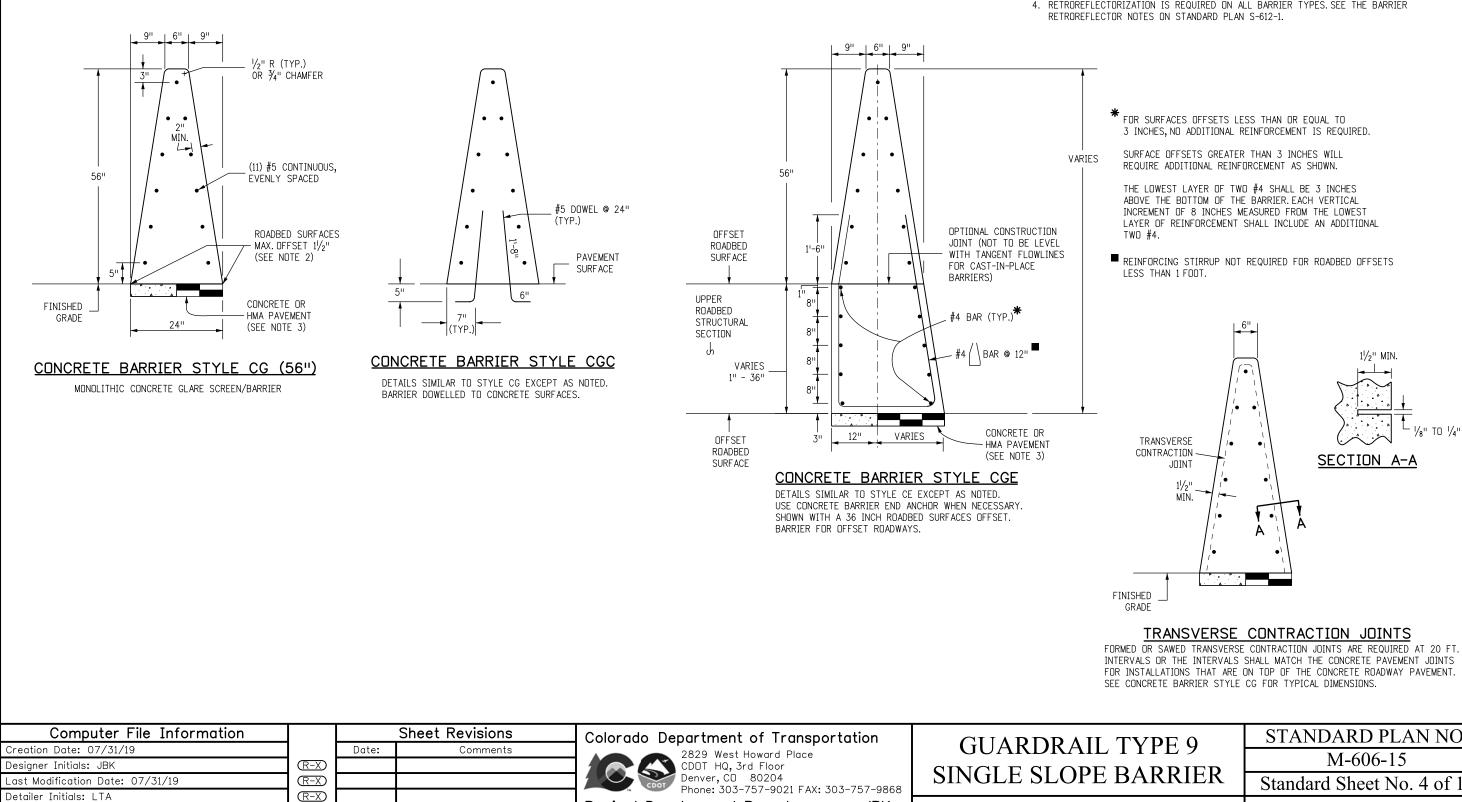
CONCRETE BRIDGE BARRIERS OR WINGWALLS TO MINIMIZE ROTATIONS TO ANY OF THEM.

4. FOR END ANCHORAGES UNDER 150 FEET, CONSTRUCT THE ANCHORAGE FOR THE ENTIRE

5. FOR CONCRETE BARRIER RUNS GREATER THAN 150 FEET BUT LESS THAN 500 FEET, THE RUN SHALL BE ANCHORED AT THE ENDS AND AT GAPS, SUCH AS AN EMERGENCY ACCESS.

6. FOR END ANCHORAGES OVER 500 FEET, CONSTRUCT ANCHORAGES EVERY 250 FEET.

7. REINFORCING STEEL IN ANCHORAGE SHALL BE GRADE 60 EPDXY COATED DEFORMED BARS.


9. ALL INCIDENTAL WORK AND ADDITIONAL MATERIALS SHALL BE INCLUDED IN THE COST OF

TYPE 9	STANDARD PLAN NO.	
E BARRIER	M-606-15	
	Standard Sheet No. 3 of 11	
ent Branch: July 31, 2019	Project Sheet Number:	

1. SEE SHEET 5 FOR DETAILS OF CONCRETE BARRIER STYLE CGE/CG END ANCHORS CONNECTIONS TO STRUCTURES AND TRANSITIONS TO GUARDRAIL TYPE 7.

2. WHERE ROADBED OFFSET IS GREATER THAN $1\frac{1}{2}$ INCH, SEE CONCRETE BARRIER TYPE CGE.

Project Development Branch

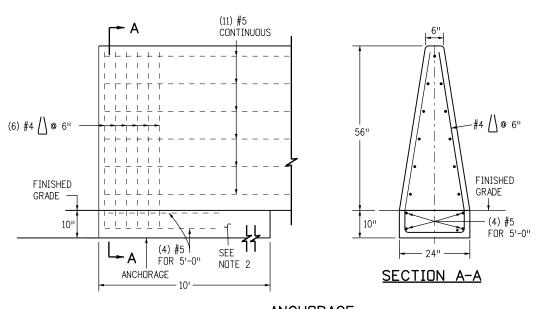
CAD Ver.: MicroStation V8 Scale: Not to Scale Units: English

(R-X)

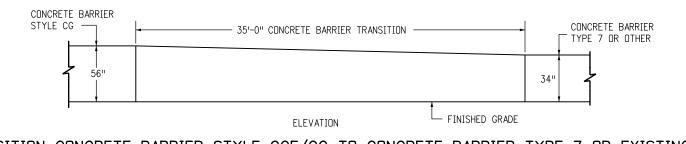
JBK

NOTES

3. BARRIER FOUNDATION SHALL BE PAVEMENT, OR COMPACTED AGGREGATE BASE, OR COMPACTED EMBANKMENT MATERIAL.


4. RETROREFLECTORIZATION IS REQUIRED ON ALL BARRIER TYPES. SEE THE BARRIER

1/8" TO 1/4"


INTERVALS OR THE INTERVALS SHALL MATCH THE CONCRETE PAVEMENT JOINTS FOR INSTALLATIONS THAT ARE ON TOP OF THE CONCRETE ROADWAY PAVEMENT.

GUARDRAIL TYPE 9	STANDARD PLAN NO.		
	M-606-15		
SINGLE SLOPE BARRIER	Standard Sheet No. 4 of 11		
Issued by the Project Development Branch: July 31, 2019	Project Sheet Number:		

4. TRANSITION TO EXISTING CONCRETE BARRIER INSTALLATIONS OF DISSIMILAR SHAPE SHALL BE ACCOMPLISHED IN ONE 15 FOOT LONG SEGMENT OF BARRIER.

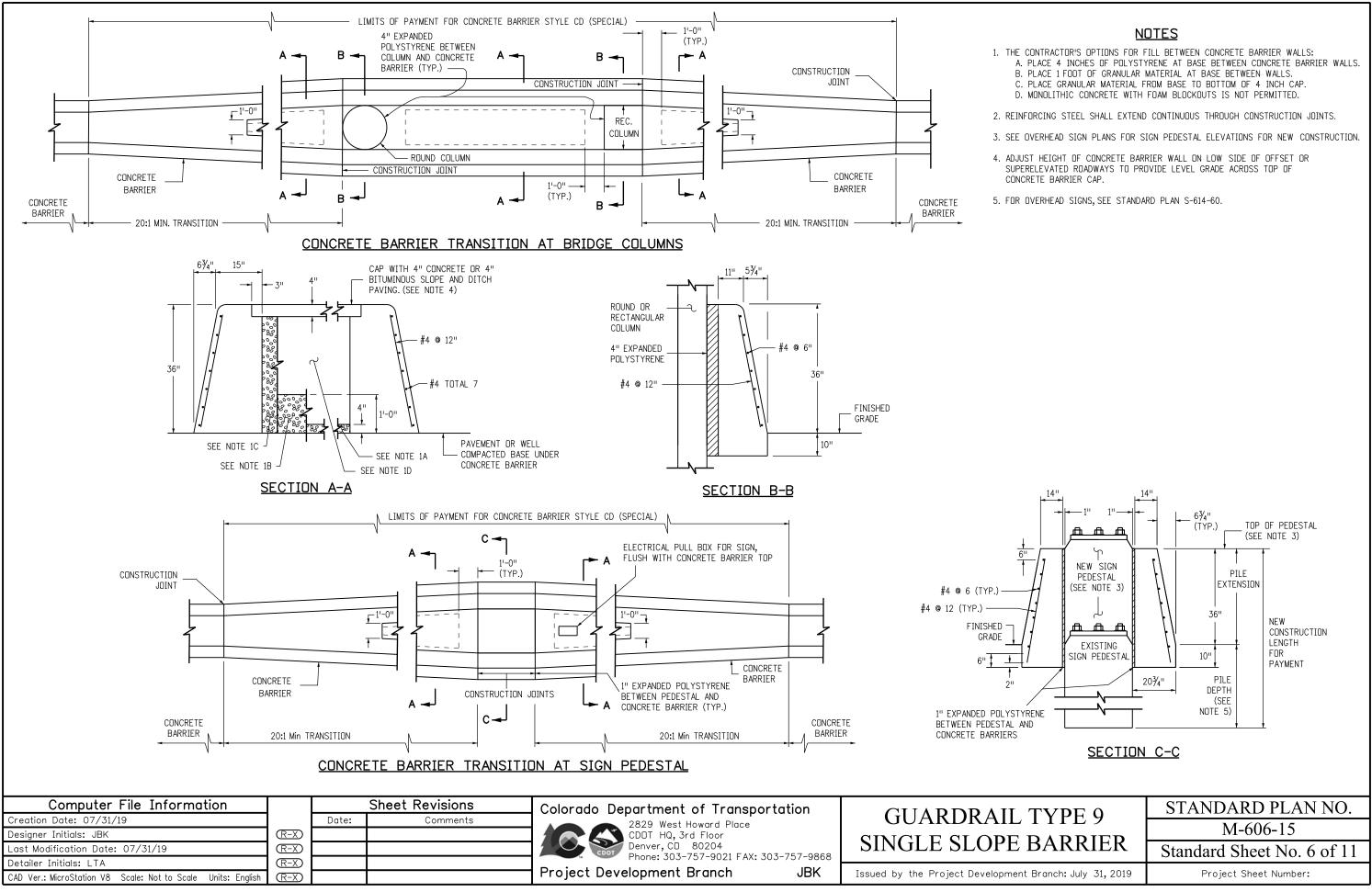
ANCHORAGE BARRIER ELEVATION VIEW INCLUDING REINFORCED ANCHORAGE AT END.

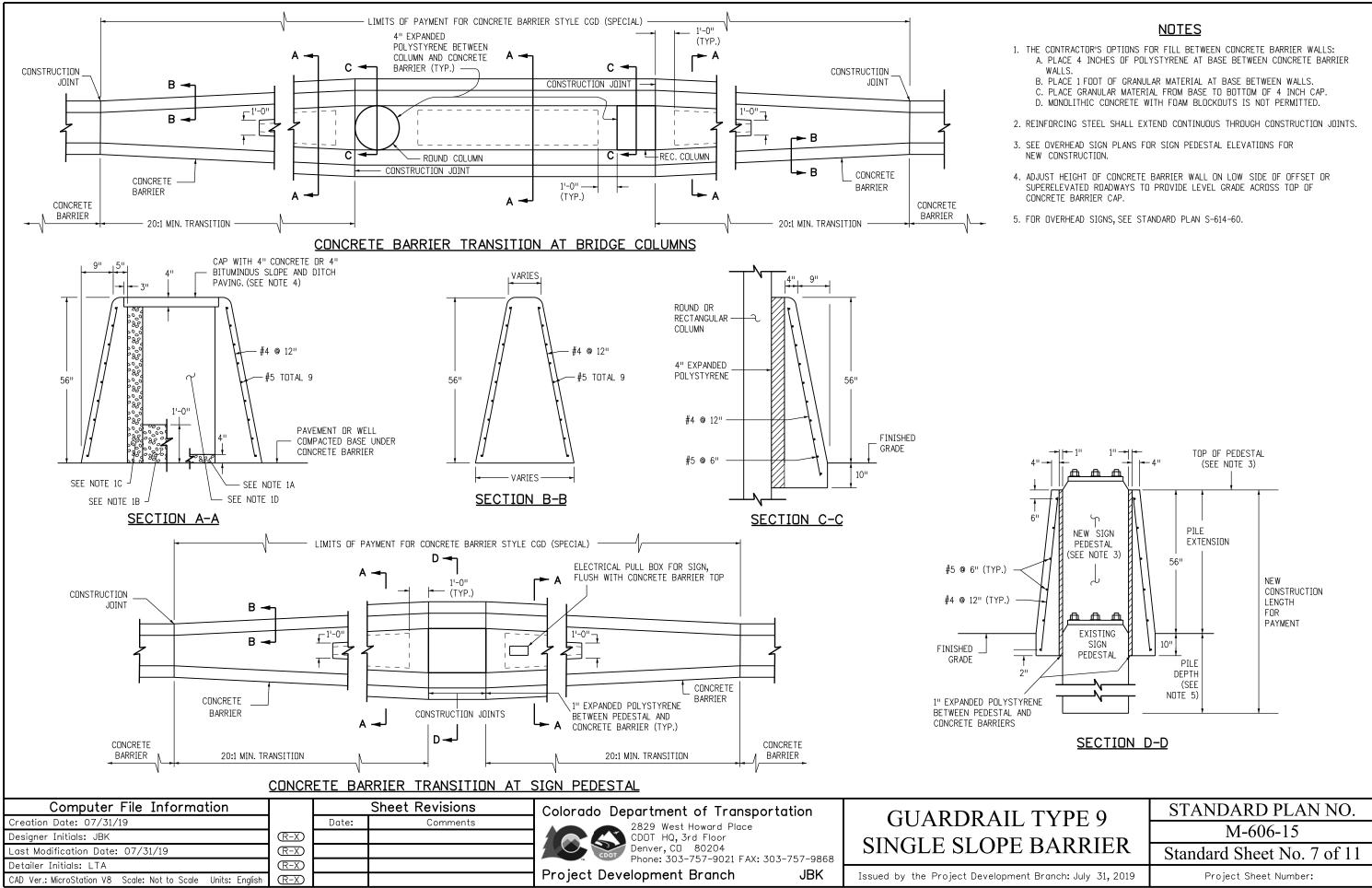
TRANSITION CONCRETE BARRIER STYLE CGE/CG TO CONCRETE BARRIER TYPE 7 OR EXISTING

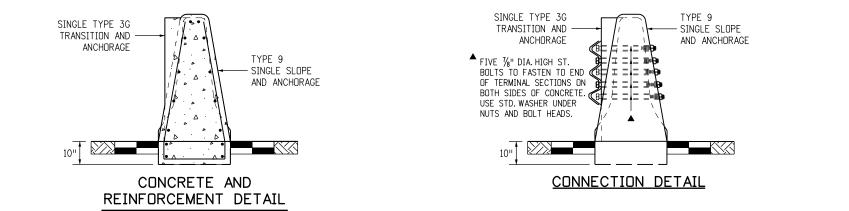
Computer File Information			Sheet Revisions	Colorado Department of Transportation	on	
Creation Date: 07/31/19		Date:	Comments	2829 West Howard Place		GUARDRAIL
Designer Initials: JBK	(R-X)			CDDT HQ, 3rd Floor		SINGLE SLOPE
Last Modification Date: 07/31/19	(R-X)			Denver, CD 80204	7 0969	SINGLE SLOPE
Detailer Initials: LTA	(R-X)					
CAD Ver.: MicroStation V8 Scale: Not to Scale Units: English	(R-X)			Project Development Branch	JBK	Issued by the Project Development

NOTES

1. SEE SHEET 3 FOR END ANCHORAGE REQUIREMENTS. AT A MINIMUM, THE BARRIER SHALL BE ANCHORED AT THE ENDS AND AT INTERRUPTIONS WITH THE 10 FOOT ANCHORAGE. ANCHORAGE SHALL BE MONOLITHIC OR DOWELED WITH 2-#8 X 8" @ 2'-0 BARS.

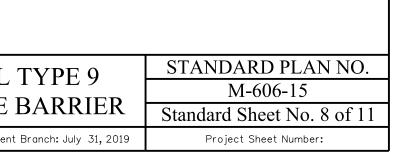

2. SEE SHEET 4 FOR CONCRETE BARRIER STYLE CG AND STYLE CGC.

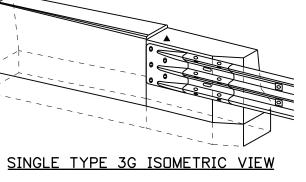

3. SEE SHEET 9 FOR TRANSITION TO THRIE BEAMS.

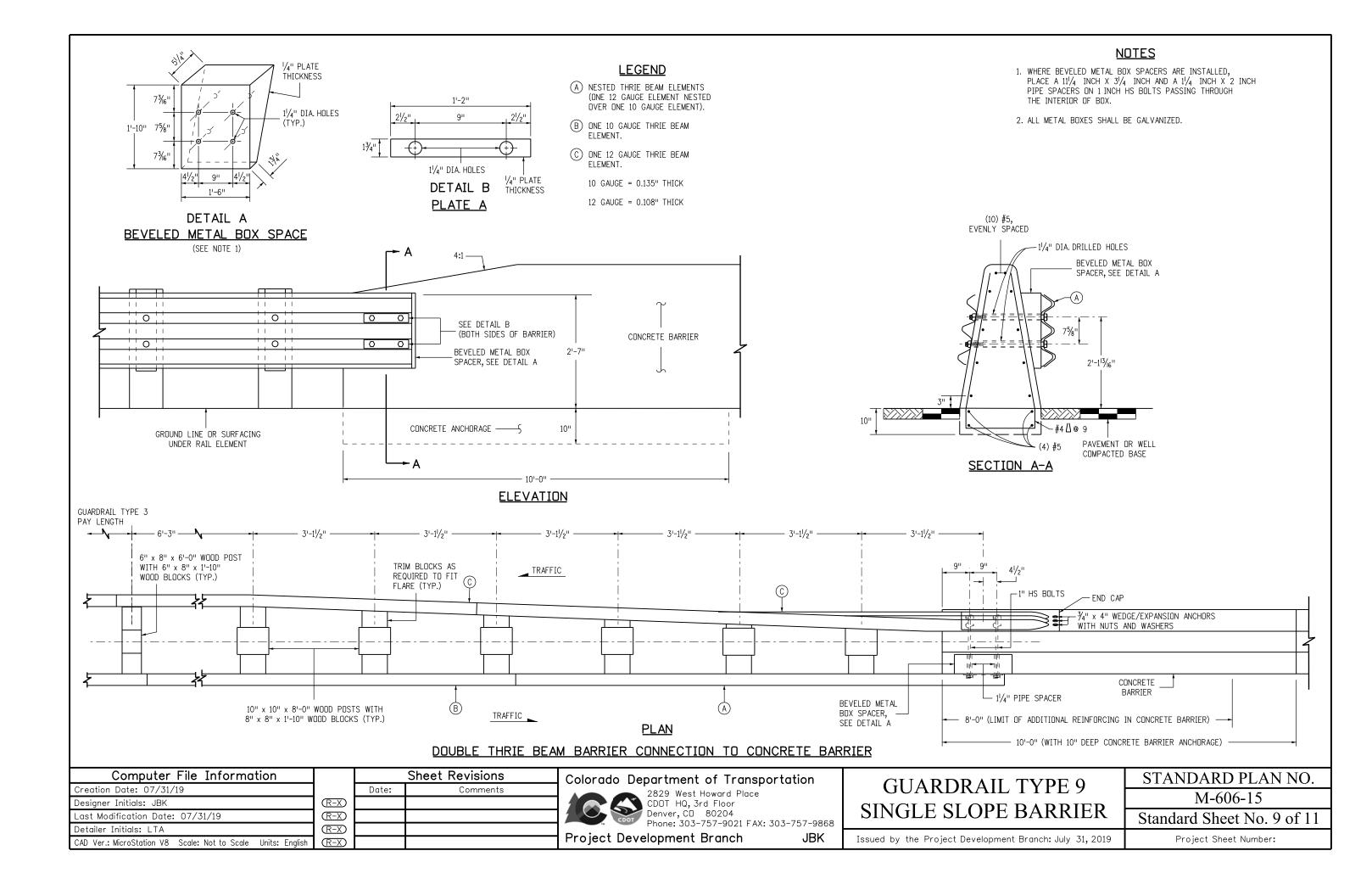

5. SEE SHEET 6 FOR CONCRETE BARRIER STYLE CA TRANSITIONS AT BRIDGE COLUMNS AND SIGN PEDESTALS IN MEDIANS.

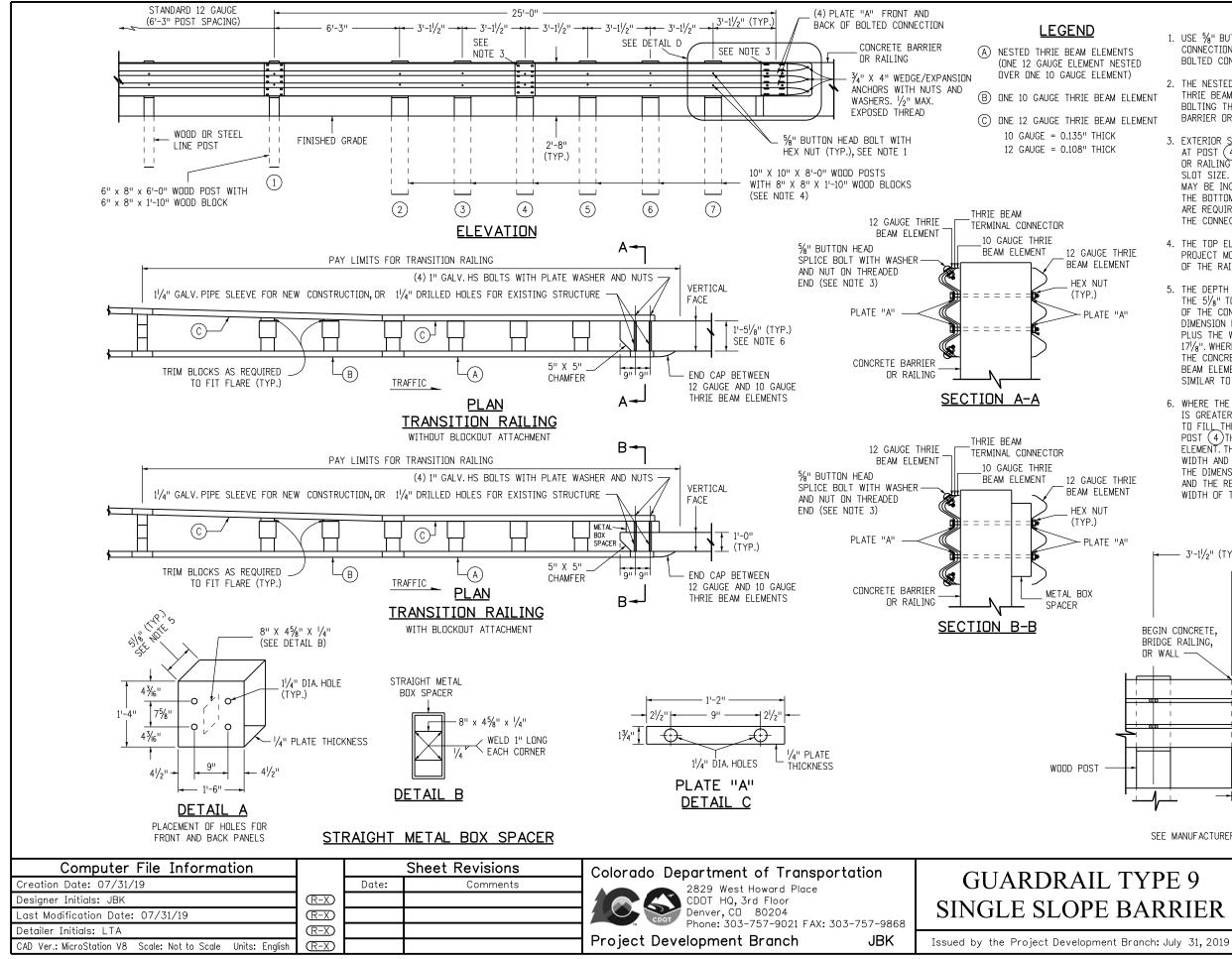
6. FOR STYLE CG CONNECTIONS TO STRUCTURES, SEE THE BRIDGE PLANS.

L TYPE 9	STANDARD PLAN NO.	
E BARRIER	M-606-15	
	Standard Sheet No. 5 of 11	
ent Branch: July 31, 2019	Project Sheet Number:	

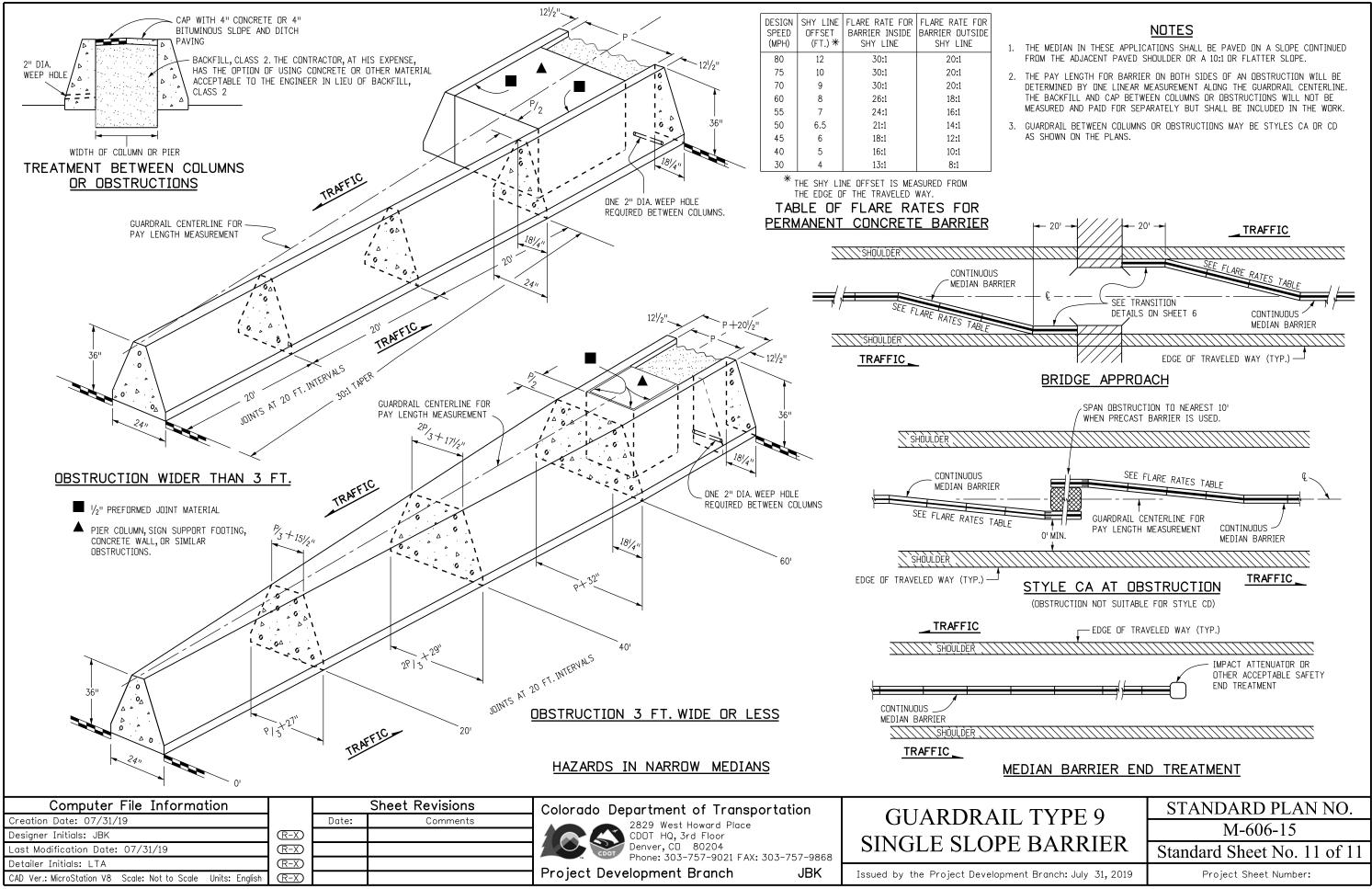





TYPE 9 TO SINGLE TYPE 3G TRANSITION AND ANCHORAGE OPTION


SEE SHEET 1 FOR REINFORCEMENT INFORMATION AND SHEET 3 FOR ANCHORAGE DETAILS

Computer File Information			Sheet Revisions	Colorado Department of Transportati	ion	
Creation Date: 07/31/19		Date:	Comments	2829 West Howard Place		GUARDRAIL
Designer Initials: JBK	(R-X)			CDDT HQ, 3rd Floor		SINGLE SLOPE
Last Modification Date: 07/31/19	(R-X)			Denver, CD 80204 Phone: 303-757-9021 FAX: 303-75	-7 0000	SINGLE SLOPE
Detailer Initials: LTA	(R-X)					
CAD Ver.: MicroStation V8 Scale: Not to Scale Units: English	(R-X)			Project Development Branch	JBK	Issued by the Project Development



NOTES

ELEMENTS NT NESTED	1.	USE %" BUTTON HEAD BOLTS AND HEX NUTS FOR CONNECTIONS TO POSTS.NO WASHER ON RAIL FACE FOR BOLTED CONNECTIONS TO POST.
ELEMENT) BEAM ELEMENT BEAM ELEMENT	2.	THE NESTED RAIL ELEMENTS, END CAP AND SINGLE 10 GAUGE THRIE BEAM ELEMENT, MAY BE SPLICED TOGETHER PRIOR TO BOLTING THE ELEMENTS TO THE WOOD POST AND CONCRETE BARRIER OR RAILING.
HICK	3.	EXTERIOR SPLICE BOLT HOLES FOR RAIL ELEMENT SPLICES AT POST (4) AND THE CONNECTION TO THE CONCRETE BARRIER OR RAILING SHALL BE THE STANDARD $^{29}_{32}$ " X $1/_8$ " SLOT SIZE. INTERIOR SPLICE BOLT HOLES AT THESE LOCATIONS MAY BE INCREASED UP TO 1^{1}_{4} ". ONLY THE TOP TWO AND THE BOTTOM TWO SPLICE BOLTS WITH WASHERS AND NUTS ARE REQUIRED FOR RAIL SPLICES AT POST (4) AND THE CONNECTION TO THE CONCRETE BARRIER OR RAILING.
JGE THRIE ELEMENT	4.	THE TOP ELEVATION OF POSTS 1 THROUGH 7 SHALL NOT PROJECT MORE THAN 1 INCH ABOVE THE TOP ELEVATION OF THE RAIL ELEMENT.
NUT) ATE "A"	5.	THE DEPTH OF THE METAL BOX SPACER VARIES FROM THE $5\frac{1}{2}$ " TO $1\frac{1}{2}$ " AND IS DEPENDENT ON THE WIDTH OF THE CONCRETE RAILING OR WALL. THE COMBINED DIMENSION FOR THE DEPTH OF THE METAL BOX SPACER PLUS THE WIDTH OF RAILING OR WALL IS TYPICALLY $17\frac{1}{6}$ ". WHERE THE SPACE BETWEEN THE BACKSIDE OF THE CONCRETE RAILING OR WALL AND THE REAR THRIE BEAM ELEMENT IS LESS THAN $1\frac{1}{2}$ ", METAL PLATES SIMILAR TO PLATE "A" ARE BE USED AS SPACERS.
JGE THRIE ELEMENT NUT)	6.	WHERE THE WIDTH OF THE CONCRETE RAILING OR WALL IS GREATER THAN 17 ¹ / ₈ ", WOOD BLOCKS ARE TO BE USED TO FILL THE SPACE CREATED BETWEEN THE BACKSIDE OF POST (4) THROUGH NO. (7) AND THE REAR THRIE BEAM ELEMENT. THESE WOOD BLOCKS SHALL BE 8 INCHES IN WIDTH AND ONE FOOT-TWO INCHES IN LENGTH. THE DIMENSION BETWEEN THE FRONT THRIE BEAM ELEMENT AND THE REAR THRIE BEAM ELEMENT IS TO MATCH THE WIDTH OF THE CONCRETE RAILING OR WALL.
ATE ''A''		- 3'-1 ¹ / ₂ " (TYP.)
		$\begin{array}{c c} & 3^{1}-1/4^{11} \\ \hline & & \\ \hline \\ \hline$
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
⊥ہ SE	E M	ANUFACTURER'S DETAILS FOR EXACT DIMENSIONS
L TYP	PE	2.9 STANDARD PLAN NO.
		M-606-15

Standard Sheet No. 10 of 11 Project Sheet Number:

- 1. ALL MATERIAL DIMENSIONS AND WEIGHTS ON THIS STANDARD ARE NOMINAL UNLESS OTHERWISE INDICATED.
- 2. AT EACH LOCATION WHERE AN ELECTRIC TRANSMISSION, DISTRIBUTION OR SECONDARY LINE CROSSES A WOOD POST FENCE, THE CONTRACTOR SHALL FURNISH AND INSTALL A GROUND CONFORMING TO ARTICLE 250 OF THE NATIONAL ELECTRICAL CODE. THE GROUND ROD SHALL BE A MINIMUM DIAMETER OF $\frac{1}{2}$ IN. AND 8 FT. IN LENGTH, AND DRIVEN AT LEAST 71/2 FT. INTO THE GROUND. THE ROD SHALL BE CONNECTED TO FACH WIRE WITH A MINIMUM AWG NO. 8 STRANDED COPPER WIRE. GROUNDING WILL NOT BE PAID FOR SEPARATELY BUT SHALL BE INCLUDED IN THE WORK.

A METAL LINE POST SHALL BE INSTALLED A MAXIMUM OF EVERY 500 FT. ALONG A WOOD POST FENCE. THE METAL POST SHALL BE WITHIN 1 FT. OF THE NEAREST WOOD POST, AND SHALL BE TIED TO EACH STRAND WITH A WIRE CLAMP.

- 3. DIMENSIONS SHOWN FOR "STANDARD" AND "ALTERNATIVE" APPLY FOR BOTH WOOD AND METAL POST FENCE.
- 4. FENCE WIRE SHALL BE ENDED, DOUBLE WRAPPED AND TIED OFF AT END POSTS, ANGLE POSTS AND LINE BRACE POSTS, FENCE TO BE CONTINUED SHALL THEN BE RESTARTED IN THE SAME MANNER.
- 5. FENCE WIRE SHALL BE PLACED ON EITHER ROAD OR FIELD SIDE OF POSTS, DEPENDING ON LOCAL CONDITIONS, i.e. ON CURVES, THE WIRE SHALL BE PLACED ON THE SIDE OF THE POST WHICH WILL RESULT IN THE LEAST TENSION ON FENCE TIES. THIS WILL ALSO APPLY WHERE WIND DRIFT, TUMBLE WEEDS OR OTHER CONDITIONS WOULD EXERT UNUSUAL PRESSURE AGAINST THE WIRE. WHERE POSSIBLE, WIRE SHOULD BE PLACED ON THE LIVESTOCK SIDE OF THE POSTS
- 6. WHERE STEEL POSTS ARE SPECIFIED, EVERY FIFTH POST SHALL BE WOOD, WHEN SPECIFIED ON THE PLANS.
- 7. RIGHT OF WAY FENCES SHALL BE CONSTRUCTED APPROXIMATELY 6 IN. INSIDE THE BOUNDARY OF THE RIGHT OF WAY AS SHOWN ON THE PLANS, OR AS STAKED.
- 8. THE CONTRACTOR SHALL BE RESPONSIBLE FOR RE-ESTABLISHING DISTURBED OR DESTROYED SURVEY MONUMENTS TO THE APPROPRIATE ACCURACY IN ACCORDANCE WITH SUBSECTION 625.08 OF THE STANDARD SPECIFICATIONS.

WOOD POSTS:

ALL LINE POSTS SHALL HAVE A MINIMUM DIAMETER OF 4 IN. AND BE A MINIMUM OF 6 FT -0 IN LONG

ALL END, CORNER, INTERSECTION AND BRACE POSTS SHALL HAVE A MINIMUM DIAMETER OF 5 IN. AND BE 7 FT. IN LENGTH.

WOOD POSTS HAVING NONUNIFORM CROSS SECTION SHALL BE SET WITH THE LARGER DIAMETER END IN THE GROUND.

FENCE WIRE SHALL BE STAPLED TO WOOD POSTS OR TIED TO METAL POSTS AS SHOWN MARKED + ON BARBED WIRE OR COMBINATION WIRE FENCE DETAILS. STAPLES SHALL BE NO. 9 WIRE MINIMUM, AND AT LEAST $1\frac{1}{2}$ IN. LONG.

METAL POSTS:

ALL POSTS AND BRACES SHALL BE THE TYPES AND WEIGHTS SHOWN OR ACCEPTABLE EQUIVALENTS, AND SHALL BE IN ACCORDANCE WITH AASHTO M 281. HOLES SHALL BE PROVIDED IN END, CORNER, AND GATE POSTS AS DETAILED.

CORNER AND LINE BRACE POSTS:

TYPE: $2\frac{1}{2}$ IN. x $2\frac{1}{2}$ IN. x $\frac{1}{4}$ IN. STRUCTURAL STEEL ANGLES WEIGHT: 4.10 LBS./LIN. FT. LENGTH: 6 FT -6 IN MIN NUMBER OF BRACES: TWO

GENERAL NOTES

LINE POSTS:

TYPE: "STUDDED TEE" OR "U" WEIGHT: 1.33 LBS./LIN. FT. (WITHOUT ANCHOR) LENGTH: 6 FT.-O IN. MINIMUM ANCHOR: SECURELY FASTENED, WITH BEARING SURFACE SUFFICIENT TO RESIST MOVEMENT OF POST. WEIGHT: 0.67 LB.

METAL END POSTS AND GATE POSTS:

TYPE: $2\frac{1}{2}$ IN. x $2\frac{1}{2}$ IN. x $\frac{1}{4}$ IN. STRUCTURAL STEEL ANGLES WEIGHT: 4.10 LBS./LIN. FT. NUMBER OF BRACES: ONE LENGTH: END, 6 FT.-6 IN. MINIMUM. PANEL GATE, 7 FT.-0 IN. MINIMUM.

BRACES: (FOR CORNER, END OR LINE BRACE POSTS)

TYPE: 2 IN. x 2 IN. x $\frac{1}{4}$ IN. STRUCTURAL STEEL ANGLES WEIGHT: 3.19 LBS./LIN. FT. LENGTH: SAME AS CORNER AND END POSTS USED.

FOOTINGS OR BASES:

CONCRETE SHALL BE CLASS B. CONCRETE WITH LIGHTWEIGHT AGGREGATES CONFORMING TO AASHTO M 195 (ASTM C 330) WILL BE PERMITTED.

ALTERNATIVES: (CONTRACTOR'S OPTION)

END, CORNER AND LINE BRACE POSTS

TYPE	I.D.	0.D.	WEIGHT	WALL THICKNESS
	INCHES	INCHES	LB/FT.	INCHES
1. STD. GALV. PIPE	21/2	21/8	5.79 ± 5%	0.203
2. H.S. COLD ROLLED PIPE	21/2	$2\frac{7}{8} \pm 0.16$	4.64 ± 5%	0.160 ± 5%

LENGTHS SHALL BE 6 FT.-6 IN. MINIMUM

BRACES:

TYPE: 1³/₈ IN. D.D. TUBULAR STEEL WITH 2¹/₂ IN. BRACE BAND, HINGE BOLT AND 1³/₈ IN. I.D. RAIL END; ALL GALVANIZED. WEIGHT: 16 LBS/LIN. FT. ± 5% LENGTH: 6 FT.-6 IN. MINIMUM.

BARBED WIRE:

ZINC-COATED STEEL BARBED WIRE SHALL CONFORM TO AASHTO M 280, (ASTM A 121), 12-1/2 GAGE WITH CLASS 1 COATING, OR ALUMINUM-COATED STEEL BARBED WIRE CONFORMING TO ASTM A 585 TYPE 1.

WOVEN WIRE MESH:

WOVEN WIRE USED IN COMBINATION WIRE FENCE SHALL BE GALVANIZED AND CONFORM TO AASHTO M 279, (ASTM A 116) COATING CLASS 1, AND THE FOLLOWING:

STANDARD	WOVEN WIRE FIELD FENCE, STYLE OR DESIGN ND.	ALTERNATIVE 4 IN. X 4 IN. WIRE "V" MESH
		34 IN.WIDTH - 0.75 LBS/LIN.FT.
726-6-11 26	IN.WIDTH 0.55 LBS/LIN.FT.	26 IN.WIDTH - 0.54 LBS/LIN.FT.
		CROSS WIRES-1 STRAND-14-1/2 GAGE MIN. HORIZONTAL-2 STRAND-12-1/2 GAGE

* 12-1/2 GAGE WOVEN WIRE FENCE FABRIC (832-6-12-1/2) OR 726-6-12-1/2) MAY BE USED WHEN SPECIFIED IN THE CONTRACT.

ALL FENCE WIRE TIES. CLIPS. CLAMPS. STAPLES AND OTHER WIRE APPURTENANCES SHALL BE GALVANIZED IN ACCORDANCE WITH AASHTO M 232.

Computer File Information			Sheet Revisions	Colorado Department of Transportation	
Creation Date: 07/31/19		Date:	Comments	2829 West Howard Place	WIRE FER
Designer Initials: JBK	(R-X)			CDDT HQ, 3rd Floor	
Last Modification Date: 07/31/19	(R-X)			Denver, CD 80204 Phone: 303-757-9021 FAX: 303-757-986	AND GA
Detailer Initials: LTA	(R-X)				
CAD Ver.: MicroStation V8 Scale: Not to Scale Units: English	(R-X)			Project Development Branch JBK	Issued by the Project Development

HEIGHT: 42 IN.

BY THE ENGINEER.

ALTERNATIVE DRIVEWAY GATES (SINGLE PANEL):

WEIGHT: GALVANIZED STEEL, 75 LBS. HEIGHT: APPROXIMATELY 42 IN. (5 PANELS), WIDTH OF GATE OPENING: 16 FT.-O IN. MINIMUM TO 20 FT.-O IN. MAXIMUM. GATES SHALL BE OF RIVETED CONSTRUCTION AS FOLLOWS: MINIMUM FOUR NO. 10 RIVETS AT EACH RIGHT ANGLE CONNECTION AND WHERE DIAGONAL BRACES CONNECT TO HORIZONTAL PANELS. MINIMUM THREE NO. 10 RIVETS WHERE DIAGONAL BRACES CONNECT TO TOP AND BOTTOM PANELS.

WALK GATES:

ALTERNATIVE WALK GATES:

HEIGHT: 42 IN.

FOR DRIVEWAY GATE.

LATCHES AND HINGES:

GALVANIZED STEEL OR ALUMINUM OF STANDARD MANUFACTURE. HINGES SHALL BE PLACED AS SHOWN TO PREVENT THEFT IN LIEU OF STANDARD MAKE LATCHES. THE CONTRACTOR MAY USE AN ELECTRO-GALVANIZED CHAIN, EYEBOLT AND SNAPHOOK TYPE LATCH. EYEBOLT, CHAIN AND SNAPHOOK ASSEMBLY SHALL BE SECURED TO LATCH SIDE OF GATE. GATE CLOSURE MAY BE ACCOMPLISHED BY WRAPPING CHAIN AROUND END POST AND SNAPPING HOOK INTO CHAIN.

WOOD STAYS:

WOOD STAYS SHALL BE UNTREATED NATIVE TIMBER. STAY DIMENSIONS SHALL BE 2 IN. x 2 IN. NOMINAL MINIMUM $(1\frac{1}{2}$ IN. x $1\frac{1}{2}$ IN.). WOOD STAYS MAY BE STAPLED, OR DRILLED AND TIED WITH WIRE. METAL STAYS MAY BE TIED TO THE BOTTOM WIRE.

DRIVEWAY GATES (SINGLE):

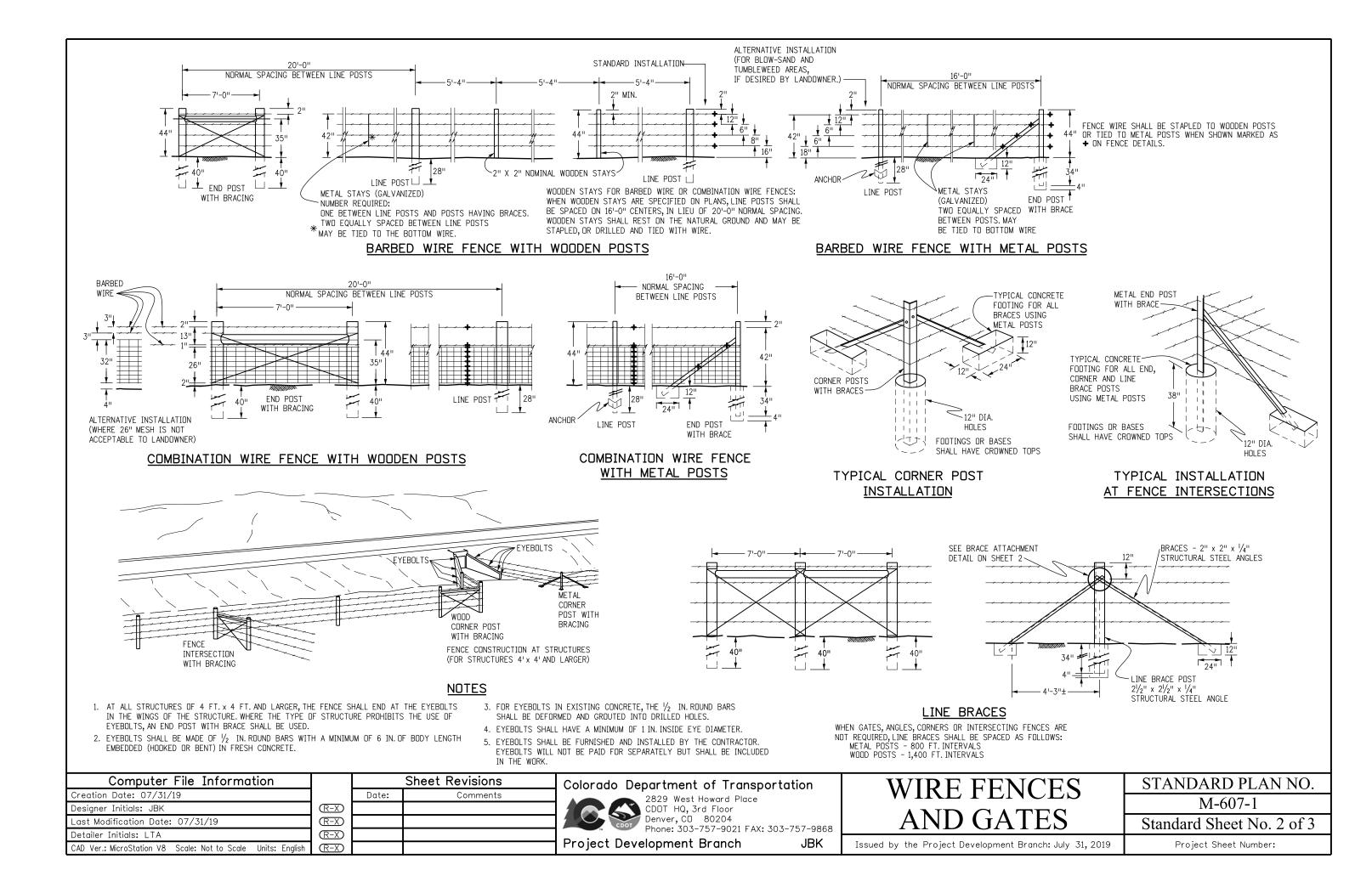
WEIGHT: NOT LESS THAN 90 LBS. COMPLETE WITH LATCH AND HINGES. WIDTH OF GATE OPENING: 16 FT.-O IN. MINIMUM TO 20 FT.-O IN. MAXIMUM. GATE FRAME: 1 IN. I.D. STANDARD GALVANIZED PIPE OR ACCEPTABLE EQUIVALENT AND SHALL BE OF ALL WELDED CONSTRUCTION.

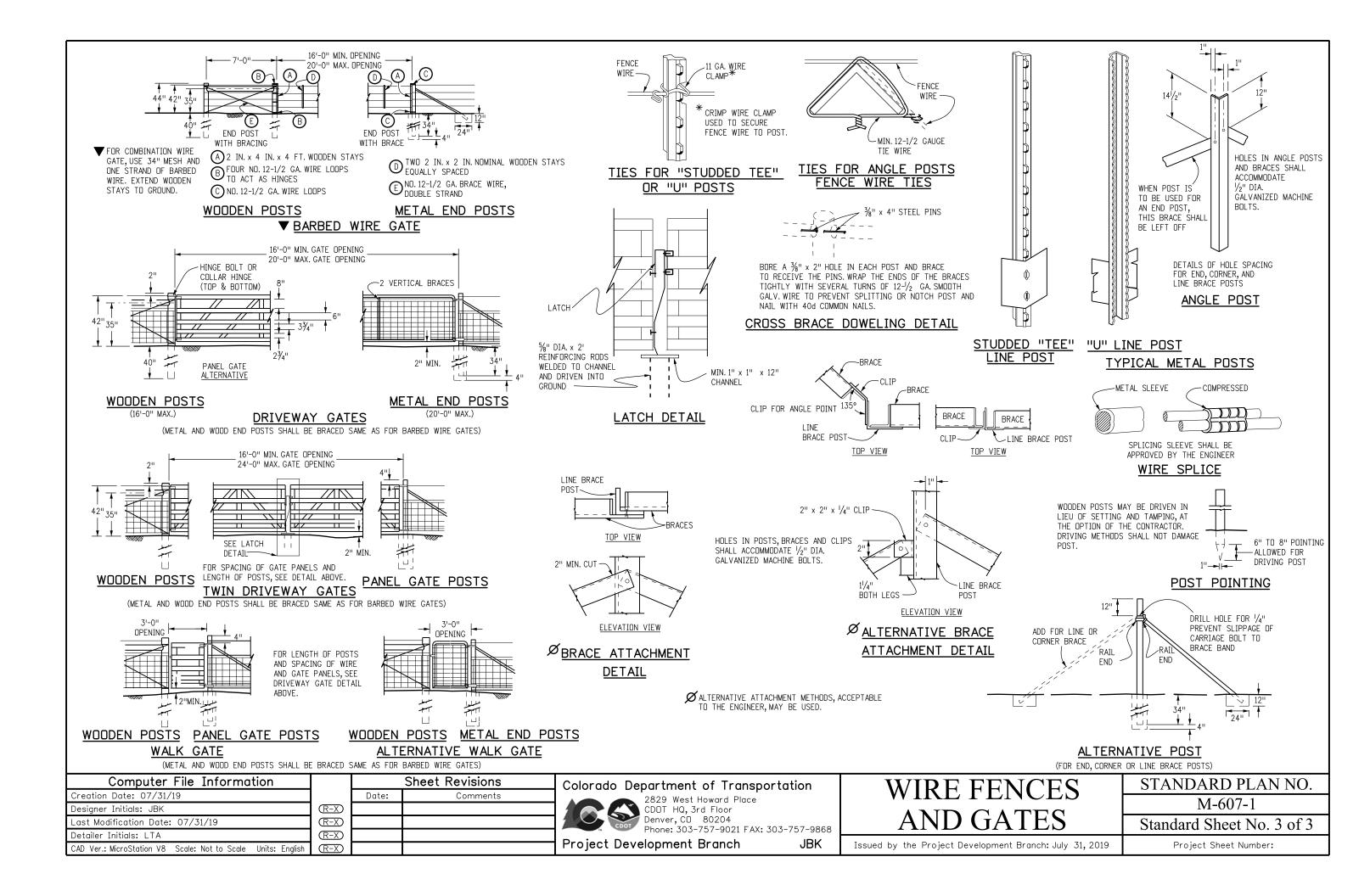
WOVEN WIRE SHALL ENCLOSE THE GATE FRAME AS SHOWN AND SHALL BE THE SAME WOVEN WIRE DESIGN AS THE FENCE, OR AS APPROVED

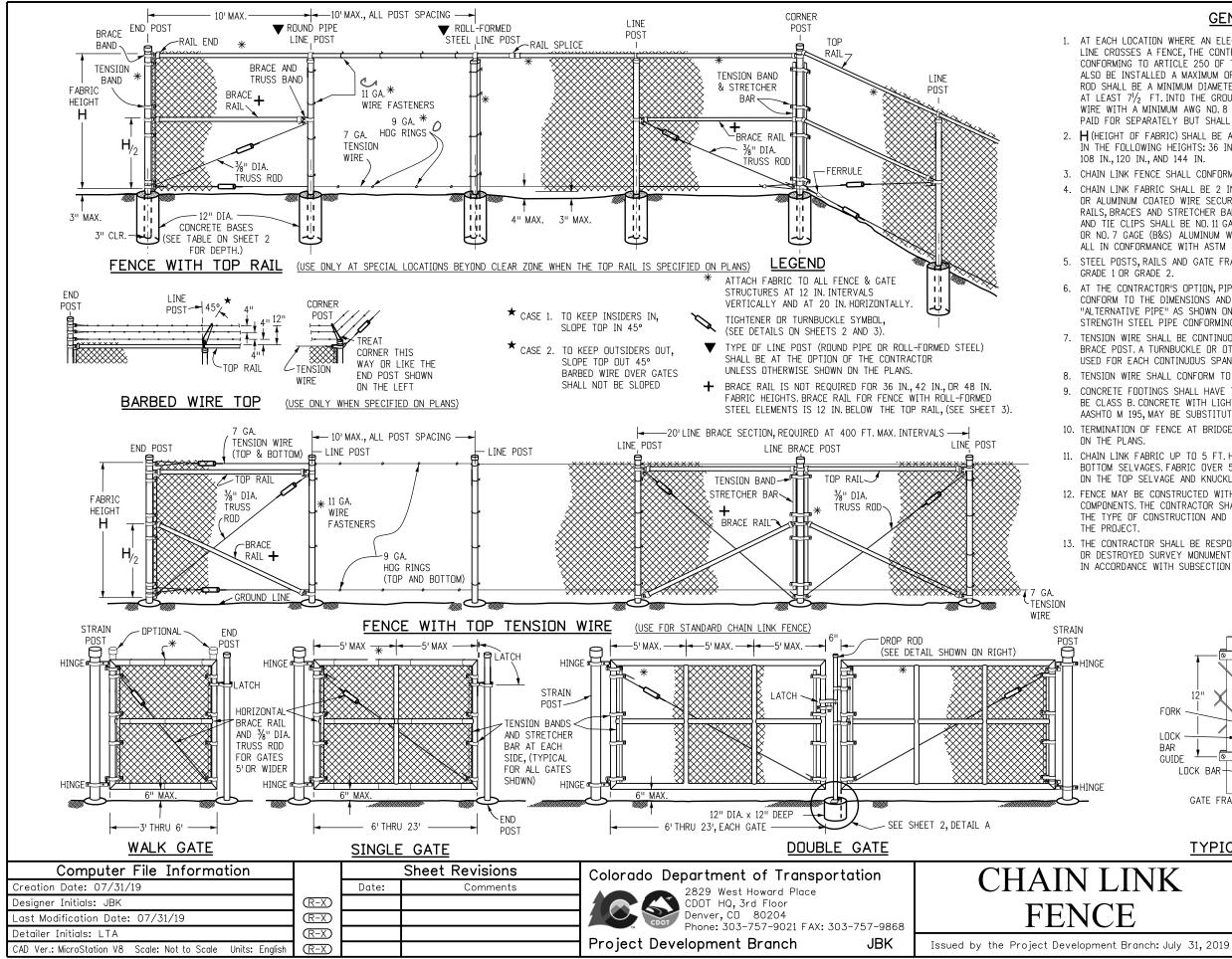
HEIGHT: APPROXIMATELY 42 IN. (5 PANELS) WEIGHT: GALVANIZED STEEL, 16 LBS.; TEMPERED ALUMINUM, 10 LBS. WIDTH OF GATE OPENING: 3 FT.-O IN. MINIMUM.

WEIGHT: NOT LESS THAN 18 LBS. COMPLETE WITH LATCH AND HINGES

WIDTH OF GATE OPENING: 3 FT.-O IN. MINIMUM.


GATE FRAME: 3/4 IN. I.D. STANDARD GALVANIZED PIPE OR ACCEPTABLE EQUIVALENT AND SHALL BE OF ALL-WELDED CONSTRUCTION.


WOVEN WIRE SHALL BE OF THE SAME CONSTRUCTION DESIGNATED


ALTERNATIVE EQUIVALENT STANDARD METAL GATES OTHER THAN SHOWN WILL BE ACCEPTABLE SUBJECT TO THE ENGINEER'S APPROVAL.

IN LIEU OF GALVANIZED FINISH ON GATE FRAMES, CADMIUM-PLATED PIPE OR ALUMINUM PAINTING WILL BE ACCEPTED.

NCES	STANDARD PLAN NO.	
=	M-607-1	
ATES	Standard Sheet No. 1 of 3	
ent Branch: July 31, 2019	Project Sheet Number:	

GENERAL NOTES

1. AT EACH LOCATION WHERE AN ELECTRIC TRANSMISSION, DISTRIBUTION, OR SECONDARY LINE CROSSES A FENCE, THE CONTRACTOR SHALL FURNISH AND INSTALL A GROUND CONFORMING TO ARTICLE 250 OF THE NATIONAL ELECTRIC CODE. A GROUND SHALL ALSO BE INSTALLED A MAXIMUM OF EVERY 500 FT. ALONG THE FENCE. THE GROUND ROD SHALL BE A MINIMUM DIAMETER OF $\frac{1}{2}$ IN. AND 8 FT. IN LENGTH, AND DRIVEN AT LEAST $7\frac{1}{2}$ FT. INTO THE GROUND. THE ROD SHALL BE CONNECTED TO EACH WIRE WITH A MINIMUM AWG NO. 8 STRANDED COPPER WIRE. GROUNDING WILL NOT BE PAID FOR SEPARATELY BUT SHALL BE INCLUDED IN THE COST OF THE FENCE. 2. H (HEIGHT OF FABRIC) SHALL BE AS SHOWN ON THE PLANS. FABRIC IS AVALIABLE IN THE FOLLOWING HEIGHTS: 36 IN., 42 IN., 48 IN., 60 IN., 72 IN., 84 IN., 96 IN., 108 IN., 120 IN., AND 144 IN.

3. CHAIN LINK FENCE SHALL CONFORM TO AASHTO M 181.

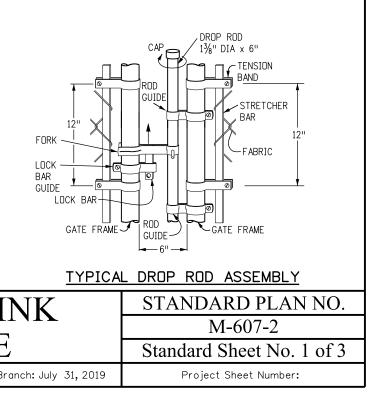
4. CHAIN LINK FABRIC SHALL BE 2 IN. MESH ND. 9 GAGE GALVANIZED OR ALUMINUM COATED WIRE SECURELY FASTENED TO TENSION WIRE, LINE POSTS. RAILS, BRACES AND STRETCHER BARS SPACED AS SHOWN HEREON. WIRE FASTENERS AND THE CLIPS SHALL BE ND. 11 GAGE (W&M) GALVANIZED STEEL WIRE OR NO. 7 GAGE (B&S) ALUMINUM WIRE, AND HOG RINGS SHALL BE NO. 9 GAGE, ALL IN CONFORMANCE WITH ASTM F 626.

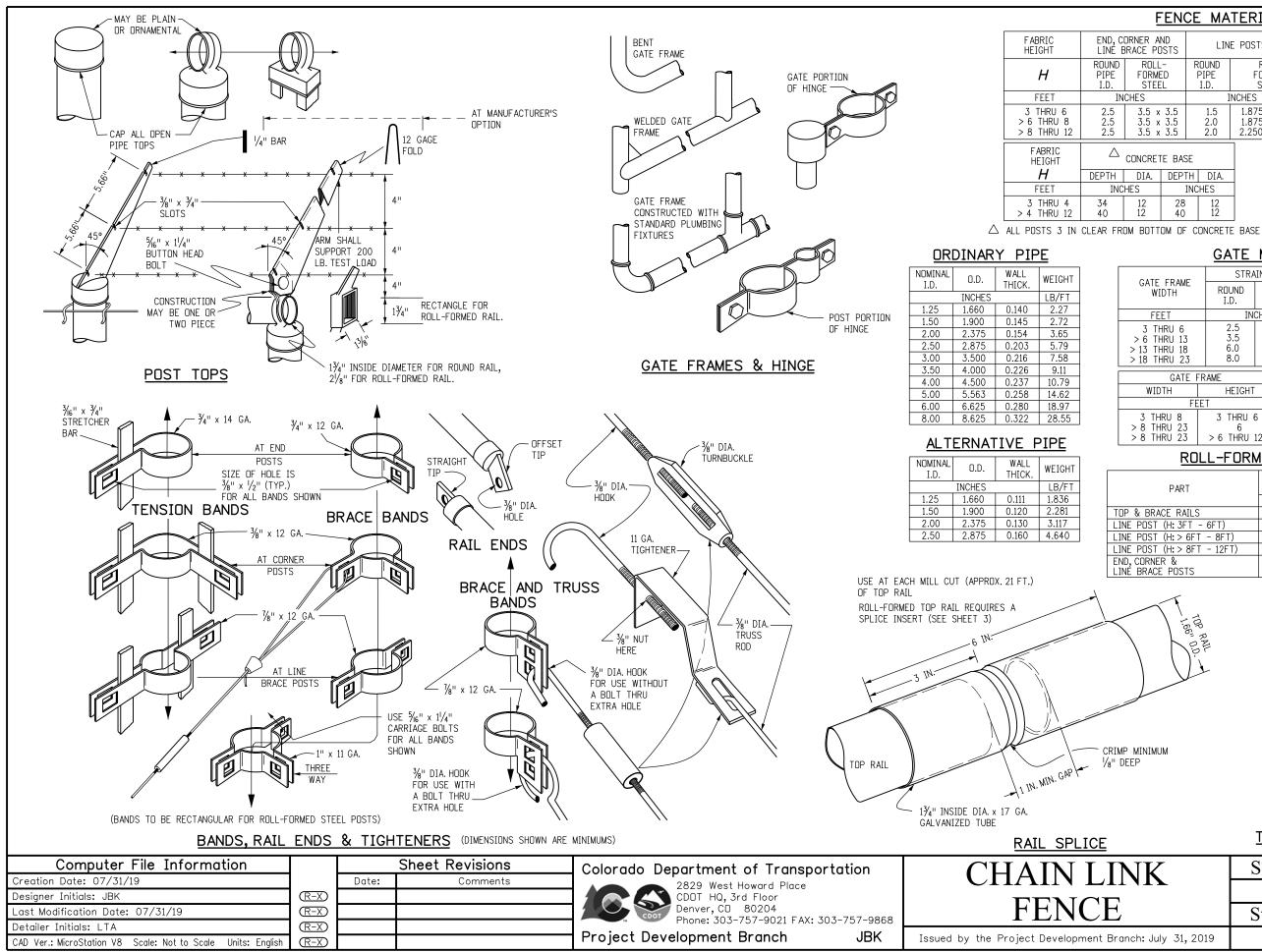
5. STEEL POSTS, RAILS AND GATE FRAMES SHALL CONFORM TO AASHTO M 181 TYPE 1, GRADE 1 OR GRADE 2.

6. AT THE CONTRACTOR'S OPTION, PIPE USED FOR FENCE CONSTRUCTION SHALL CONFORM TO THE DIMENSIONS AND WEIGHTS FOR EITHER "ORDINARY PIPE" OR "ALTERNATIVE PIPE" AS SHOWN ON SHEET 2. "ALTERNATIVE PIPE" SHALL BE HIGH STRENGTH STEEL PIPE CONFORMING TO FEDERAL SPECIFICATION RR-F-191/3C.

7. TENSION WIRE SHALL BE CONTINUOUS BETWEEN END OR CORNER POST AND LINE BRACE POST. A TURNBUCKLE OR OTHER APPROVED TIGHTENING DEVICE SHALL BE USED FOR EACH CONTINUOUS SPAN OF TENSION WIRE.

8. TENSION WIRE SHALL CONFORM TO AASHTO M 181.


9. CONCRETE FOOTINGS SHALL HAVE TOPS CROWNED AT GROUND LEVEL AND SHALL BE CLASS B. CONCRETE WITH LIGHTWEIGHT AGGREGATE CONFORMING TO AASHTO M 195, MAY BE SUBSTITUTED.


10. TERMINATION OF FENCE AT BRIDGES OR OTHER STRUCTURES SHALL BE AS SHOWN ON THE PLANS.

11. CHAIN LINK FABRIC UP TO 5 FT. HIGH SHALL BE KNUCKLED AT THE TOP AND BOTTOM SELVAGES. FABRIC OVER 5 FT. HIGH SHALL BE TWISTED AND BARBED ON THE TOP SELVAGE AND KNUCKLED ON THE BOTTOM SELVAGE.

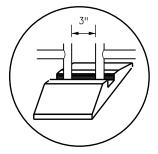
12. FENCE MAY BE CONSTRUCTED WITH EITHER ROUND PIPE OR ROLL-FORMED STEEL COMPONENTS. THE CONTRACTOR SHALL STATE AT THE PRECONSTRUCTION CONFERENCE. THE TYPE OF CONSTRUCTION AND TYPE OF LINE POST TO BE USED THROUGHOUT THE PROJECT.

13. THE CONTRACTOR SHALL BE RESPONSIBLE FOR RE-ESTABLISHING DISTURBED OR DESTROYED SURVEY MONUMENTS TO THE APPROPRIATE ACCURACY IN ACCORDANCE WITH SUBSECTION 625.08 OF THE STANDARD SPECIFICATIONS.

FENCE	MATERIAL

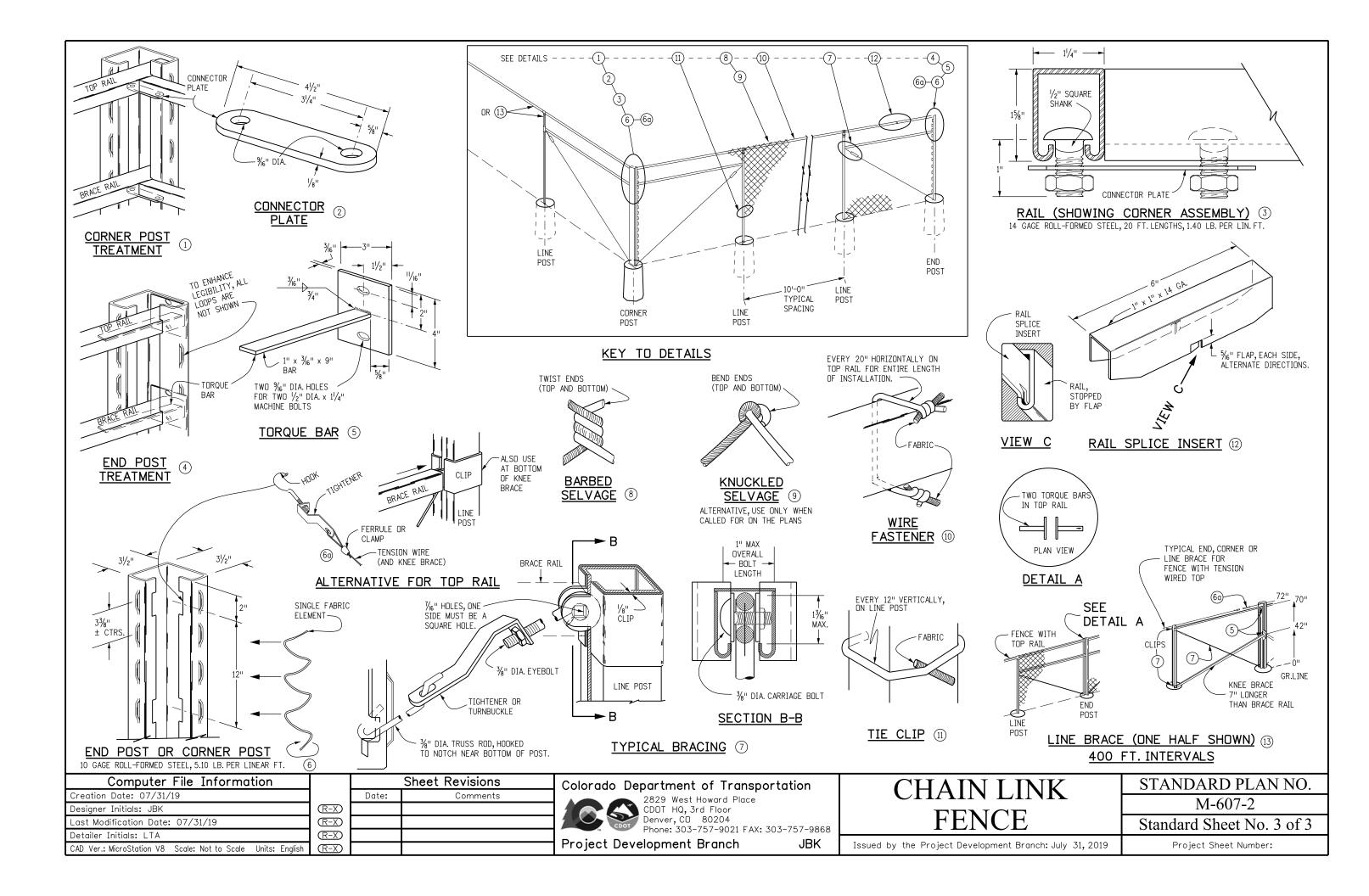
	DRNER AND BRACE POSTS	LIN	E POSTS	TOP & BRACE RAILS		
ROUND	ROLL-	ROUND	ROLL-	ROUND	ROLL-	
PIPE	FORMED	PIPE	FORMED	PIPE	FORMED	
I.D.	STEEL	I.D.	STEEL	I.D.	STEEL	
IN	CHES	Ι	NCHES	INCHES		
2.5	3.5 x 3.5	1.5	1.875 x 1.625	1.25	1.25 x 1.625	
2.5	3.5 x 3.5	2.0	1.875 x 1.625	1.25	1.25 x 1.625	
2.5	3.5 x 3.5	2.0	2.250 x 1.625	1.25	1.25 x 1.625	

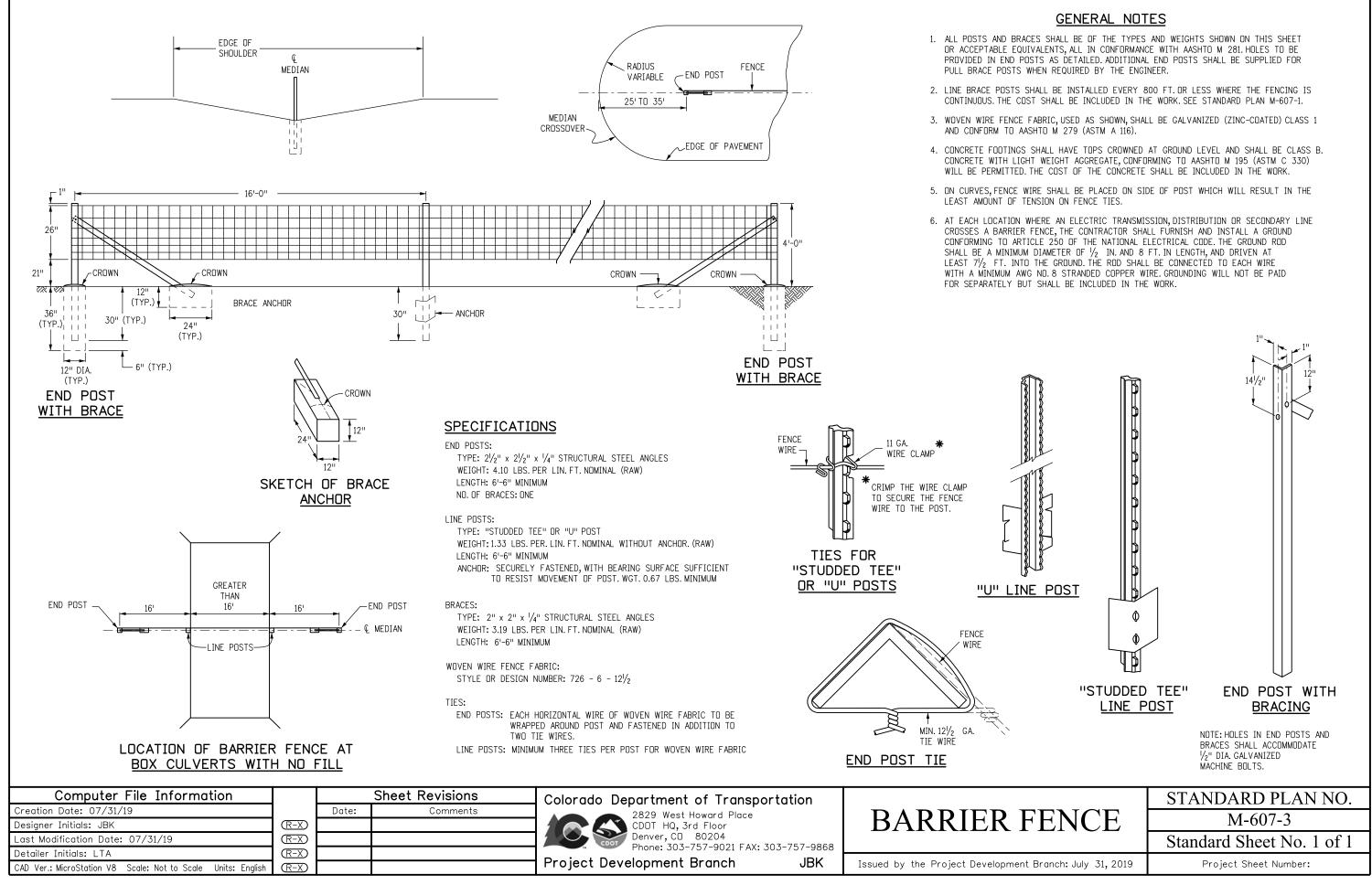
\bigtriangleup	CONCRETE	BASE	
------------------	----------	------	--

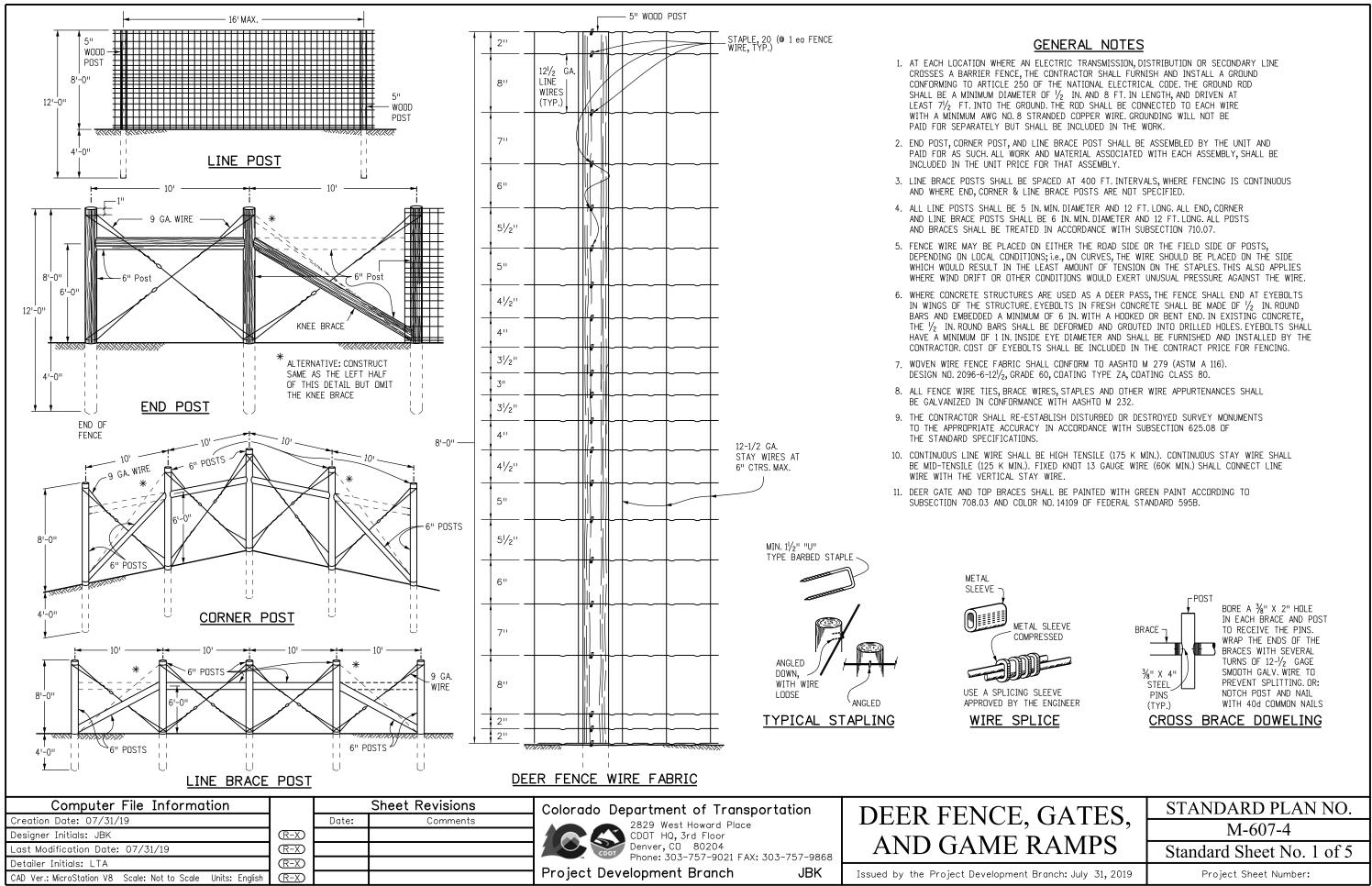

DEPTH	DIA.	DEPTH	DIA.
INC	HES	INC	HES
34 40	12 12	28 40	12 12

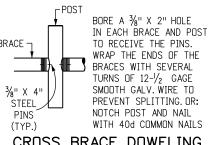
GATE MATERIAL

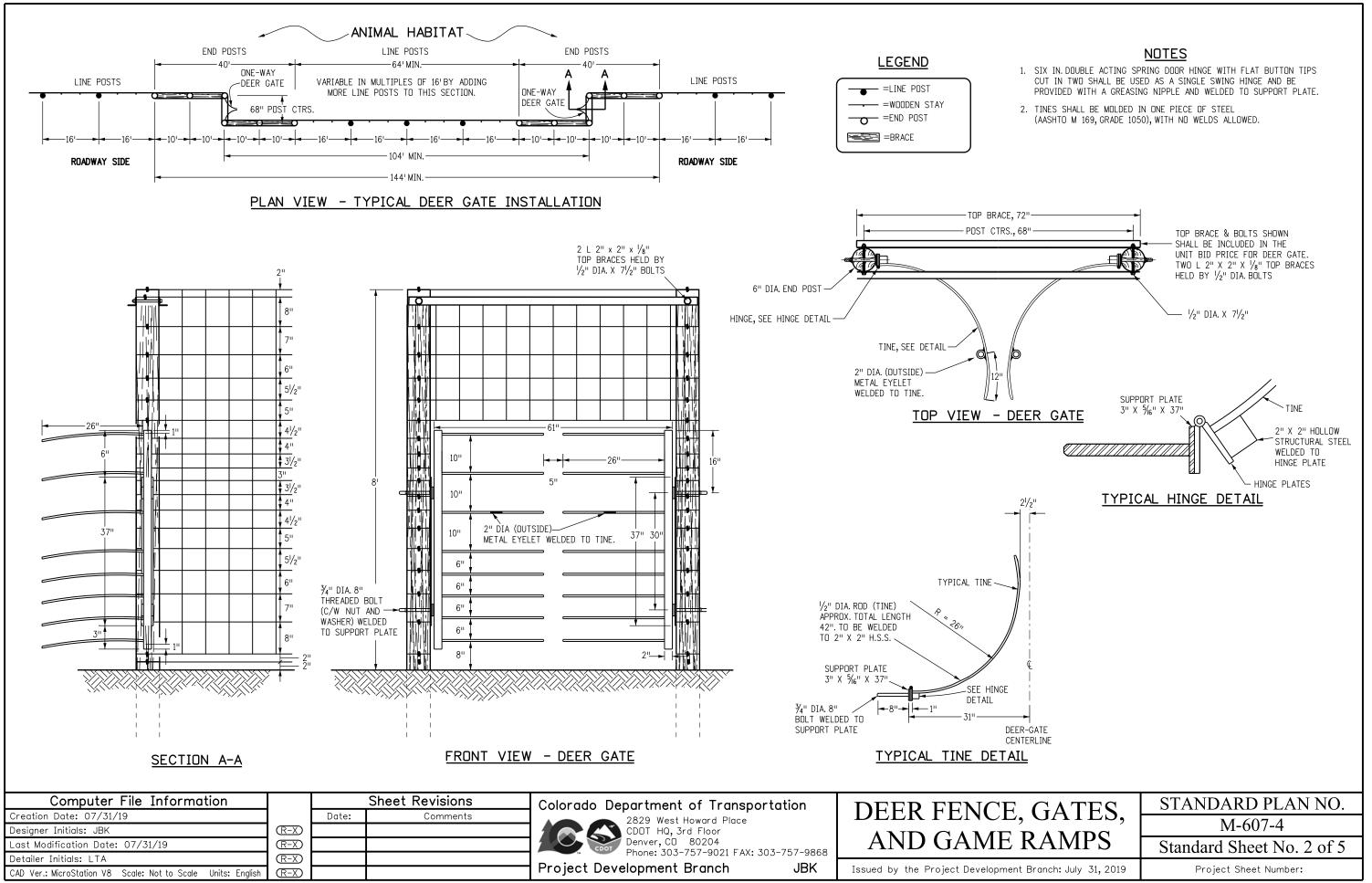
	-					
	STRA	AIN PO	JST	△ CONCRETE		ETE BASE
GATE FRAME WIDTH	ROUND I.D.			DEPTH		DIA.
FEET	IN	CHES			INC	IES
3 THRU 6 > 6 THRU 13 > 13 THRU 18 > 18 THRU 23	2.5 3.5 3.5		x 3.5	36 42 48 48		12 12 18 24
GATE FI	GATE FRAME				BRAC	ING PIPE
WIDTH	HEIGHT		I.C).		I.D.
FÉE		INC	HES			
3 THRU 8 > 8 THRU 23 > 8 THRU 23	3 THRU 6 6 > 6 THRU 12		1.25 1.50 1.50)		1.25 1.25 1.50

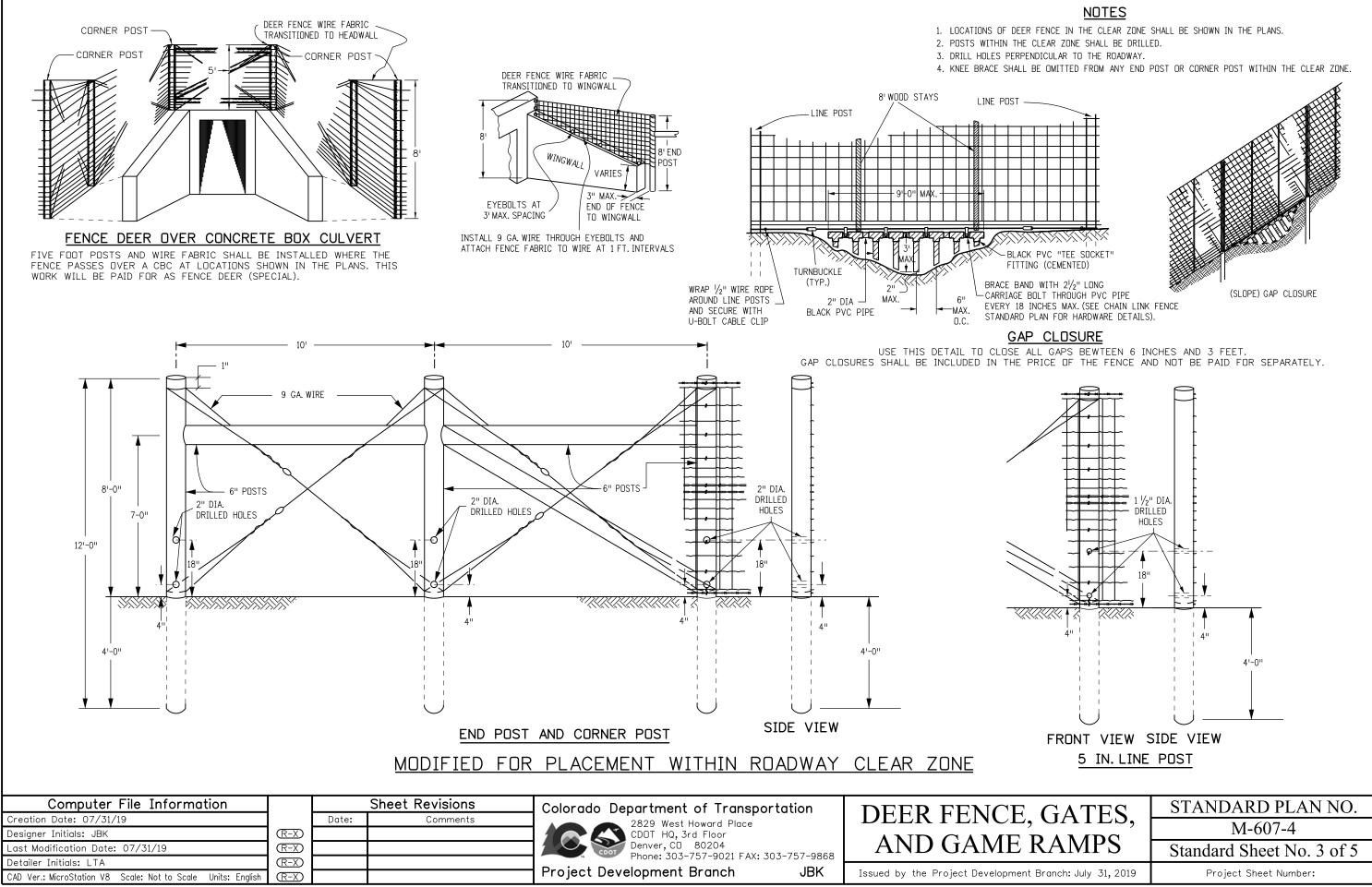

ROLL-FORMED STEEL

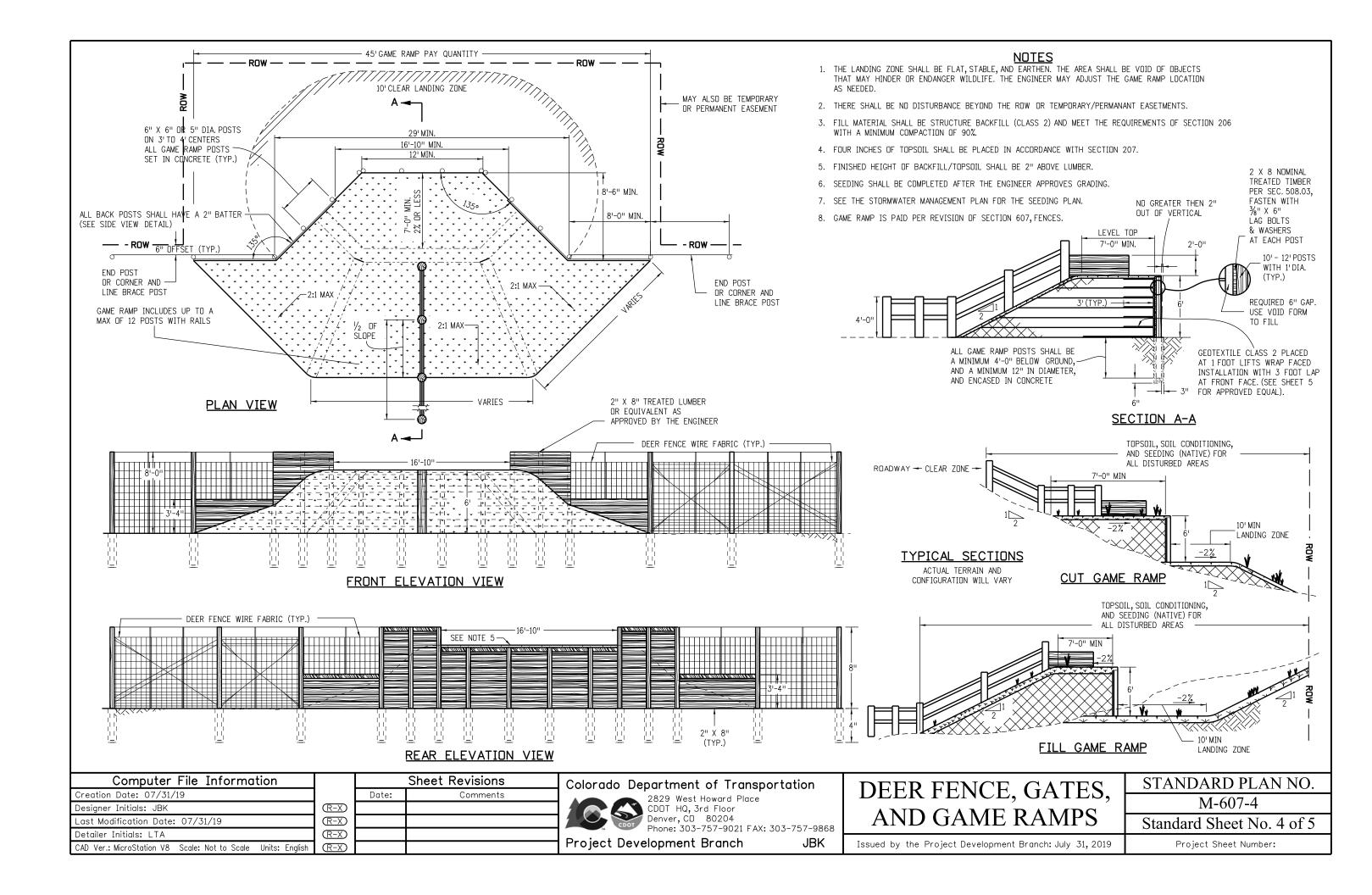

PART	SIZE	THICK.	WEIGHT
	INCHES	GAGE	LB/FT
TOP & BRACE RAILS	1.250 x 1.625	14	2.08
LINE POST (H: 3FT - 6FT)	1.875 x 1.625	12	2.75
LINE POST (H: > 6FT - 8FT)	1.875 x 1.625	11	3.36
LINE POST (H: > 8FT - 12FT)	2.250 x 1.625	11	4.02
END, CORNER & LINE BRACE POSTS	3.50 x 3.50	10	7.59

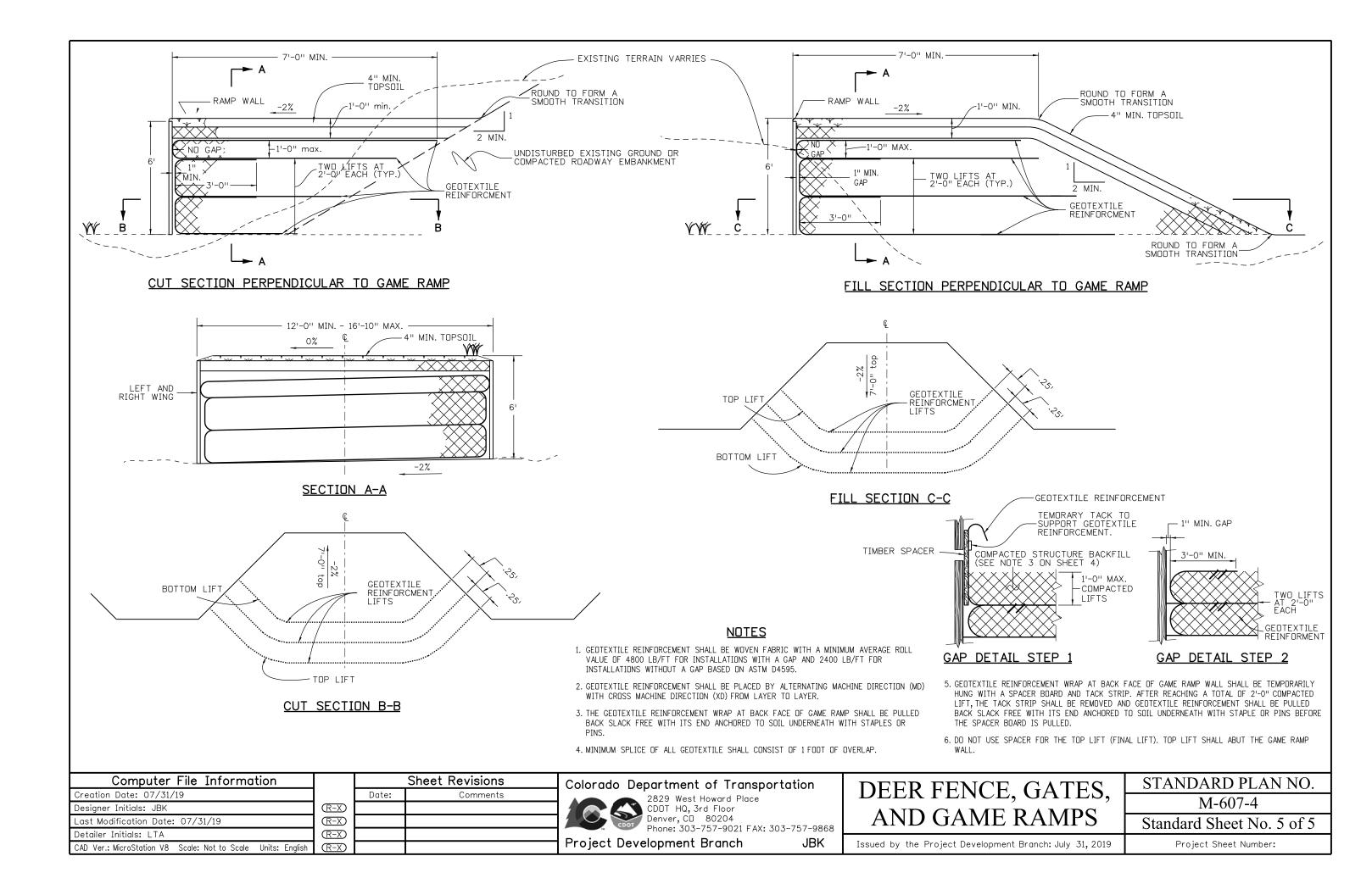


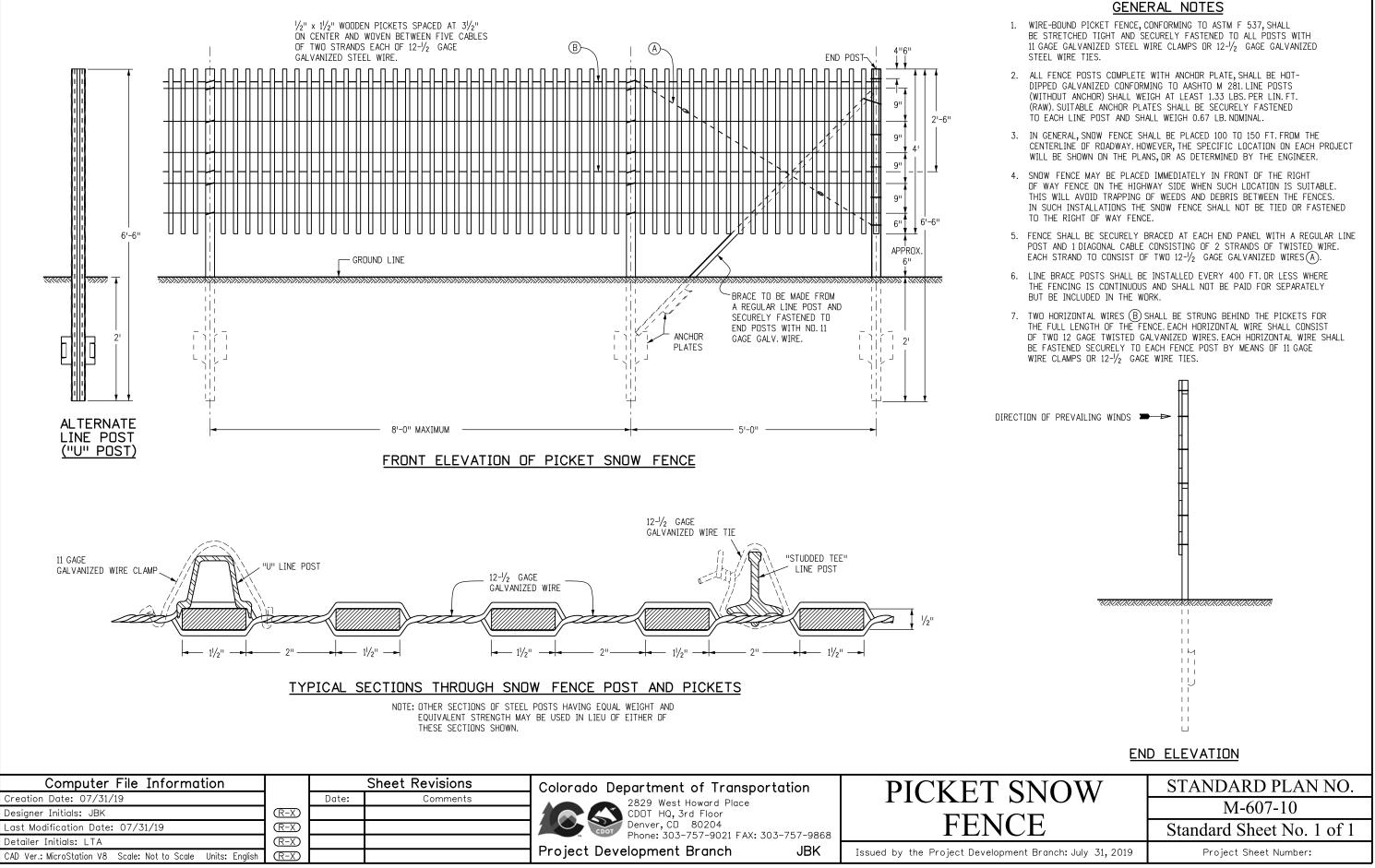

DROP ROD IS OPTIONAL IF GATE FRAMES EXTEND DOWN TO CENTER REST. USE LATCH SHOWN FOR WALK OR SINGLE GATE.

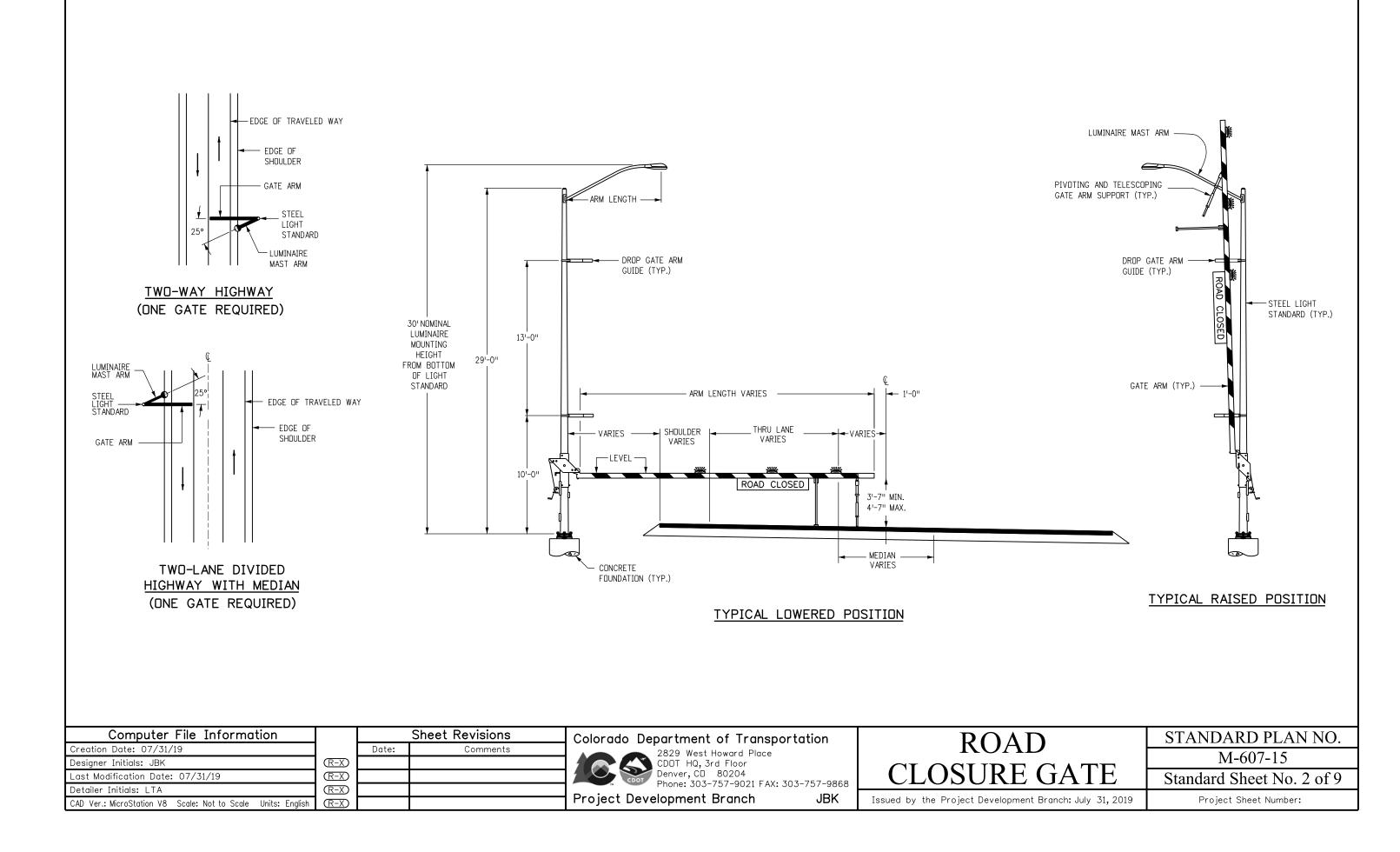

<u>CE</u>	DETAIL A <u>TYPICAL CENTER REST</u>
LINK	STANDARD PLAN NO.
	M-607-2
ĴE	Standard Sheet No. 2 of 3
ent Branch: July 31, 2019	Project Sheet Number:

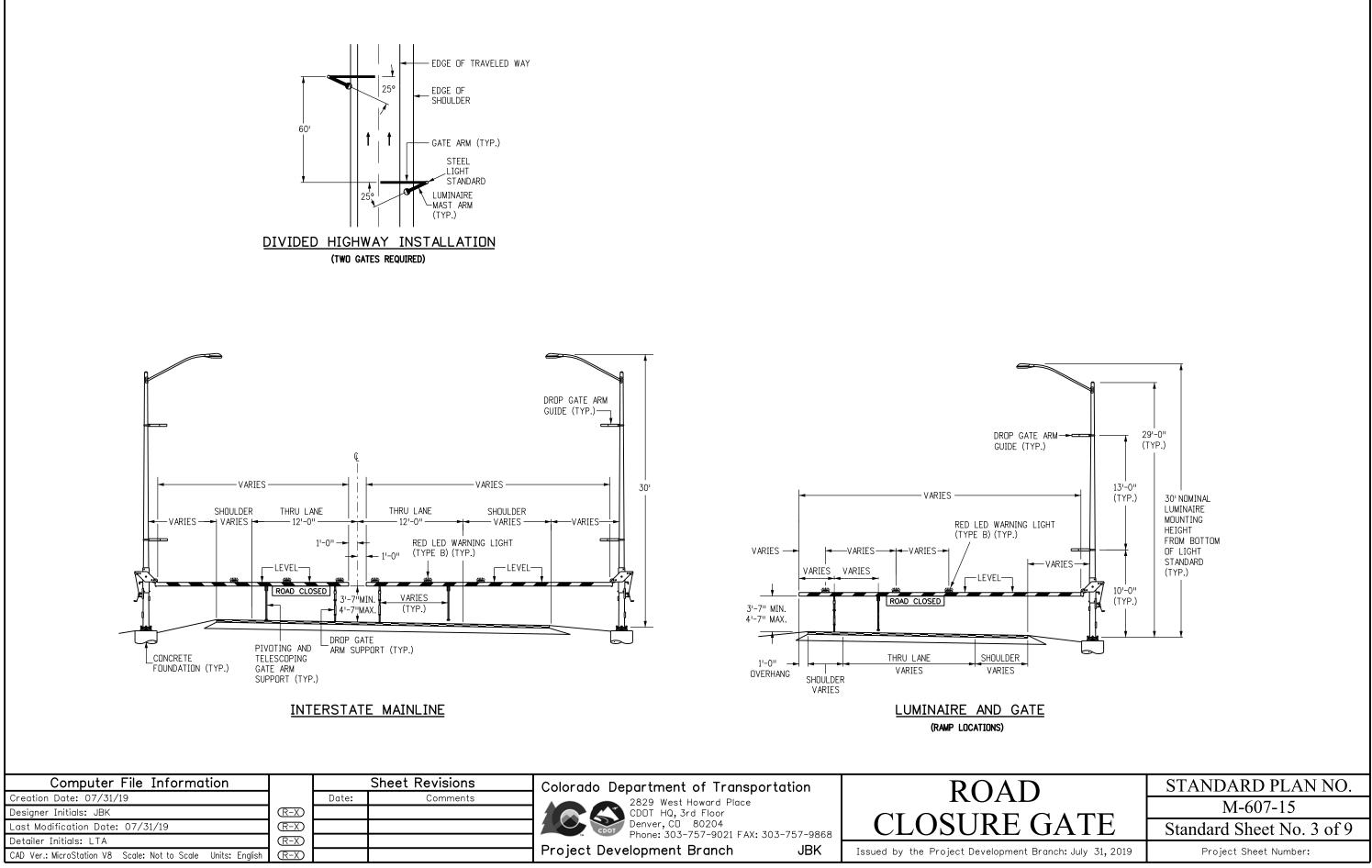


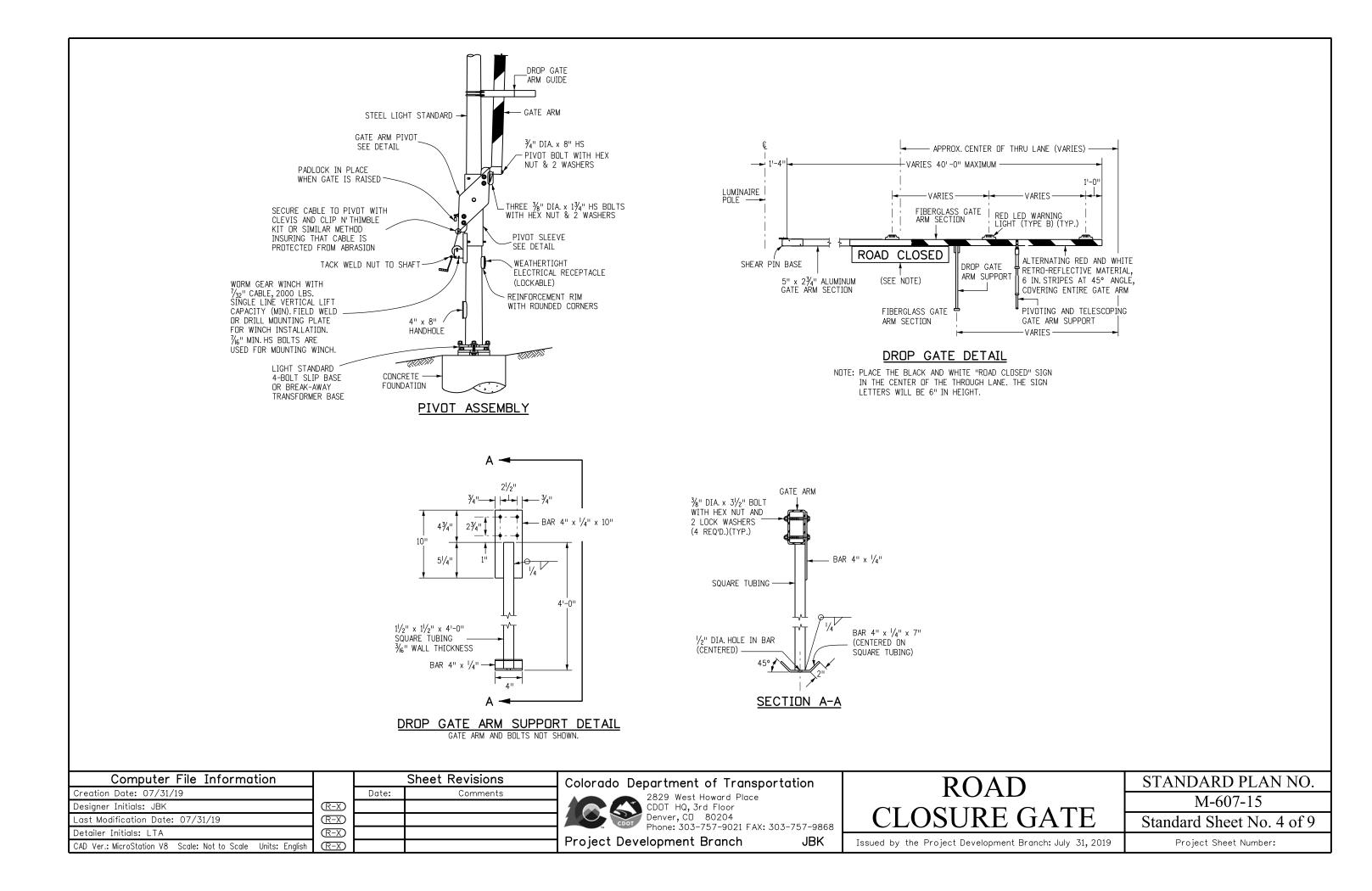


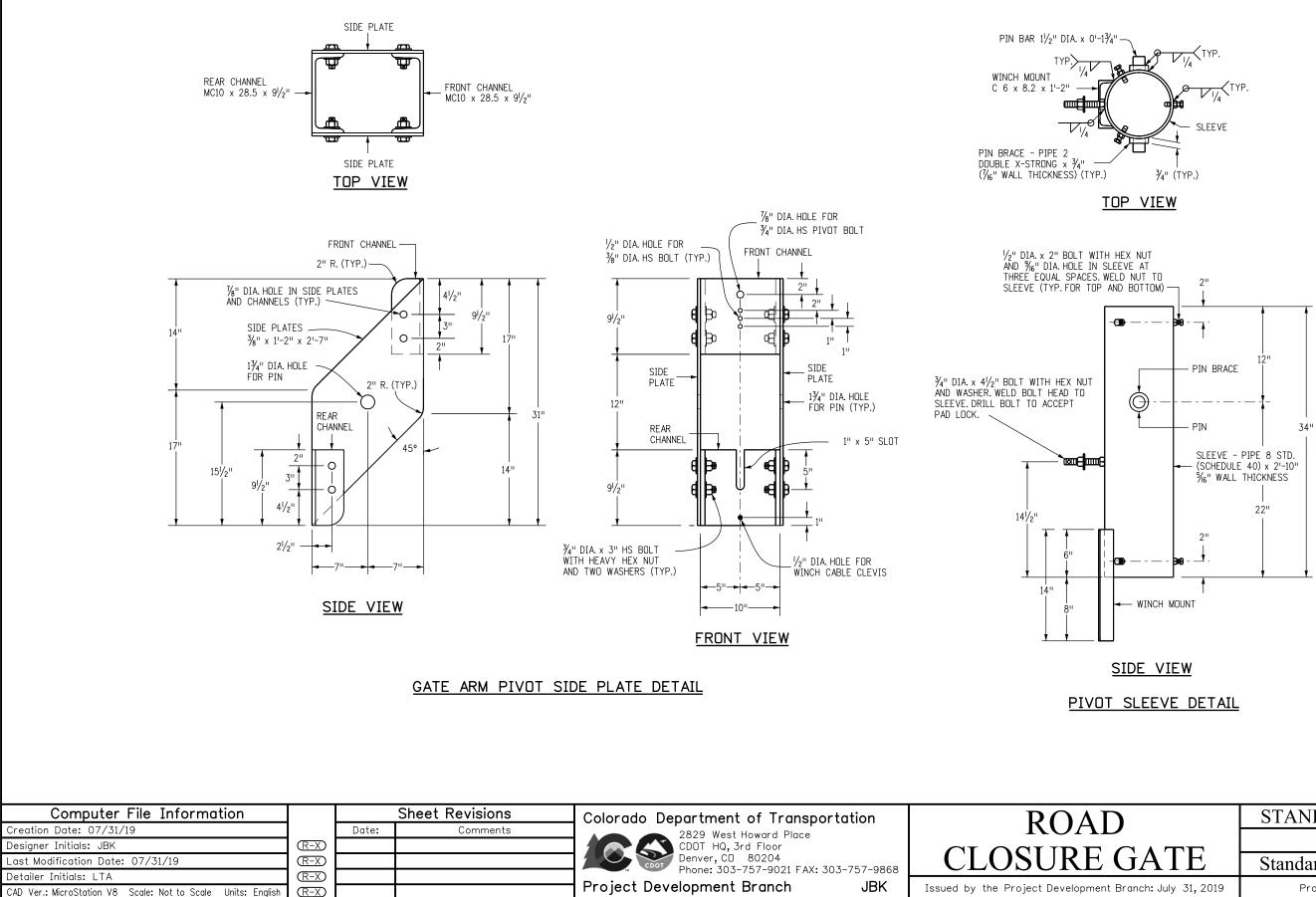




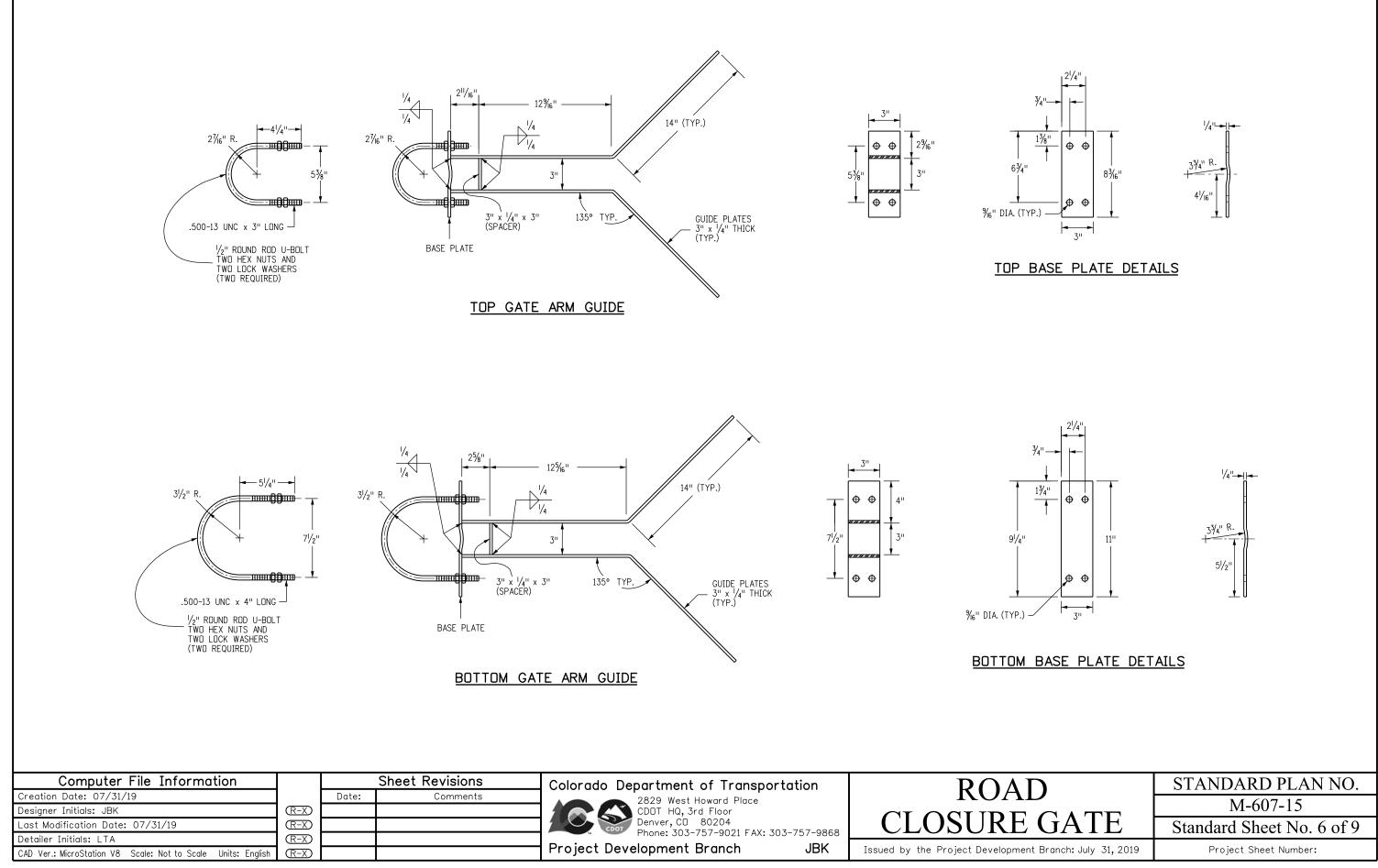

GENERAL NOTES

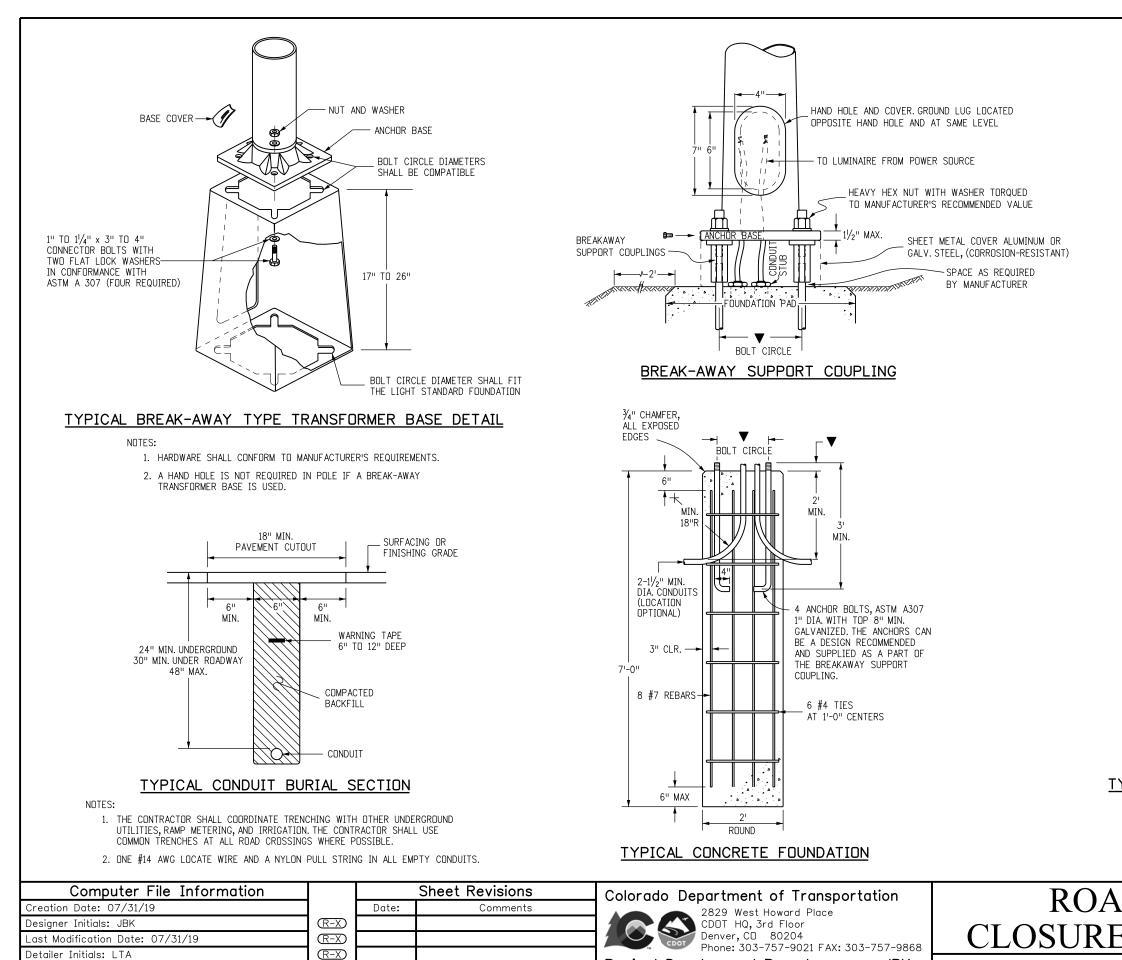

- 1. STEEL LIGHT STANDARDS SHALL HAVE AN 8 IN. OUTSIDE DIAMETER AT THE BASE WITH A $\frac{3}{6}$ IN. MINIMUM WALL THICKNESS, AND A UNIFORM TAPER THROUGHOUT. LIGHT STANDARDS SHALL BE ROUND OR TWELVE OR MORE SIDED, AND FABRICATED IN ACCORDANCE WITH SECTIONS 613 AND 715.
- 2. A CERTIFICATE OF COMPLIANCE (C.O.C) SHALL BE SUBMITTED TO THE ENGINEER AFTER FABRICATION OF THE LIGHT STANDARDS. THE C.O.C. SHALL BE SUBMITTED IN ACCORDANCE WITH SUBSECTION 106.12.
- 3. THE GATE ARM SHALL BE FABRICATED FROM HIGH STRENGTH RECTANGULAR FIBERGLASS AND 6061-T6 RECTANGULAR ALUMINUM TUBING. THE MAXIMUM ARM LENGTH SHALL BE 40 FT. THE FIBERGLASS/ALUMINUM GATE SHALL BE SUPPLIED BY SAFETRAN, B&B ELECTRONIC, OR AN APPROVED EQUIVALENT.
- 4. THE CONTRACTOR SHALL SURVEY THE CROSS SECTION OF THE ROADWAY, DETERMINE EACH GATE ARM LENGTH, AND SUBMIT THIS INFORMATION TO THE ENGINEER BEFORE ORDERING MATERIAL. THE LOCATION OF THE ROAD CLOSURE GATES AND THE REQUIRED MOUNTING HEIGHT OF THE GATE ARM PIVOT SHALL BE VERIFIED BY THE CONTRACTOR AND SUBMITTED TO THE ENGINEER.
- 5. A BREAKAWAY SHEAR PIN BASE IS REQUIRED FOR THE LIGHTWEIGHT ALUMINUM/FIBERGLASS ARMS. WHEN EXCESSIVE FORCE IS APPLIED TO THE GATE ARMS EQUIPPED WITH THE SHEAR PIN BASE, THE PIN SHALL SHEAR, AND THE ARM SHALL THEN SWING 45 DEGREES HORIZONTALLY AND DROP FREE OF THE GATE OPERATOR, MINIMIZING DAMAGE TO THE VEHICLE AND THE GATE.
- 6. THE HEIGHTS OF THE GATE ARM GUIDES WERE DETERMINED FOR A 29 FT. TALL TAPERED LIGHT STANDARD WITH A BASE DIAMETER OF 8 IN. AND A TOP DIAMETER OF 4 IN. GUIDE LOCATIONS MAY BE ADJUSTED FOR VARIOUS GATE ARM LENGTHS AND WARNING LIGHT SPACINGS. THE HEIGHT OF THE GATE ARM OVER THE ROADWAY SHALL BE 3 FT. - 7 IN. TO 4 FT. - 7 IN. FROM THE BOTTOM OF THE ARM TO THE ROADWAY.
- 7. THE WORM GEAR WINCH AND CABLE SHALL BE MANUFACTURED BY DUTTON-LAINSON, MFR. MODEL NO. WG2000, WITH A 7/32" THICK CABLE, AND A PULL CAPACITY DF 2000 LBS.


- 8. WHEN THE GATE IS FULLY RAISED, THE NUT AND WASHER SHALL FIT SNUGLY AGAINST THE OUTSIDE OF THE REAR CHANNEL AND BE PADLOCKED IN PLACE. THE CONTRACTOR SHALL SUPPLY ONE HEAVY, WEATHERPROOF PADLOCK WITH TWO KEYS FOR EACH GATE ARM PIVOT. INFORMATION ON THE KEY TYPE REQUIREMENTS WILL BE PROVIDE BY THE ENGINEER. PAIRED PIVOTS FOR DIVIDED HIGHWAYS SHALL BE KEYED ALIKE.
- 9. ELECTRICAL CONNECTION TO THE POWER SOURCE SHOWN ON THE PLANS WILL BE PAID FOR BY FORCE ACCOUNT. IF NO POWER SOURCE IS AVAILABLE, OMIT THE LUMINAIRE AND USE BATTERY OR SOLAR PANEL POWER FOR THE LED LIGHTS AS APPROVED BY THE ENGINEER.
- 10. GATE WARNING LIGHTS SHALL BE RED LED (TYPE B) HIGH INTENSITY. THE LIGHT AT THE END OF THE ARM NEAR THE CENTERLINE OF THE ROADWAY SHALL BE STEADY BURN. THE OTHER TWO LIGHTS SHALL FLASH AT THE RATE REQUIRED BY THE "MUTCD". SPACING OF THE LIGHTS SHALL VARY BASED ON ROADWAY WIDTH AND GATE ARM LENGTH. THE CONTRACTOR SHALL DETERMINE THE SPACING AND SUBMIT THE LED LAYOUT TO THE ENGINEER FOR VERIFICATION PRIOR TO PLACEMENT.
- 11. GALVANIZING: THE STEEL LIGHT STANDARDS, MAST ARMS, DROP GATE PIVOTS, SUPPORTS, GUIDES, AND ALL ASSOCIATED HARDWARE SHALL BE GALVANIZED IN ACCORDANCE WITH SECTION 715. ALL ROUGH EDGES AND BURRS SHALL BE GROUNDED SMOOTH PRIOR TO GALVANIZING.
- 12. BOLTED CONNECTIONS: ALL BOLTS SHALL CONFORM TO ASTM A 307, GRADE A, UNLESS DESIGNATED AS HS (HIGH STRENGTH). HS BOLTS SHALL CONFORM TO ASTM A 325. AFTER THE ROAD CLOSURE GATE IS ASSEMBLED, ALL EXPOSED BOLT THREADS SHALL BE PAINTED WITH TWO COATS OF ALUMINUM PAINT. THE ALUMINUM PAINT SHALL MEET THE REQUIREMENTS OF SUBSECTION 708.04.
- 13. FIELD ASSEMBLY: IN SOME INSTALLATIONS, THE CONNECTION PLATES FOR THE LUMINAIRE ARMS MAY REQUIRE MODIFICATION TO ALLOW THE PIVOT SLEEVE TO SLIP OVER. ALL DAMAGE TO THE GALVANIZING SHALL BE REPAIRED WITH TWO COATS OF ALUMINUM PAINT.


Computer File Information			Sheet Revisions	Colorado Department of Transportation	ROAD	STANDARD PLAN NO.
Creation Date: 07/31/19		Date:	Comments	2829 West Howard Place	I NUAD	
Designer Initials: JBK	(R-X)			CDDT HQ, 3rd Floor		M-607-15
Last Modification Date: 07/31/19	(R-X)			Denver, CD 80204 Phone: 303-757-9021 FAX: 303-757-9868	CLOSURE GATE	Standard Sheet No. 1 of 9
Detailer Initials: LTA	R-X					
CAD Ver.: MicroStation V8 Scale: Not to Scale Units: English	(R-X)			Project Development Branch JBK	Issued by the Project Development Branch: July 31, 2019	Project Sheet Number:

FIT ADLOCKED PROOF PADLOCK HE KEY TYPE ITS FOR PLANS WILL LABLE, OMIT THE LED LIGHTS SITY. THE ROADWAY IT THE RATE Y BASED ON DETERMINE OR VERIFICATION TE PIVOTS, LVANIZED S SHALL P7, GRADE A, CONFORM TO EXPOSED M PAINT. CTION 708.04.



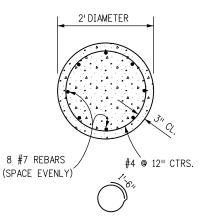


D	STANDARD PLAN NO.
	M-607-15
E GATE	Standard Sheet No. 5 of 9
ent Branch: July 31, 2019	Project Sheet Number:

Project Development Branch

JBK

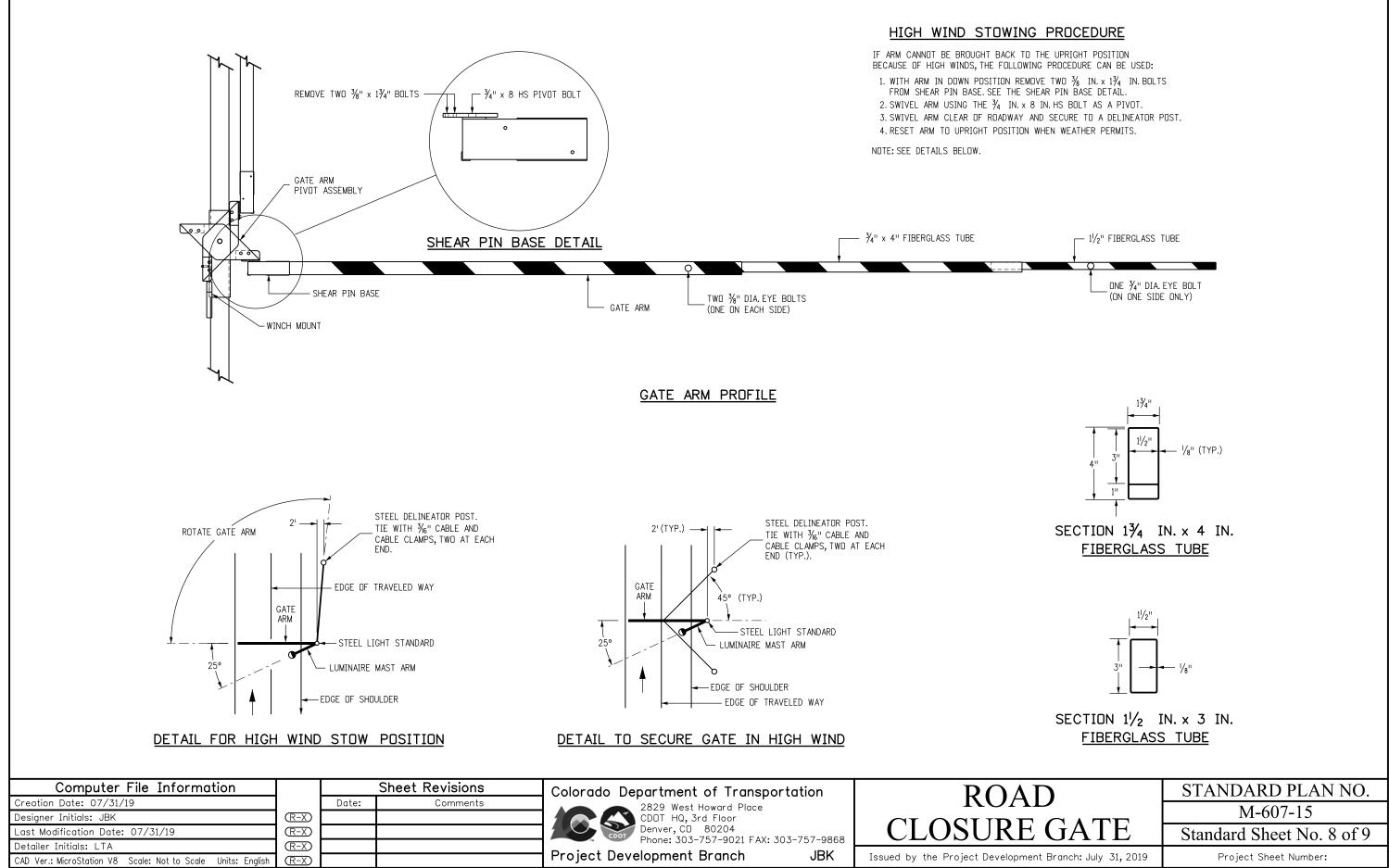
Issued by the Project Developme

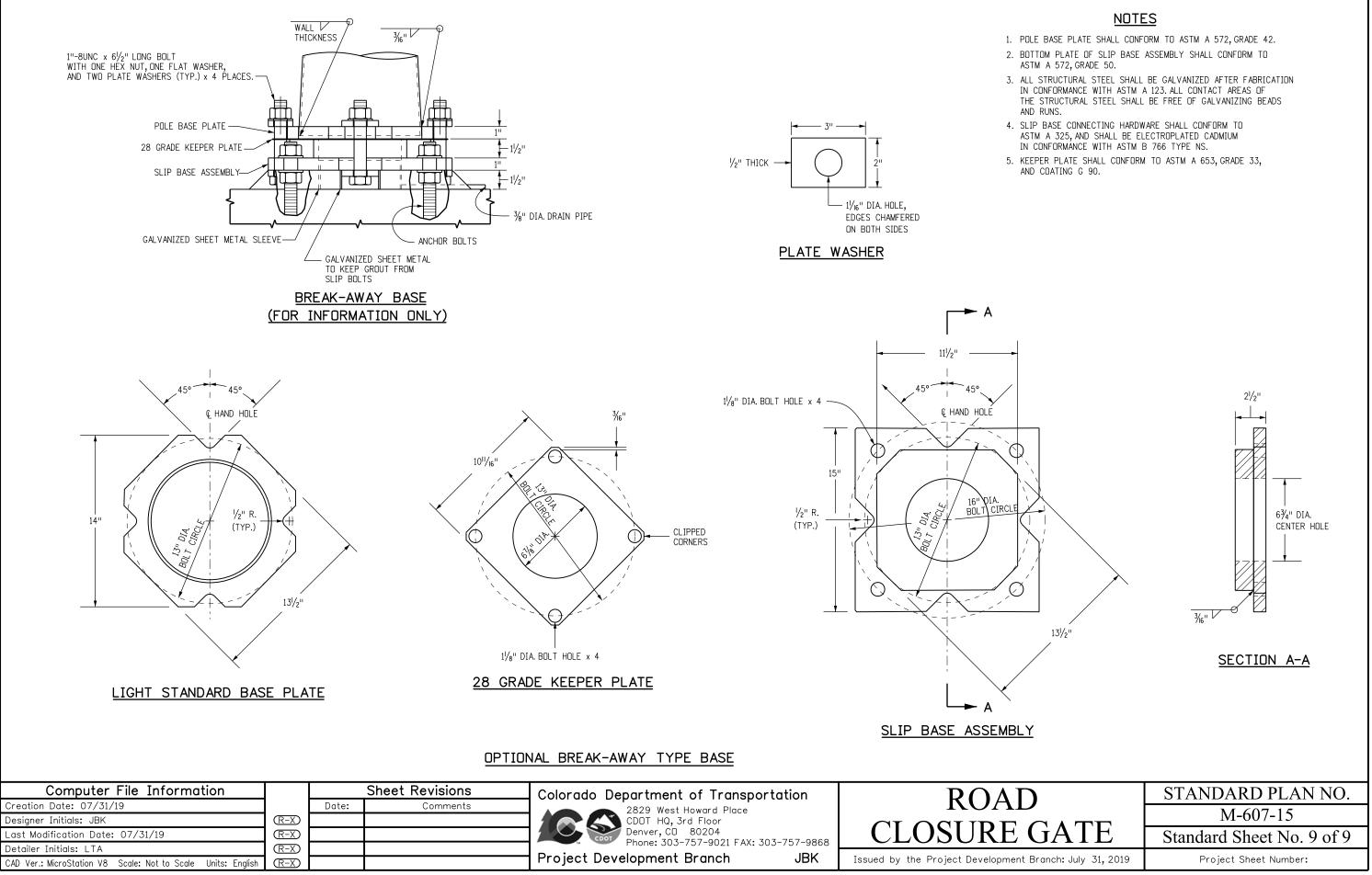

Detailer Initials: LTA

CAD Ver.: MicroStation V8 Scale: Not to Scale Units: English

(R-X)

FOUNDATION NOTES


- ▼ 1. SEE POLE SUPPLIER DETAILS FOR BOLT CIRCLE AND PROJECTION.
- 2. ALL BREAKAWAY SUPPORT COUPLINGS SHALL MEET THE BREAKAWAY REQUIREMENTS STATED IN THE LATEST EDITION OF AASHTO "STANDARD SPECIFICATIONS FOR STRUCTURAL SUPPORTS FOR HIGHWAY SIGNS, LUMINAIRES AND TRAFFIC SIGNALS".
- 3. BREAKAWAY SUPPORT COUPLINGS SHALL BE INSTALLED IN CONFORMANCE WITH THE MANUFACTURER'S RECOMMENDATIONS. THE CONTRACTOR SHALL HAVE A COUPLING MANUFACTURER'S REPRESENTATIVE ON THE PROJECT PRIOR TO CONSTRUCTION TO INSTRUCT THE CONTRACTOR AND PROJECT PERSONNEL IN THE PROPER INSTALLATION OF THE BREAKAWAY SUPPORT COUPLINGS.
- 4. LIGHT STANDARD FOUNDATIONS MAY BE PRECAST CONCRETE OR CAST-IN PLACE CONCRETE.
- 5. CONCRETE SHALL BE CLASS B.
- 6. EACH LIGHT STANDARD SHALL BE WIRED WITH A BREAKAWAY FUSED CONNECTOR AND BE GROUNDED AS STATED IN THE SPECIFICATIONS.
- 7. LIGHT STANDARDS SHALL NOT BE PLACED IN DITCHES OR OTHER LOW AREAS. EMBANKMENT AND BACKFILL SHALL BE COMPACTED IN CONFORMANCE WITH SECTION 203.
- 8. THE PHYSICAL SHAPES OF THE POLE CAPS, BRACKETS, AND CONCRETE PULL BOXES SHALL BE CONSIDERED APPROXIMATE AS SHOWN.
- 9. ALL NUTS, BOLTS, STUDS AND WASHERS SHALL BE GALVANIZED IN CONFORMANCE WITH AASHTO M 232 (ASTM A 153).



(ROTATE SPLICES)

TYPICAL FOUNDATION SECTION

D	STANDARD PLAN NO.		
	M-607-15		
E GATE	Standard Sheet No. 7 of 9		
ent Branch: July 31, 2019	Project Sheet Number:		



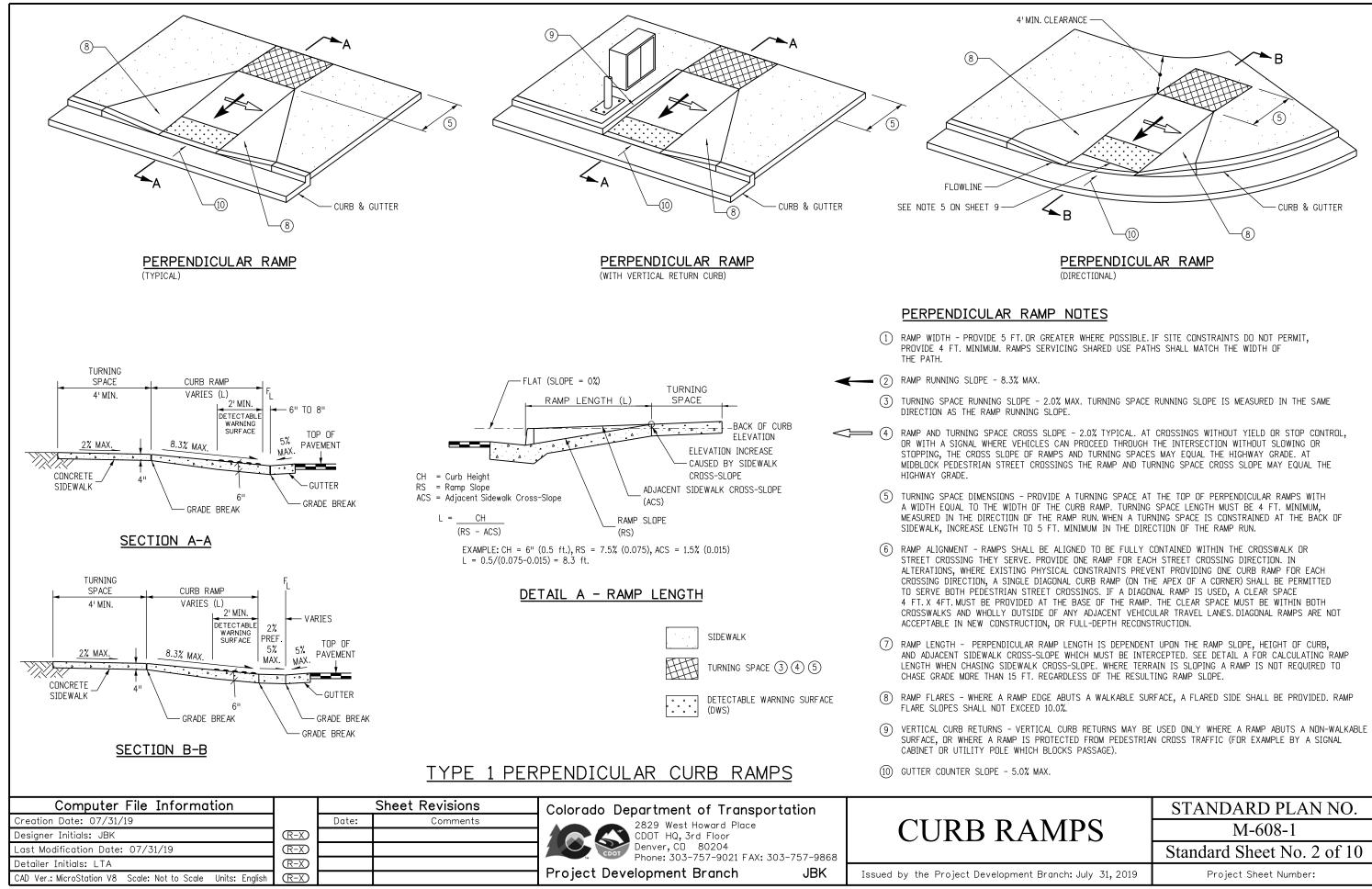
CURB RAMP GENERAL NOTES:

- (1) IN NEW CONSTRUCTION OR FULL-DEPTH RECONSTRUCTION, PROVIDE A SEPARATE CURB RAMP FOR EACH MARKED OR UNMARKED PEDESTRIAN STREET CROSSING. CURB RAMPS SHALL BE CONTAINED WHOLLY WITHIN THE WIDTH OF THE PEDESTRIAN STREET CROSSING OR CROSSWALK THEY SERVE, OR AS SHOWN ON THE CONTRACT PLANS.
- (2) ALTERATIONS ARE DEFINED AS CHANGES TO AN EXISTING HIGHWAY THAT AFFECT PEDESTRIAN ACCESS, CIRCULATION, OR USE. ALTERATIONS INCLUDE, BUT ARE NOT LIMITED TO, RESURFACING, REHABILITATION, RECONSTRUCTION, CURB RAMP RETROFITS, HISTORIC RESTORATION, OR CHANGES OR REARRANGEMENT TO STRUCTURAL PARTS OR ELEMENTS OF A PEDESTRIAN FACILITY.
- (3) A WALKABLE SURFACE IS DEFINED AS A PAVED SURFACE ADJACENT TO A CURB RAMP OR TURNING SPACE, WITHOUT RAISED OBSTACLES, THAT COULD BE MISTAKENLY TRAVERSED BY A USER WHO IS VISUALLY IMPAIRED.
- (4) IN ALTERATIONS, WHERE AN EXISTING PHYSICAL CONSTRAINT PREVENTS PROVIDING A SEPARATE CURB RAMP FOR EACH PEDESTRIAN STREET CROSSING, A SINGLE DIAGONAL RAMP (ON THE APEX) SHALL BE PERMITTED TO SERVE BOTH PEDESTRIAN STREET CROSSINGS. THE USE OF A SINGLE DIAGONAL RAMP SHALL BE APPROVED BY THE ENGINEER PRIOR TO CONSTRUCTION. DIAGONAL RAMPS ARE NOT ACCEPTABLE IN NEW CONSTRUCTION OR FULL-DEPTH RECONSTRUCTION.
- 5 DETECTABLE WARNINGS SURFACES (DWS) ARE INTENDED TO INDICATE THE BOUNDARY BETWEEN A PEDESTRIAN ROUTE AND VEHICULAR ROUTE WHERE THERE IS A FLUSH RATHER THAN CURBED CONNECTION. DWS ARE NOT INTENDED TO PROVIDE WAYFINDING. DWS SHALL BE PROVIDED AT THE FOLLOWING LOCATIONS; 1. CURB RAMPS, BLENDED TRANSITIONS, AND DEPRESSED CORNERS AT PEDESTRIAN STREET CROSSINGS; 2. PEDESTRIAN REFUGE ISLANDS (6 FEET IN WIDTH OR GREATER); 3. BOARDING PLATFORMS AT TRANSIT STOPS WHERE THE EDGE OF THE PLATFORM IS NOT PROTECTED TO PEDESTRIAN CROSS TRAFFIC; AND 4. BOARDING AREAS AT SIDEWALK OR STREET LEVEL TRANSIT STOPS WHERE THE AREA IS NOT PROTECTED TO PEDESTRIAN CROSS TRAFFIC.
- (6) DETECTABLE WARNING SURFACES SHALL CONTRAST VISUALLY WITH THE ADJACENT GUTTER, HIGHWAY, OR PEDESTRIAN ACCESS ROUTE SURFACE, EITHER LIGHT-ON-DARK OR DARK-ON-LIGHT. FEDERAL YELLOW COLOR IS PREFERRED, HOWEVER, OTHER COLORS MAY BE USED IF APPROVED BY THE ENGINEER.
- (7) IN ALTERATIONS, TO AVOID CHASING GRADE INDEFINITELY ON STEEP ROADWAYS, A CURB RAMPS LENGTH IS NOT REQUIRED TO EXCEED 15 FEET REGARDLESS OF THE RESULTING RAMP RUNNING SLOPE.
- (8) ALL SLOPES ARE MEASURED WITH RESPECT TO A LEVEL PLANE.
- (9) DRAINAGE STRUCTURES, TRAFFIC SIGNAL EQUIPMENT, OR OTHER OBSTRUCTIONS SHALL NOT BE INSTALLED ON THE CURB RAMP, OR TURNING SPACE AREAS.
- (10) IN NEW CONSTRUCTION, PULL BOXES, METER BOXES, MAINTENANCE HOLE COVERS, VAULT LIDS, OR SIMILAR, SHALL NOT BE CONSTRUCTED WITHIN ANY PART OF CURB RAMP OR TURNING SPACE. IN ALTERATIONS, WHERE THESE ITEMS CANNOT BE RELOCATED DUTSIDE OF THE CURB RAMP OR TURNING SPACE, THEY MUST NOT CREATE A VERTICAL DISCONTINUITY GRATER THAN 1/2 INCH. ANY VERTICAL DISCONTINUITY BETWEEN 1/4 INCH AND 1/2 INCH SHALL BE BEVELED WITH A SLOPE NOT STEEPER THAN 1V:2H. THE BEVEL SHALL BE APPLIED ACROSS THE ENTIRE SURFACE DISCONTINUITY.
- (1) CONSTRUCTION OF ANY REQUIRED PEDESTRIAN CURB SHALL BE INCLUDED IN THE BID PRICE OF THE CONCRETE CURB RAMP AND WILL NOT BE PAID FOR SEPARATELY
- (12) ALL CURB RAMP JOINTS AND GRADE BREAKS SHALL BE FLUSH (0'-1/8"). THE JOINT BETWEEN THE ROADWAY SURFACE AND THE GUTTER PAN SHALL BE FLUSH.
- (13) THE CONTRACTOR SHALL VERIFY REMOVAL LIMITS ARE SUFFICIENT TO PROVIDE POSITIVE DRAINAGE, MAINTAIN EXISTING DRAINAGE PATTERNS, AND AVOID PONDING IN THE FINAL CONFIGURATION
- (14) FLARED SIDE SLOPES MAY EXCEED 10.0% ONLY WHERE THEY ABUT A NON-WALKABLE SURFACE, OR WHERE THE ADJACENT RAMP SURFACE IS BLOCKED TO PEDESTRIAN TRAFFIC.
- (15) THE CHANGE IN GRADE AT THE BOTTOM OF THE CURB RAMP SHALL NOT EXCEED AN ALGEBRAIC DIFFERENCE OF 13.33%. THE COUNTER SLOPE OF THE GUTTER AT THE FOOT OF A RAMP, TURNING SPACE, OR BLENDED TRANSITION SHALL NOT EXCEED 5.0%.
- (16) GRADE BREAKS AT THE TOP AND BOTTOM OF RAMP RUNS SHALL BE PERPENDICULAR TO THE DIRECTION OF THE RAMP RUN. GRADE BREAKS SHALL NOT BE PERMITTED ON THE SURFACE OF THE RAMP RUN OR TURNING SPACE. SURFACE SLOPES THAT MEET AT GRADE BREAKS SHALL BE FLUSH.
- (17) A BROOM FINISH, WITH SWEEPS PERPENDICULAR TO THE DIRECTION OF PEDESTRIAN TRAFFIC, SHALL BE APPLIED TO ALL RAMP AND TURNING SPACE SURFACES.
- (18) IN ALTERATIONS, WHERE A RAMP OR TURNING SPACE MUST TIE INTO AN EXISTING GRADE THAT CANNOT BE ALTERED, THE RAMP OR TURNING SPACE MAY BE WARPED TO TRANSITION TO THE REQUIRED CROSS SLOPE. THE TRANSITION TO THE REQUIRED CROSS SLOPE SHALL BE SPREAD EVENLY OVER THE LENGTH OF THE RAMP OR TURNING SPACE TO MINIMIZE THE DEGREE OF WARPING. THE RATE OF CHANGE ON A RAMP OR TURNING SPACE SHALL NOT EXCEED 3% PER LINEAR FOOT.
- (19) DESIGN AND CONSTRUCT CURB RAMPS, TURNING SPACES, AND FLARE SLOPES WITH THE FLATTEST SLOPES POSSIBLE. THE SLOPES INDICATED IN THESE DETAILS SHOW THE MAXIMUM SLOPES ALLOWABLE. PREFERRED VALUES TO BE USED DURING DESIGN, LAYOUT, AND CONSTRUCTION ARE:
 - RAMP RUNNING SLOPE 7.5%
 - RAMP CROSS SLOPE 1
 - TURNING SPACE RUNNING SLOPE 1.5%
 - TURNING SPACE CROSS SLOPE 1.5% - FLARE SLOPE 8.0-9.0%
- GENERAL NOTES & PAY AREAS

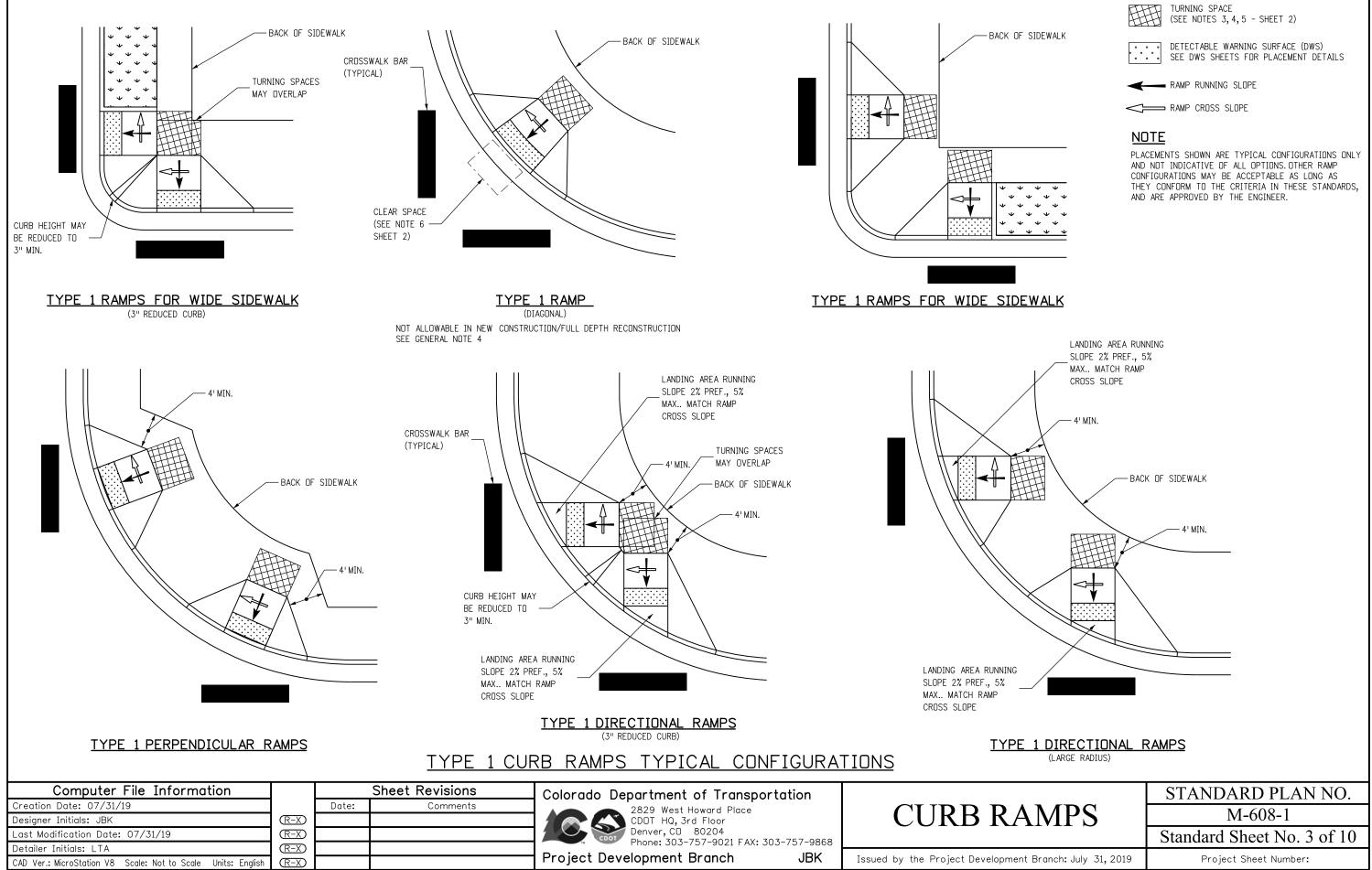
- THE WIDTH AND THICKNESS OF CURB RAMPS IS SUFFICIENT TO ACCOMODATE SUCH EQUIPMENT.
- ND. 4 12 INCH LONG REINFORCEMENT BARS (EPOXY COATED) AT 18 INCHES CENTER TO CENTER MINIMUM.

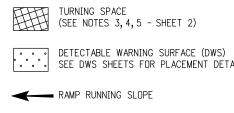
CURB RAMP PAY AREAS

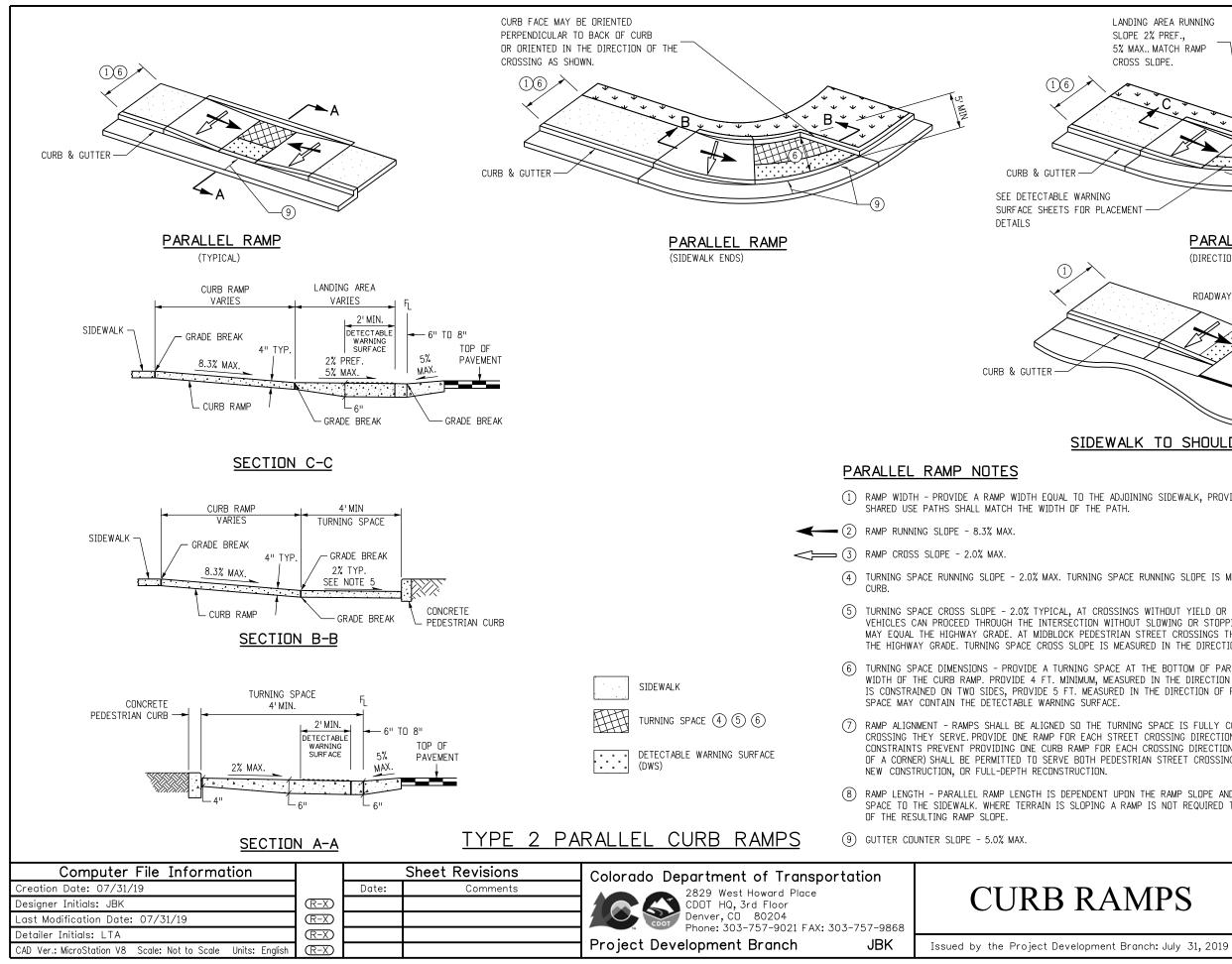
Computer File Information			Sheet Revisions	Colorado Department of Transpor	tation	
Creation Date: 07/31/19		Date:	Comments	2829 West Howard Place		
Designer Initials: JBK	(R-X)			CDDT HQ, 3rd Floor		UKB KA
Last Modification Date: 07/31/19	(R-X)			Denver, CD 80204 Phone: 303-757-9021 FAX: 30	7 757 0969	
Detailer Initials: LTA	R-X)					
CAD Ver.: MicroStation V8 Scale: Not to Scale Units: English	(R-X)			Project Development Branch	JBK	Issued by the Project Developme


(2) WHERE SNOW REMOVAL EQUIPMENT WILL BE USED TO CLEAR THE PEDESTRIAN ACCESS ROUTE, CONSULT THE ENGINEER PRIOR TO CONSTRUCTION TO ENSURE

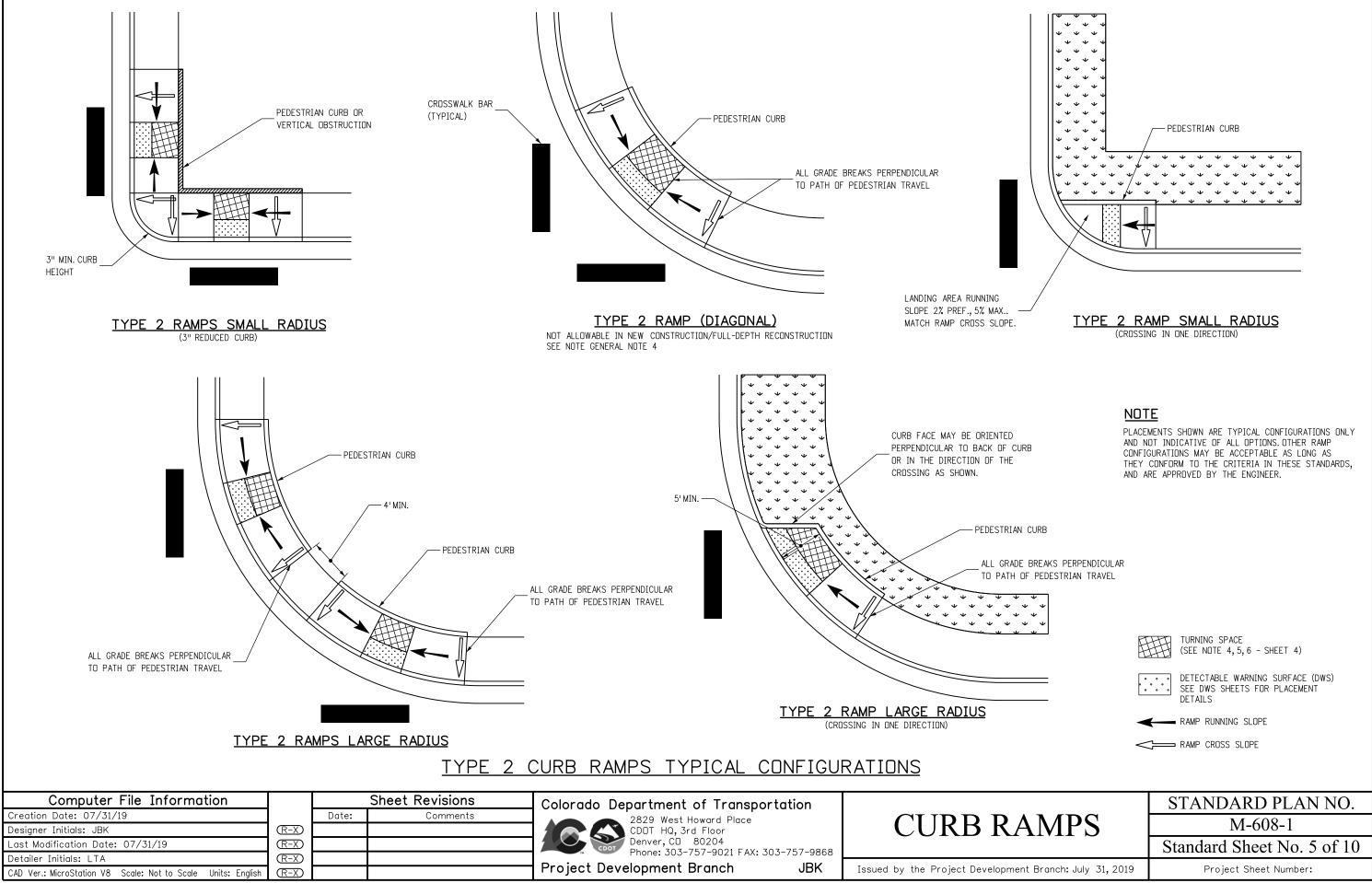
(21) PROVIDE EXPANSION JOINT MATERIAL 1/2" THICK WHERE CURB RAMPS ADJOIN ANY RIGID PAVEMENT, OR STRUCTURE. THE TOP OF THE JOINT FILLER MATERIAL SHALL BE FLUSH WITH ADJOINING CONCRETE SURFACES. THE EXPANSION JOINT MATERIAL SHALL EXTEND FOR THE FULL DEPTH OF THE CONCRETE SURFACE.

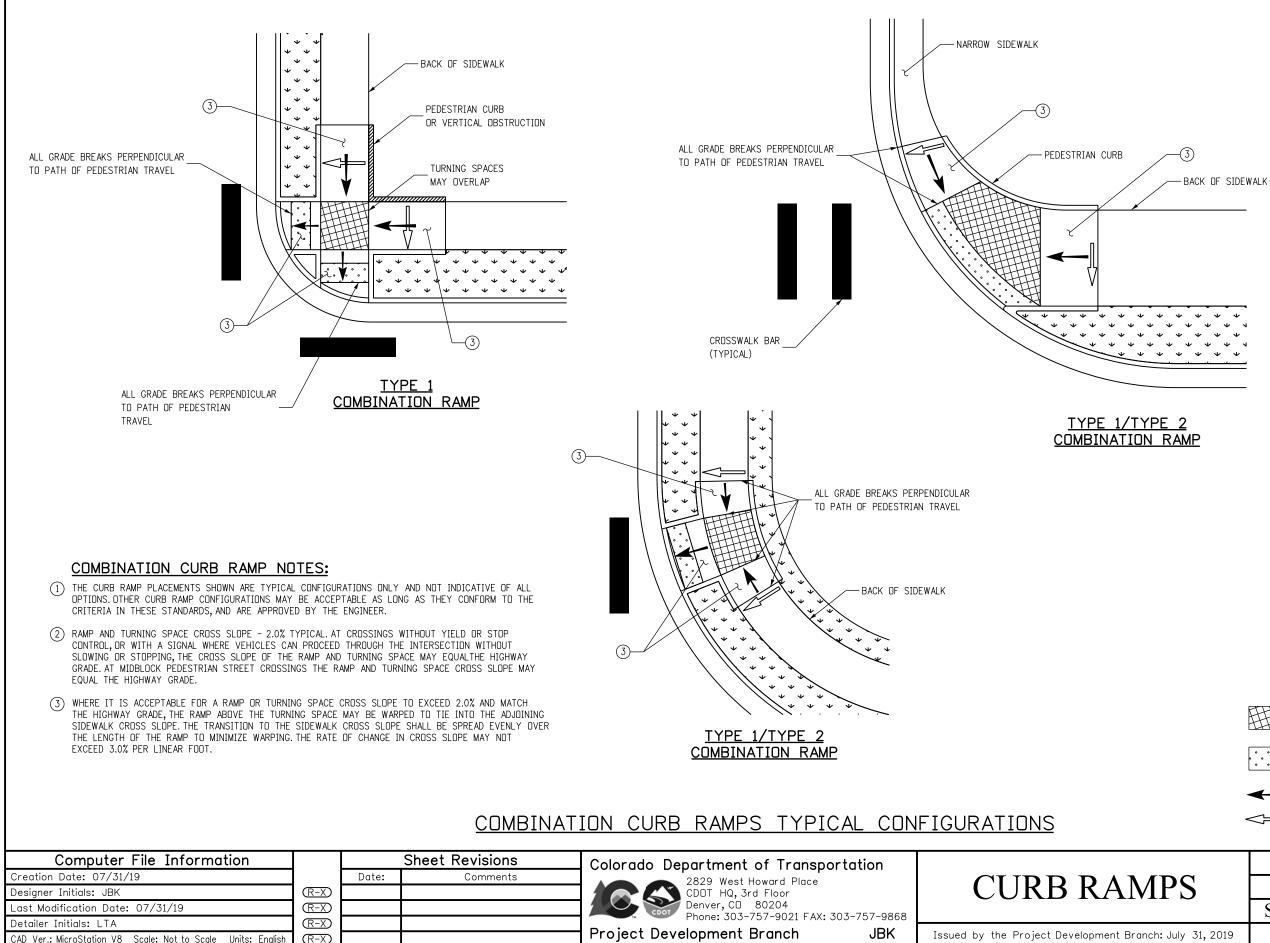

(2) PROVIDE TIE BAR REINFORCING BETWEEN INDEPEDENTLY POURED CONCRETE CURB RAMPS OR TURNING SPACES AND CURB AND GUTTER. DRILL AND GROUT


T SLOPE	1.0%	2.0%	5.0%	7.1%	8.3%	10.0%
ENT RUN/RISE	100:1	50 : 1	20:1	14:1	12:1	10 : 1


	STANDARD PLAN NO.	
AMPS	M-608-1	
	Standard Sheet No. 1 of 10	
ent Branch: July 31, 2019	Project Sheet Number:	

	STANDARD PLAN NO.	
AMPS	M-608-1	
	Standard Sheet No. 2 of 10	
ent Branch: July 31, 2019	Project Sheet Number:	



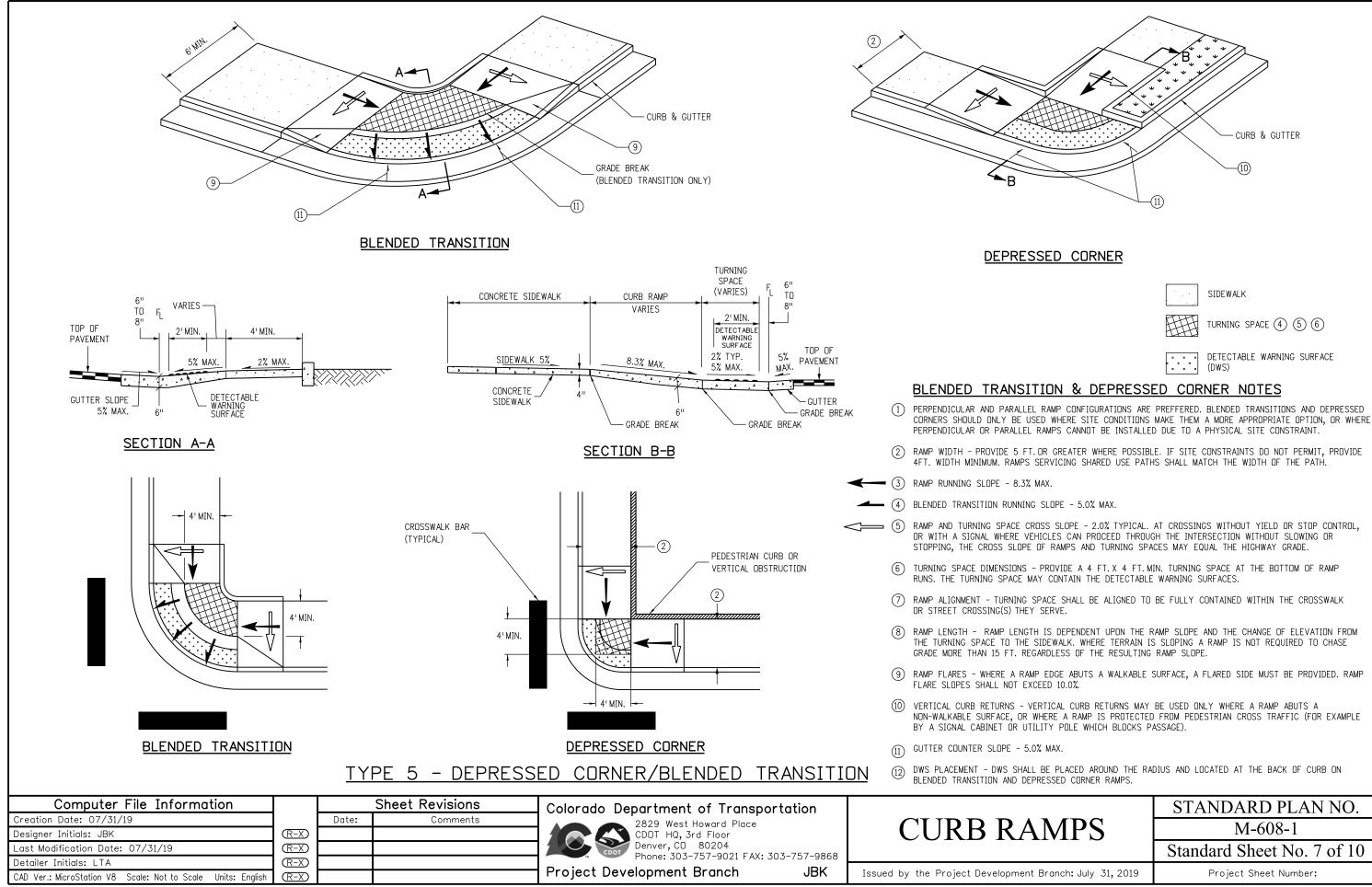


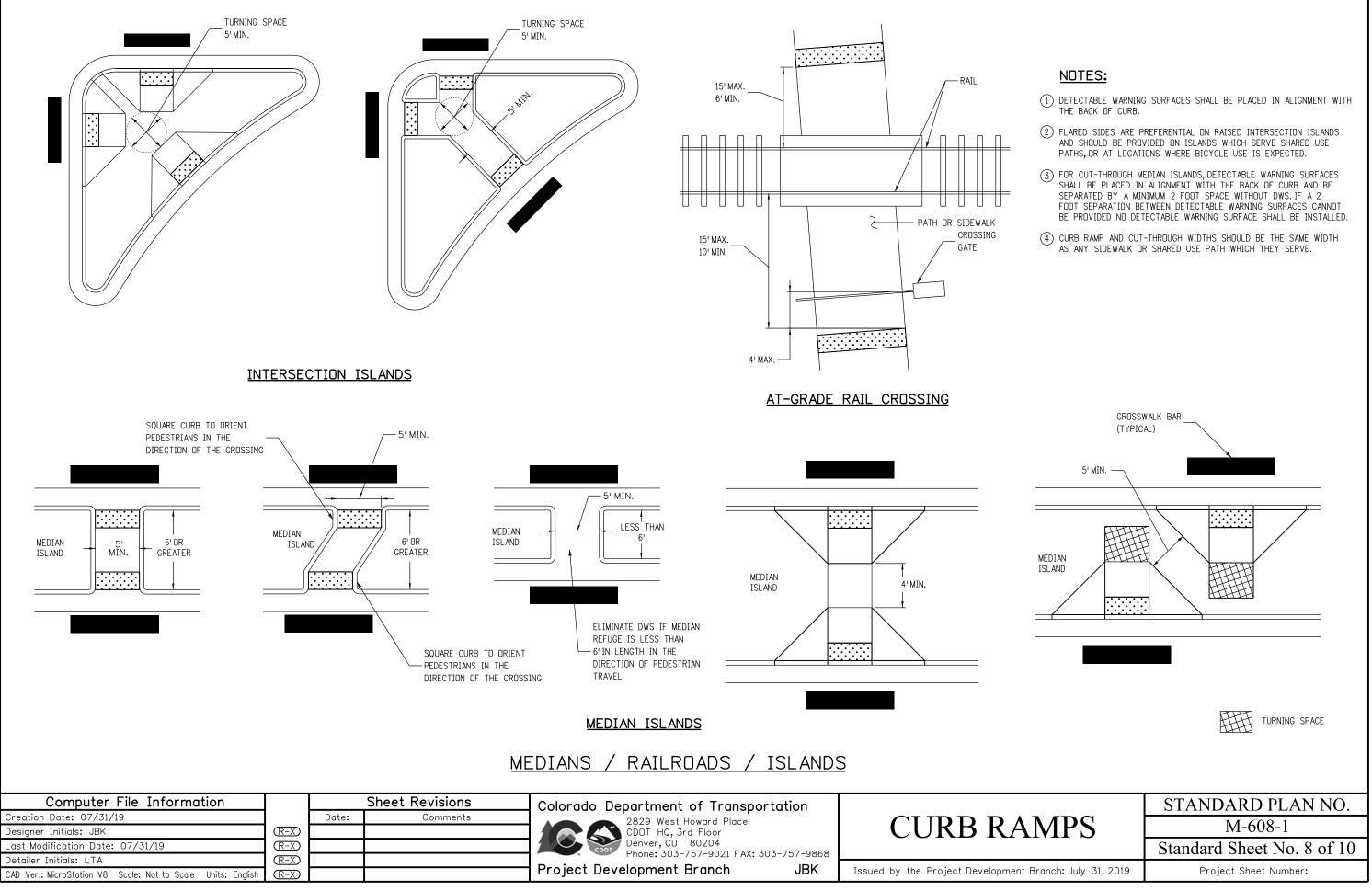
LANDING AREA RUNNING SLOPE 2% PREF.,	
5% MAX MATCH RAMP CROSS SLOPE.	
× × C × ×	
	+ + + + + + + + + + + + + + + + + + +
G C	
ACEMENT 9	
	EL RAMP CROSSING IN ONE DIRECTION ONLY)
RDADWAY SH	HOULDER
WALK TO SHOULDE	
WALK TU SHUULUL	IN TRANSITION
ADJOINING SIDEWALK, PROVIDE 4 FT. WIDTH MINIMUM. RAMPS SERVICING PATH.	
SPACE RUNNING SLOPE IS MEAS	URED PERPENDICULAR TO THE BACK OF
WITHOUT SLOWING OR STOPPING	DP CONTROL, OR WITH A SIGNAL WHERE , THE CROSS SLOPE OF THE TURNING SPACE TURNING SPACE CROSS SLOPE MAY EQUAL OF THE RAMP RUN.
MEASURED IN THE DIRECTION OF	EL RAMPS WITH A WIDTH EQUAL TO THE THE RAMP RUN. IF THE TURNING SPACE ESTRIAN STREET CROSSING. THE TURNING
STREET CROSSING DIRECTION. I R EACH CROSSING DIRECTION, A	AINED WITHIN THE CROSSWALK OR STREET N ALTERATIONS, WHERE EXISTING PHYSICAL SINGLE DIAGONAL CURB RAMP (ON THE APEX DIAGONAL RAMPS ARE NOT ACCEPTABLE IN
	HE CHANGE OF ELEVATION FROM THE TURNING CHASE GRADE MORE THAN 15 FT. REGARDLESS
	STANDARD PLAN NO.
AMPS	M-608-1
	Standard Sheet No. 4 of 10

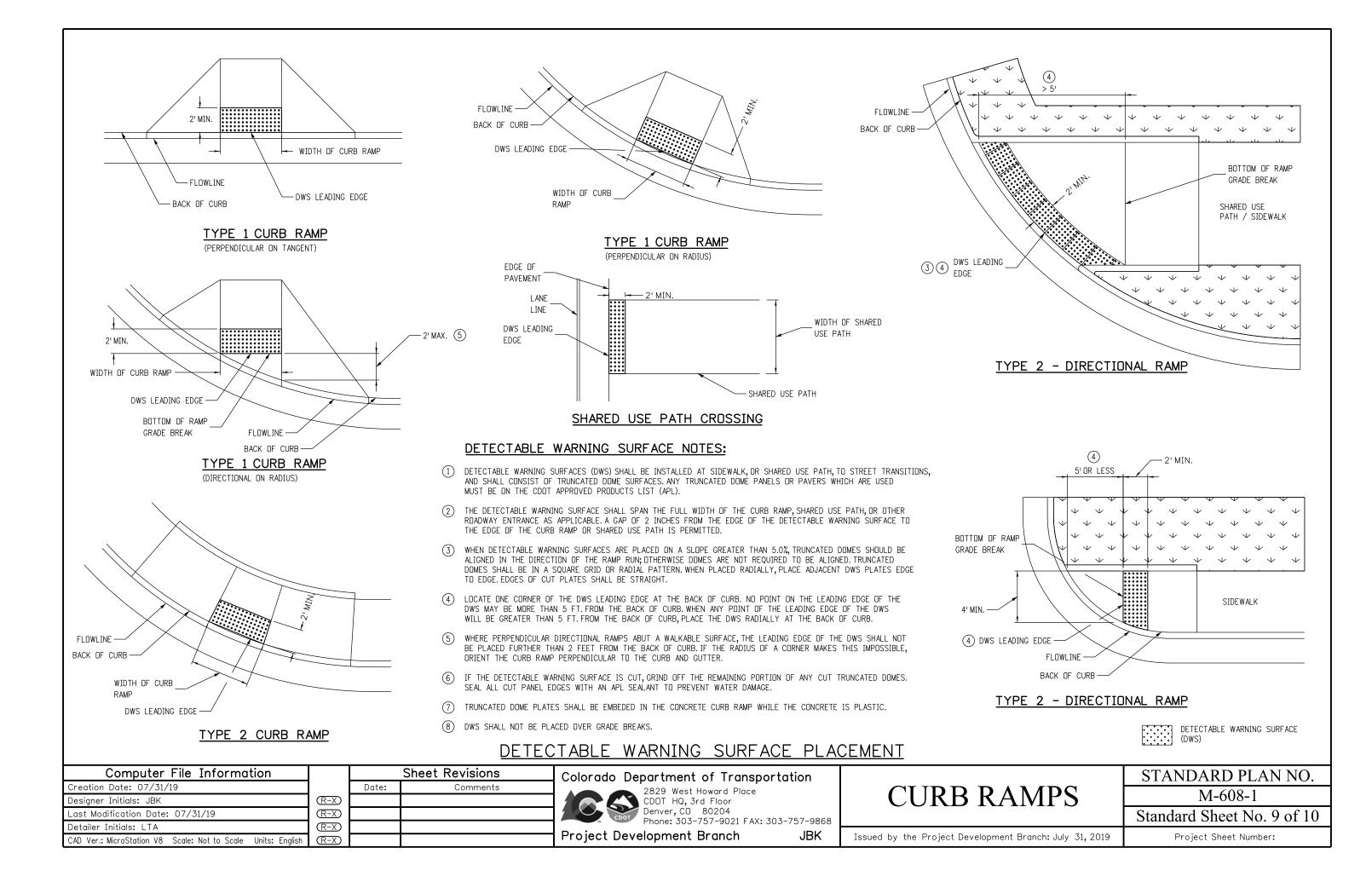
Project Sheet Number:

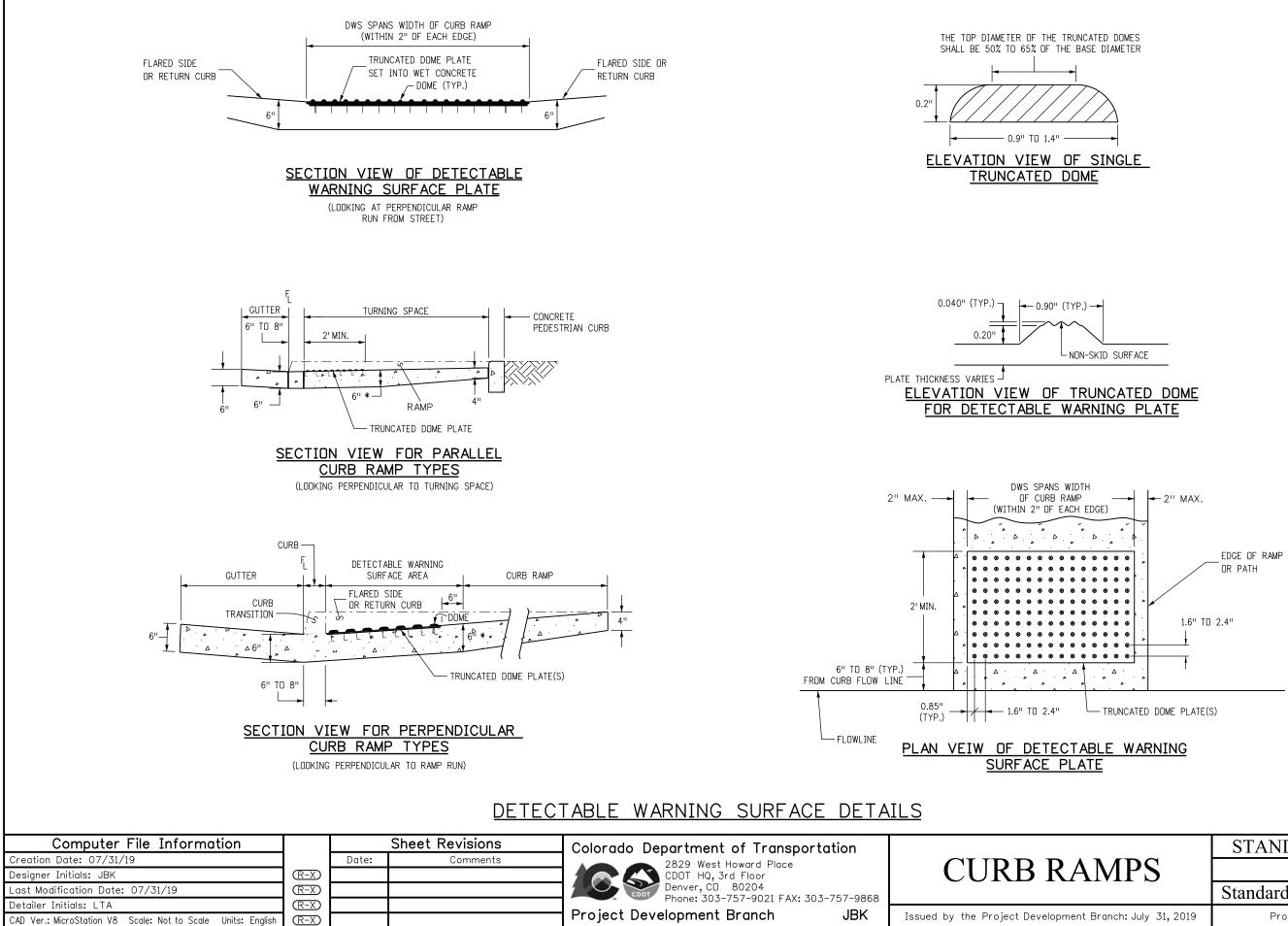
	STANDARD PLAN NO.
AMPS	M-608-1
	Standard Sheet No. 6 of 10
nent Branch: July 31, 2019	Project Sheet Number:

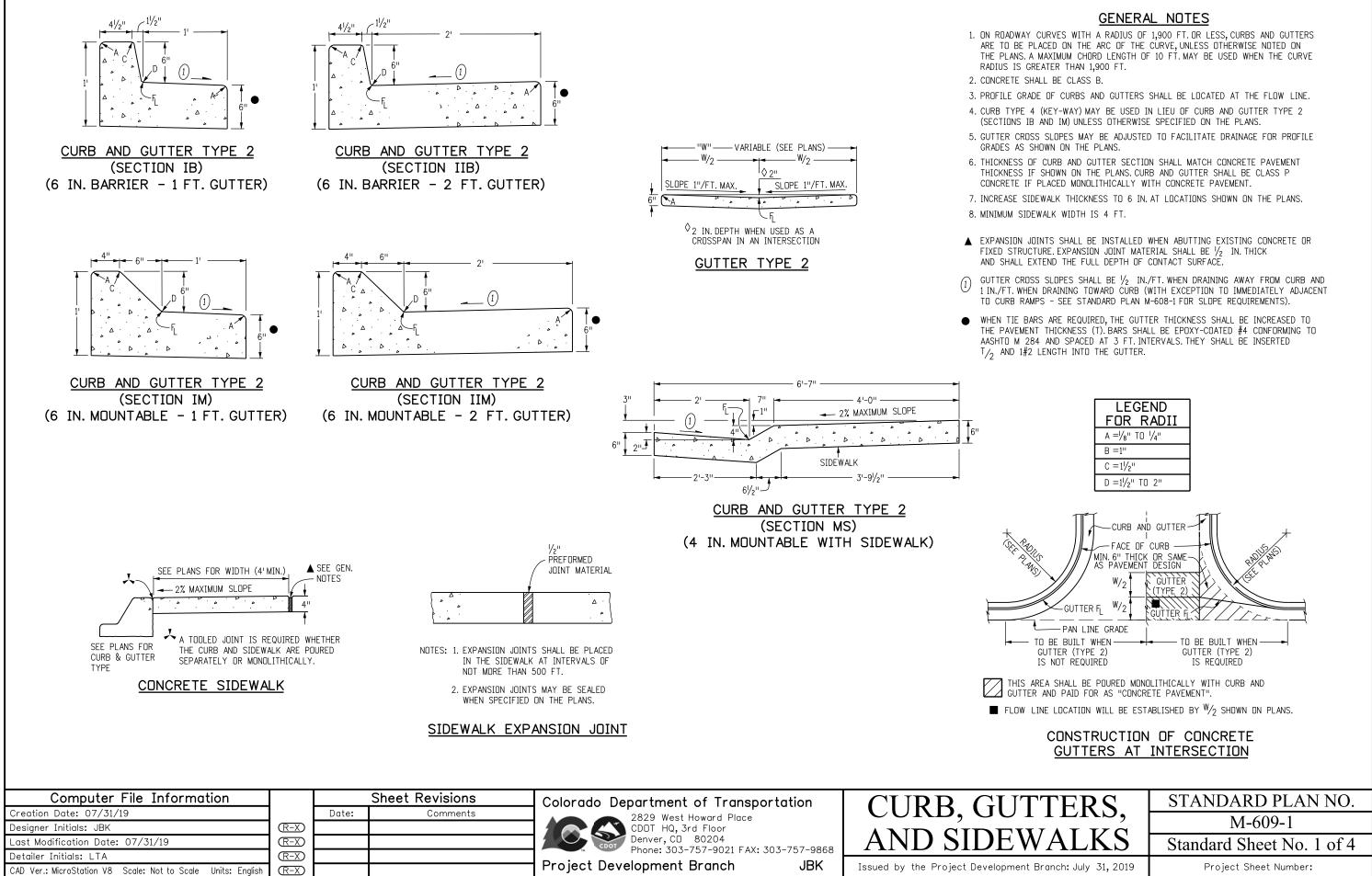
RAMP CROSS SLOPE (2) (3)

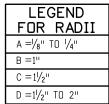

RAMP RUNNING SLOPE

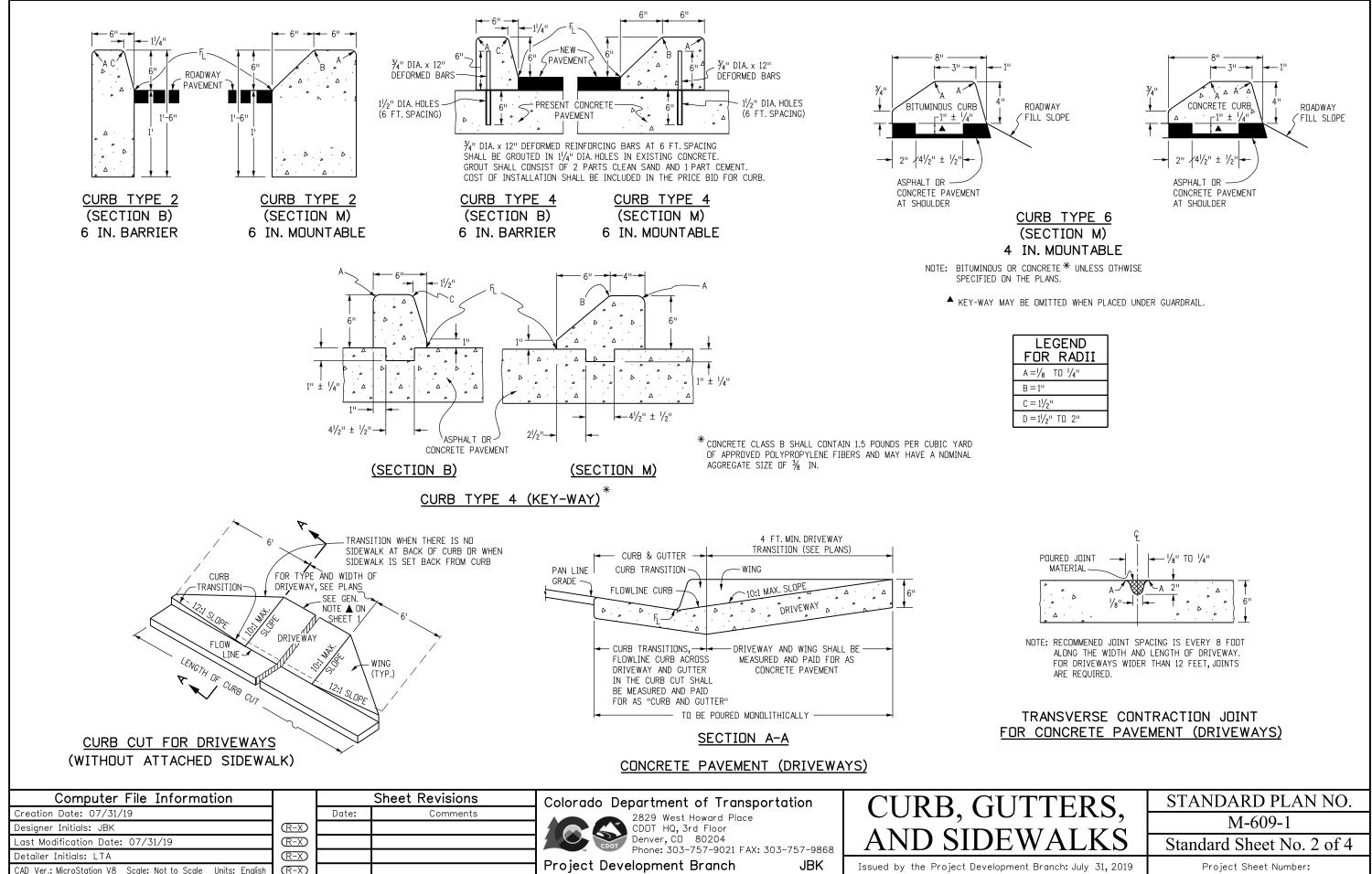


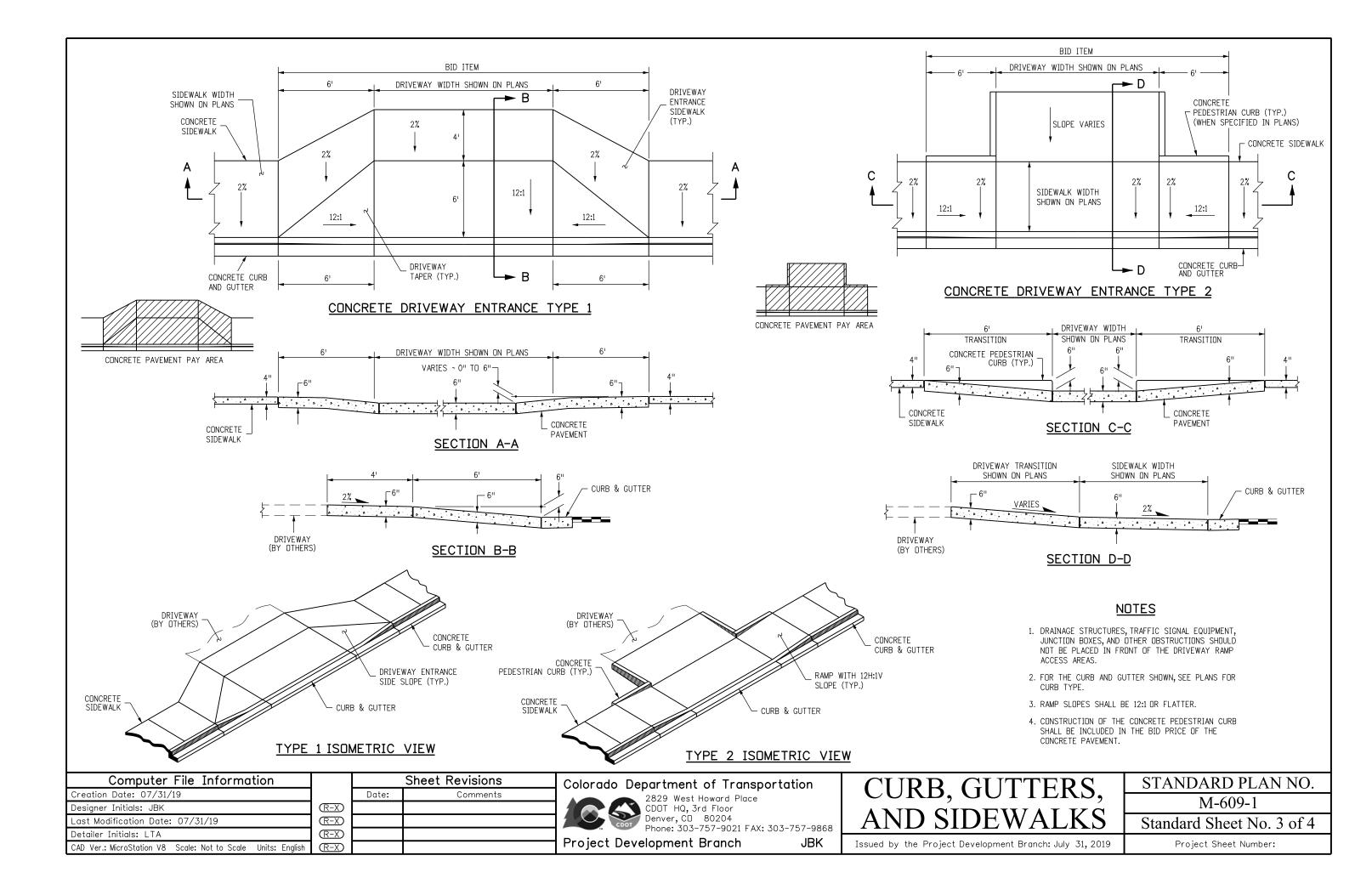


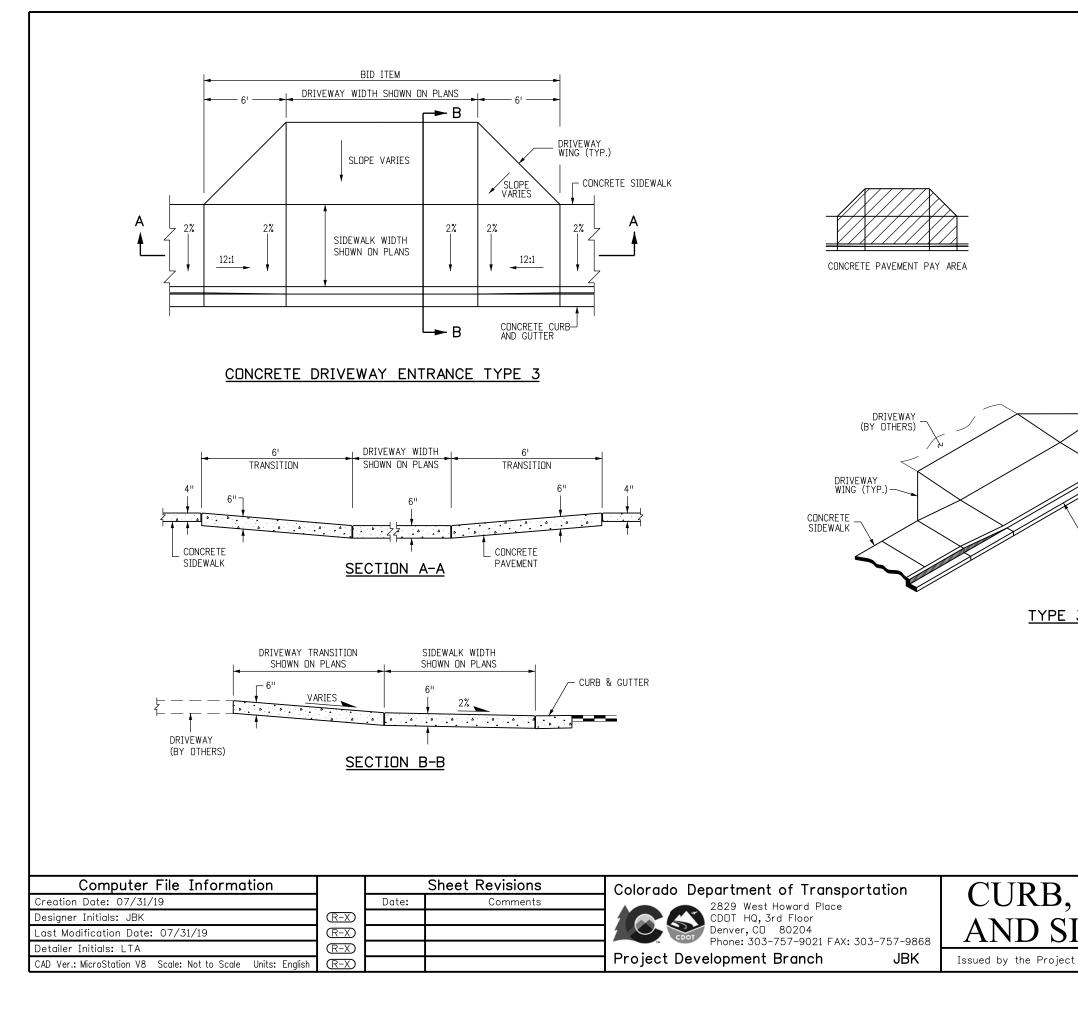

TURNING SPACE (2)(3)

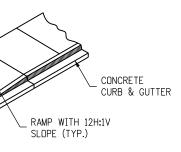

	STANDARD PLAN NO.	
AMPS	M-608-1	
	Standard Sheet No. 7 of 10	
ent Branch: July 31, 2019	Project Sheet Number:	

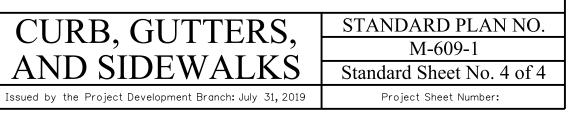


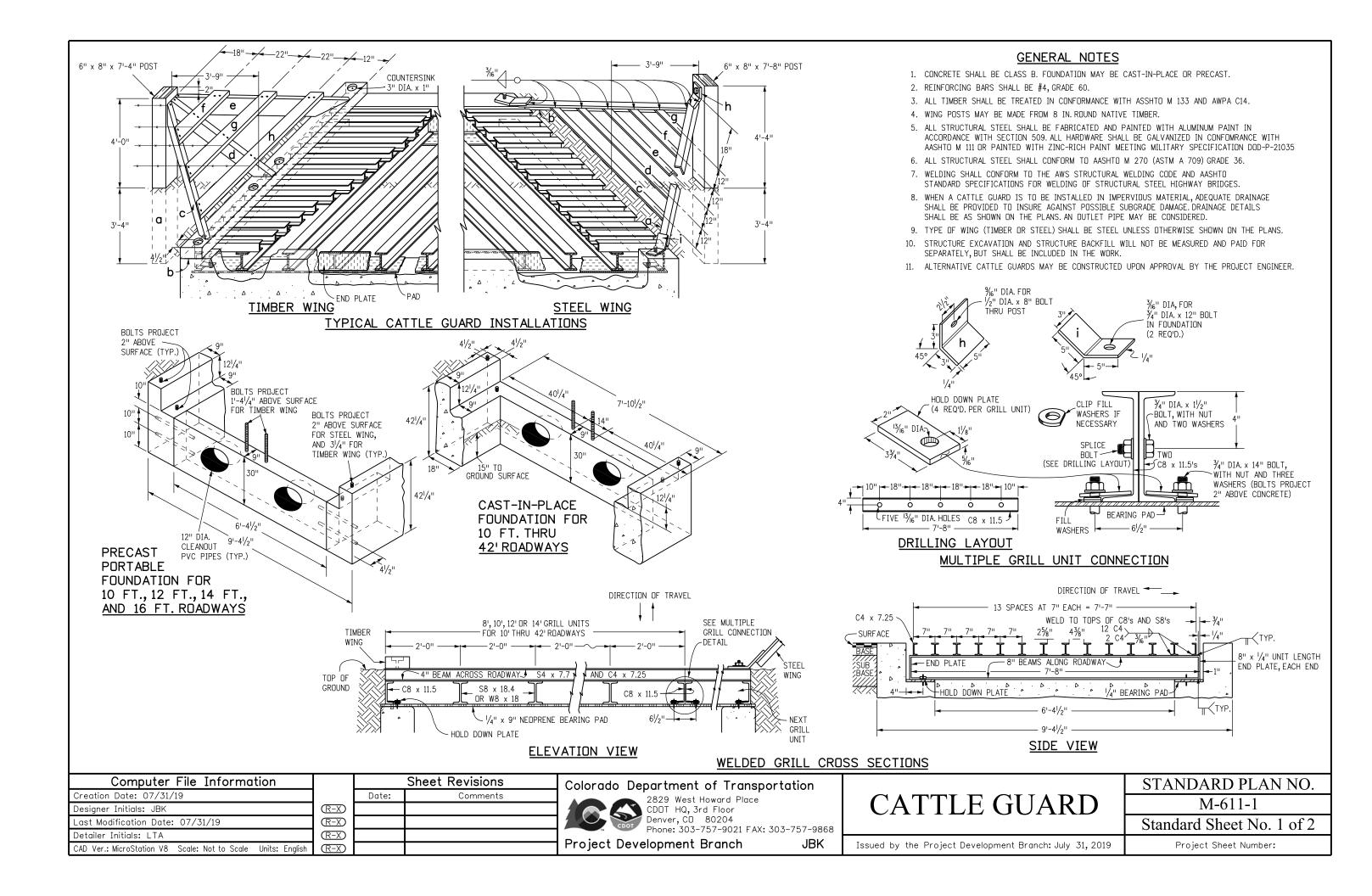


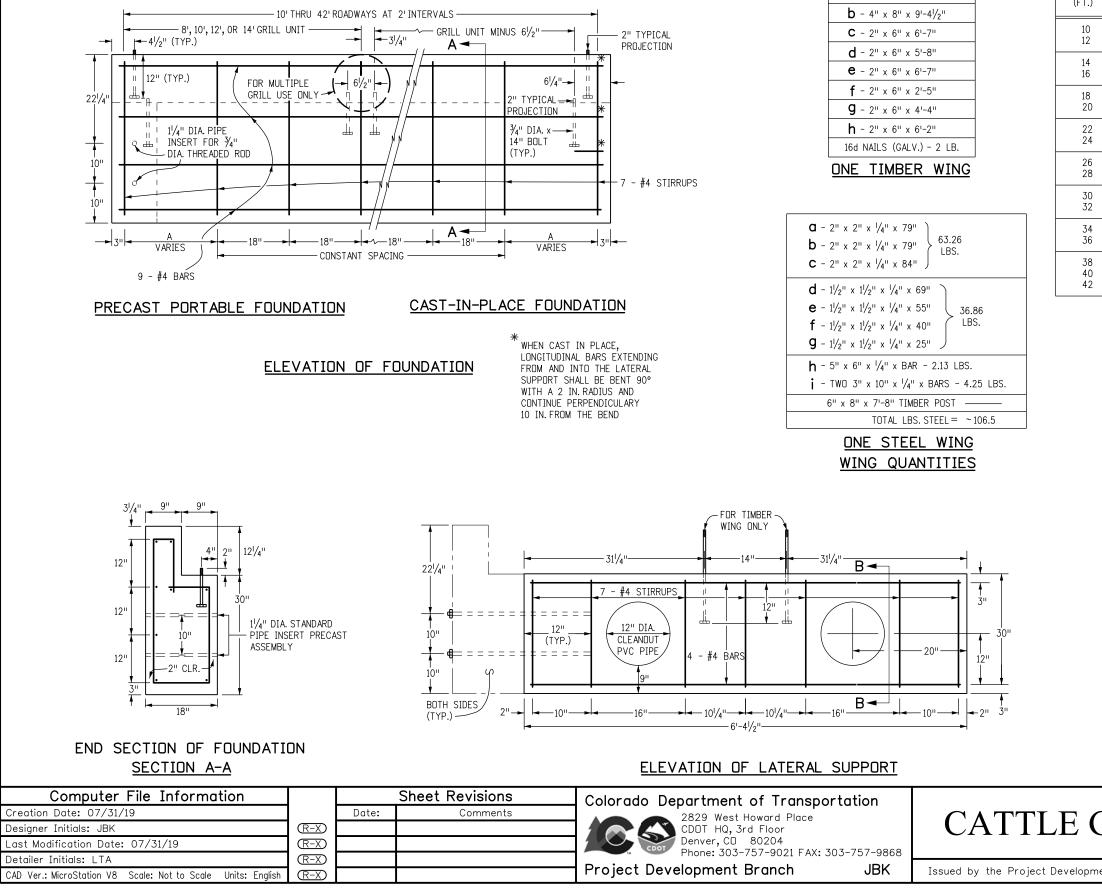

	STANDARD PLAN NO.	
AMPS	M-608-1	
	Standard Sheet No. 10 of 10	
ent Branch: July 31, 2019	Project Sheet Number:	




Project Sheet Number:

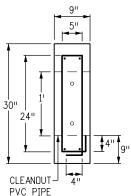

NOTES


- 1. DRAINAGE STRUCTURES, TRAFFIC SIGNAL EQUIPMENT, JUNCTION BOXES, AND OTHER OBSTRUCTIONS SHOULD NOT BE PLACED IN FRONT OF THE DRIVEWAY RAMP ACCESS AREAS.
- 2. FOR THE CURB AND GUTTER SHOWN, SEE PLANS FOR CURB TYPE.
- 3. RAMP SLOPES SHALL BE 12:1 OR FLATTER.



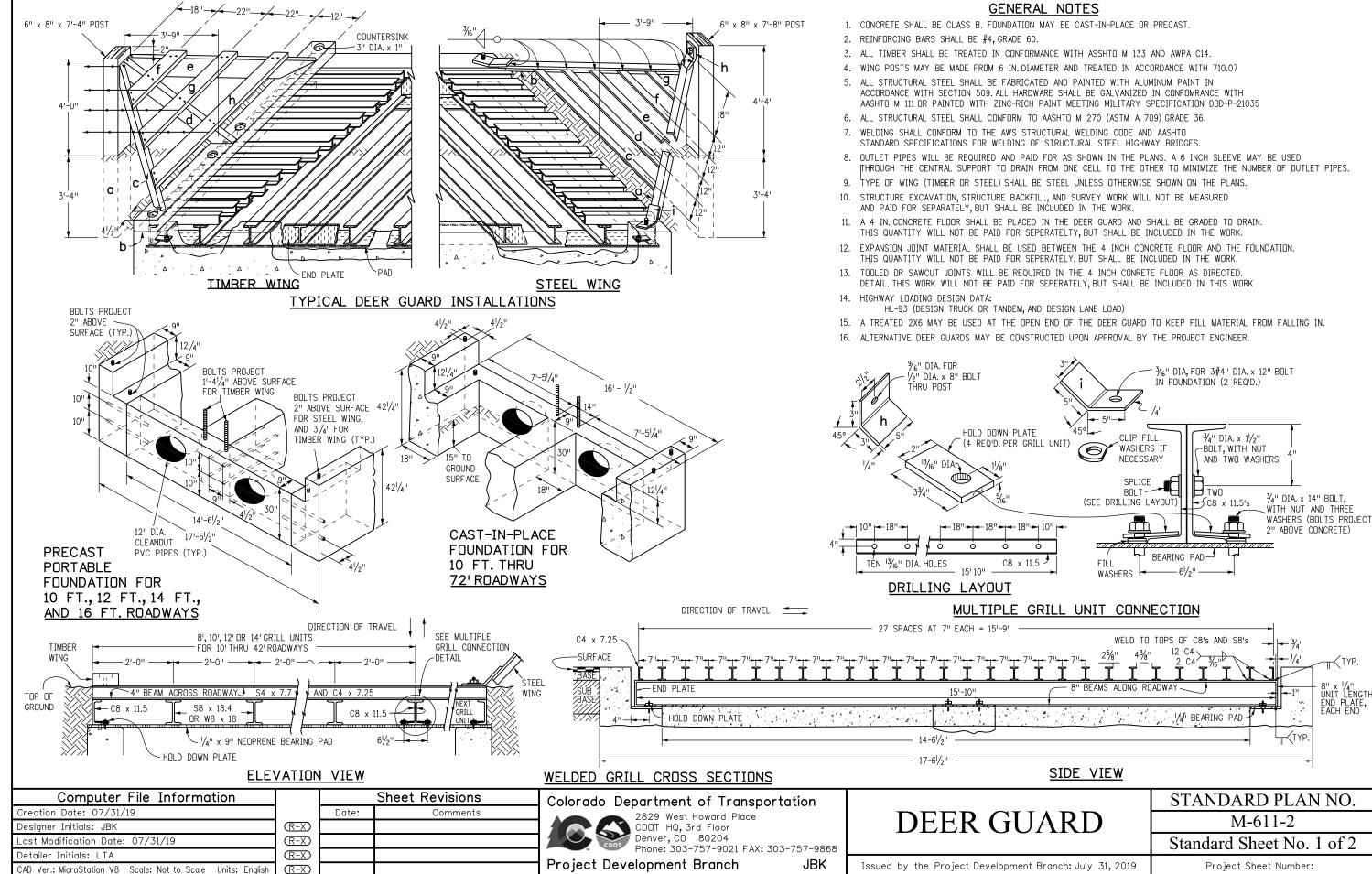
CURB & GUTTER

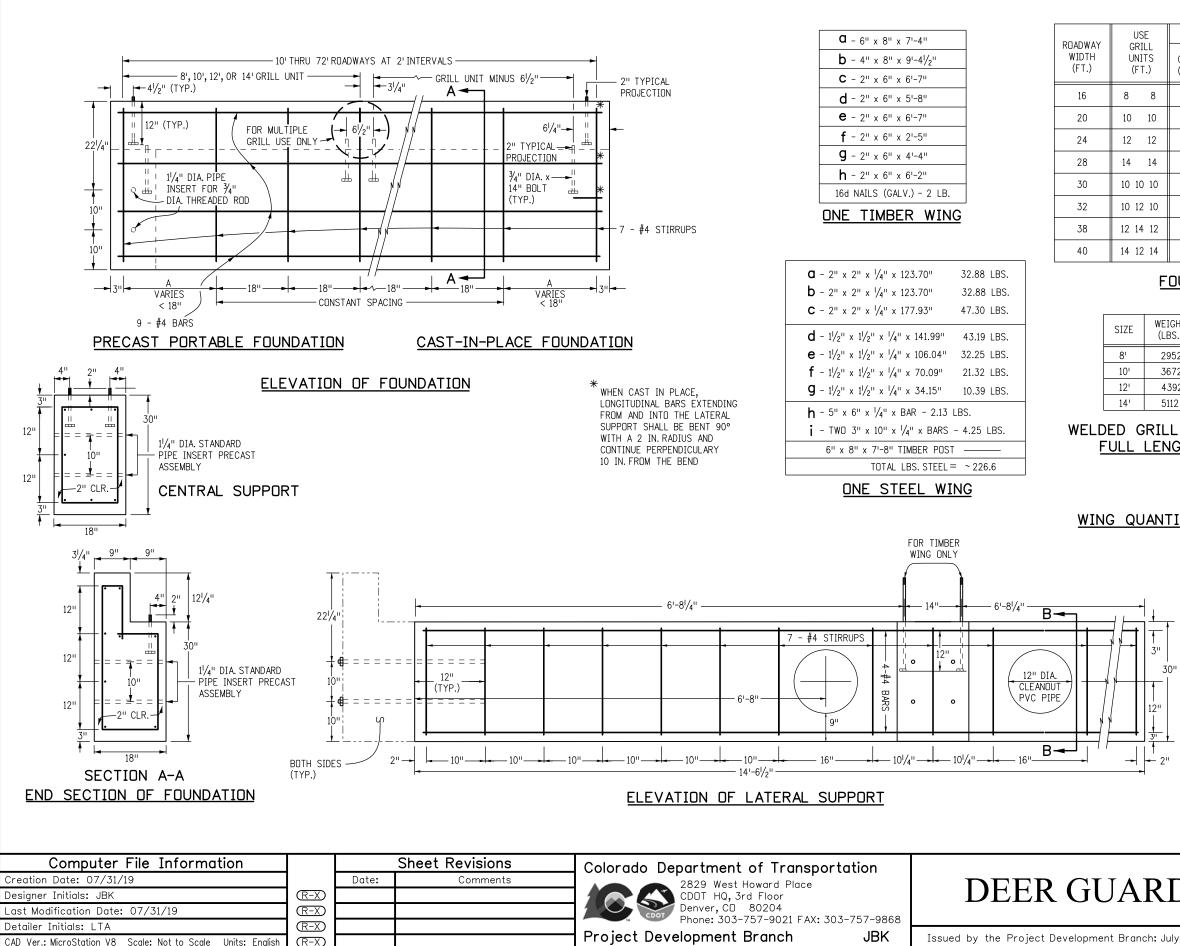
TYPE 3 ISOMETRIC VIEW



a - 6" x 8" x 7'-4"

CLEANOUT 4" PVC PIPE			
LATERAL SUPPORT <u>SECTION B-B</u>			
	STANDARD PLAN NO.		
GUARD	M-611-1		
	Standard Sheet No. 2 of 2		
nent Branch: July 31, 2019	Project Sheet Number:		




WELDED GRILL UNITS

SIZE	WEIGHT (LBS.)
8'	1564
10'	1946
12'	2328
14'	2710

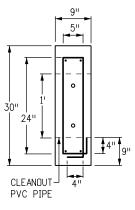
FOUNDATION QUANTITIES

,	USE			PLACE		TOTAL	
	GRILL UNITS (FT.)	CONCRETE (CU. YD.)	REINF. STEEL (LBS.)	CONCRETE (CU. YD.)	REINF. STEEL (LBS.)	A (IN.)	GRILL WEIGHT (LBS.)
	10 12	5.6 6.5			316 364	24 18	1946 2328
	14 8 8	7.4 378 8.1 414		7.4 8.1	399 435	21 24	2170 3128
	8 10 10 10			9.0 9.8	482 518	18 21	3434 3806
	10 12 12 12			10.6 11.5	553 601	24 18	4274 4656
	12 14 14 14			12.3 13.1	636 672	21 24	5038 5420
	10 10 10 10 12 10			13.9 14.8	719 755	18 21	5838 6220
	12 10 12 12 12 12			15.5 16.4	790 838	24 18	6602 6984
	12 14 12 14 12 14 14 14 14			17.3 18.0 18.9	873 909 956	21 24 18	7366 7748 8130

	GRILL UNITS CONCRE		PRECA	ST	CAST-IN-	PLACE		TOTAL
,			CONCRETE (CU. YD.) REINF. STEEL (LBS.)		CONCRETE (CU. YD.)	REINF. STEEL (LBS.)	A (IN.)	GRILL WEIGHT (LBS.)
	8	8	9.4	670	9.4	670	15	5905
	10	10	11.2	821	11.2	821	15	7345
	12	12	13.1	934	13.1	934	15	8785
	14	14	15.0	1059	15.0	1059	15	10224
	10 1	0 10	14.1	1136	14.1	1136	12	10809
	10 1	2 10	16.9	1184	16.9	1184	15	11737
	12 1	4 12	17.3	1353	17.3	1353	12	13628
	14 1	2 14	20.7	1419	20.7	1419	15	14617

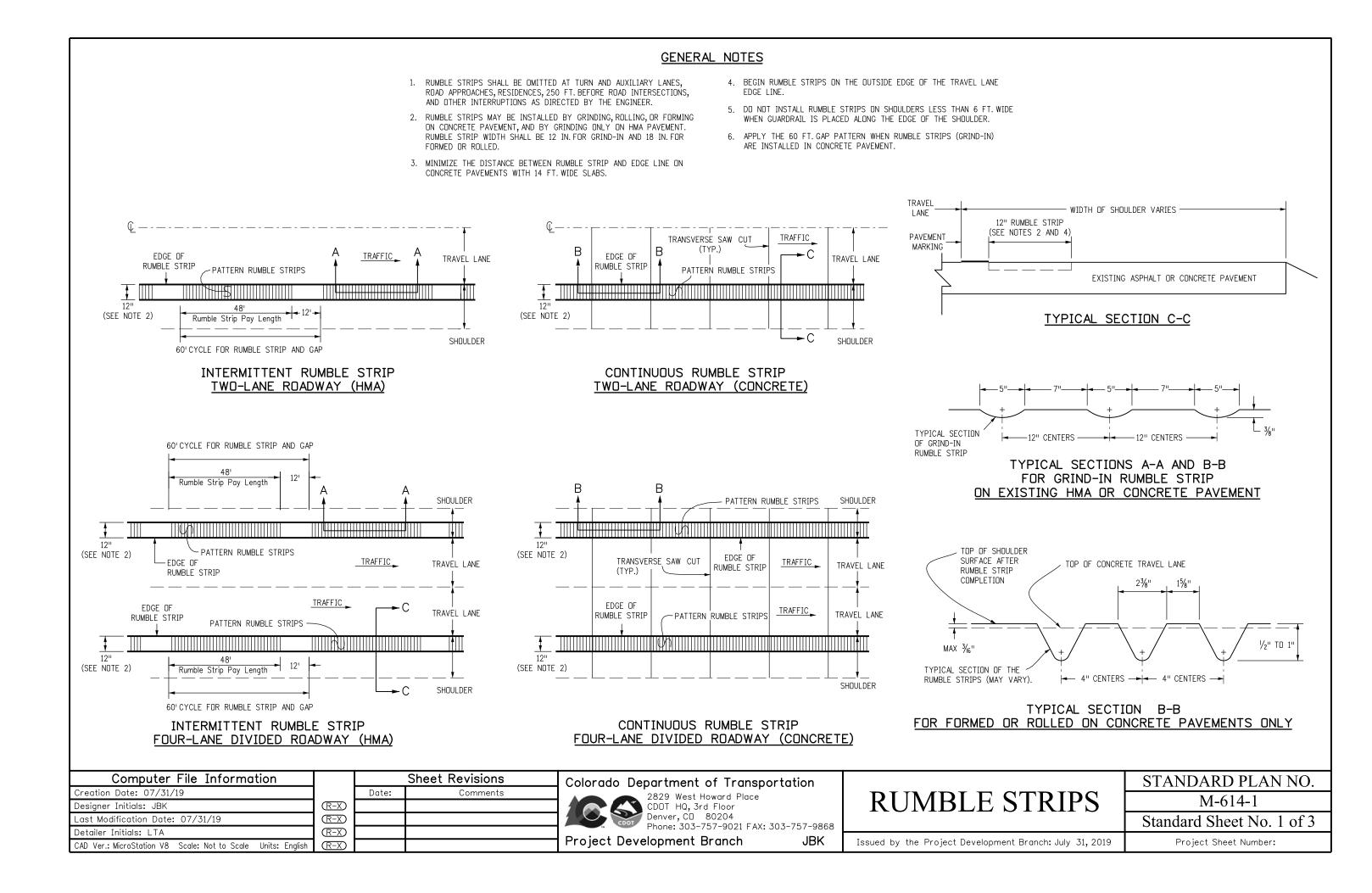
FOUNDATION QUANTITIES

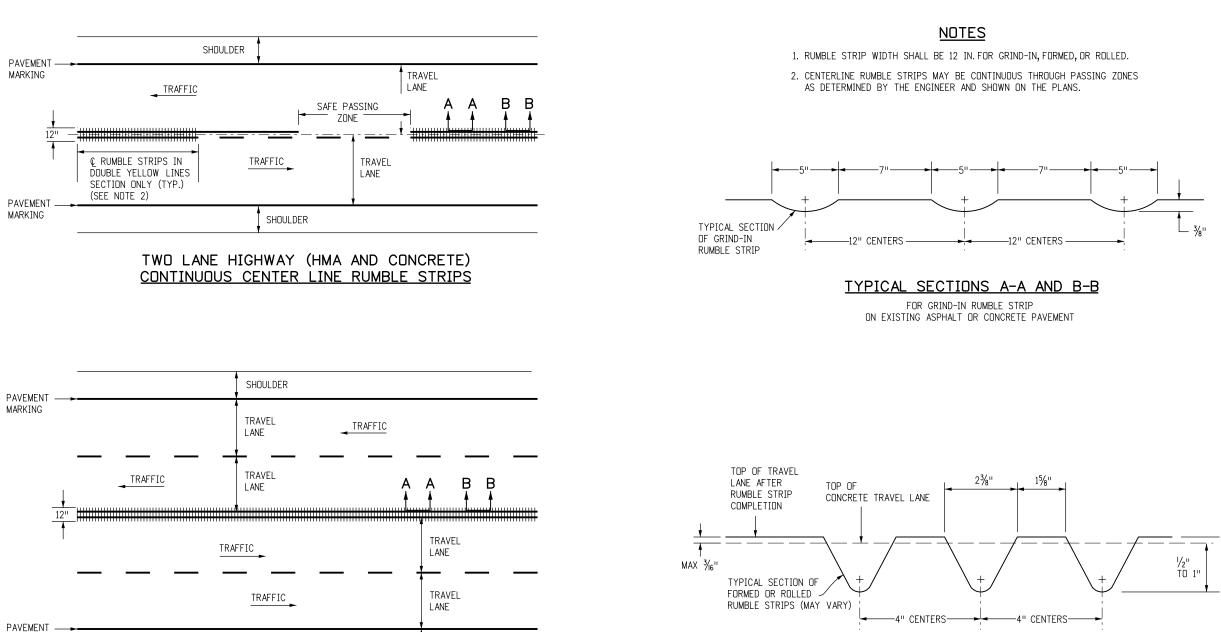
SIZE	WEIGHT (LBS.)
8'	2952
10'	3672
12'	4392
14'	5112


WELDED GRILL UNITS FULL LENGTH

SIZE	WEIGHT (LBS.)
8'	1476
10'	1836
12'	2196
14'	2556

WELDED GRILL UNITS HALF LENGTH


HALF GRILLS SHALL BE BOLTED ON 18 INCH CENTERS MAX. (SEE MULTIPLE GRILL UNIT CONNECTION DETAIL ON SHEET ONE)

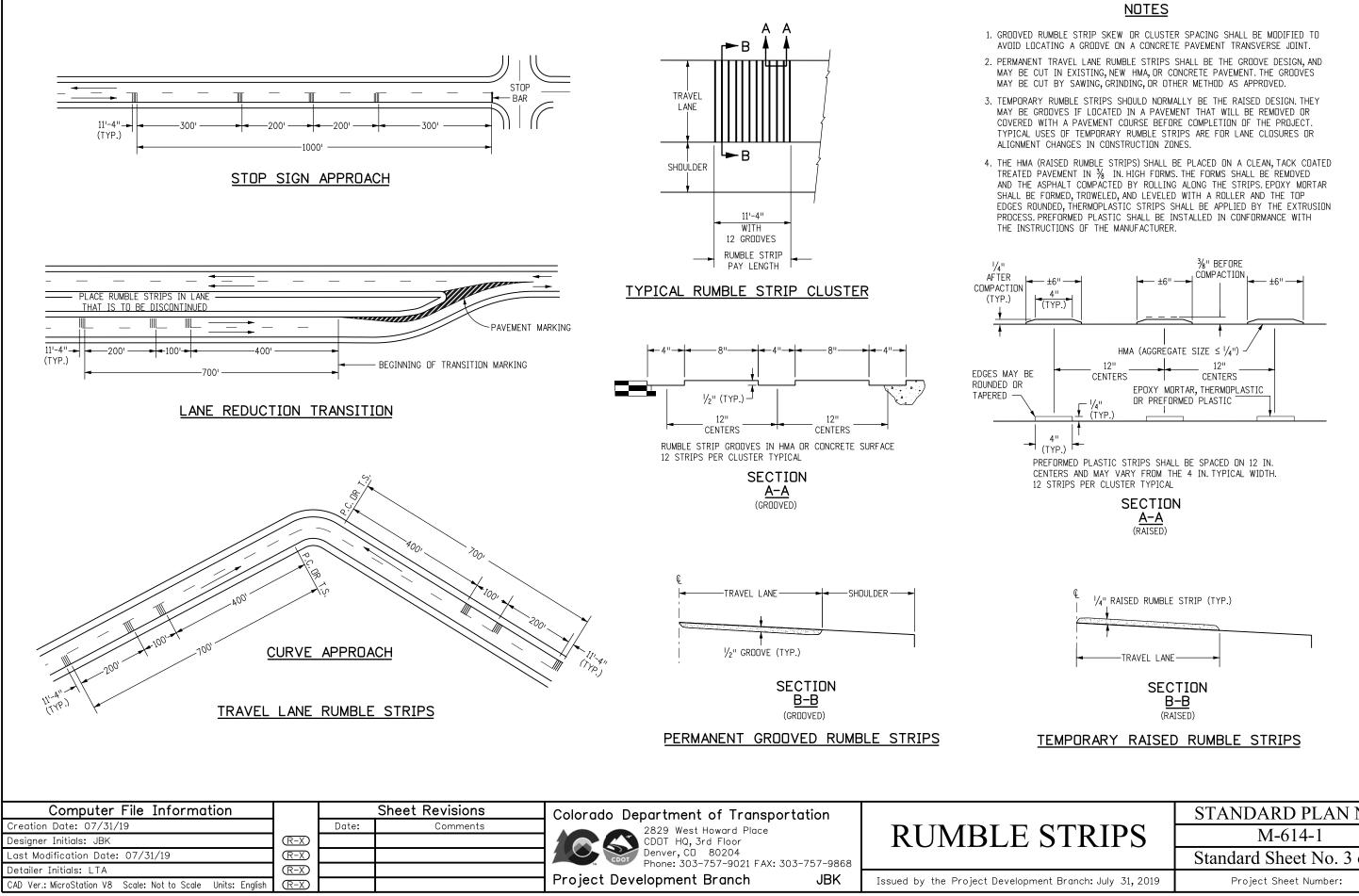

WING QUANTITIES

SECTION B-B LATERAL SUPPORT

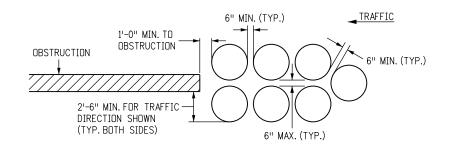
	STANDARD PLAN NO.	
UARD	M-611-2	
	Standard Sheet No. 2 of 2	
ent Branch: July 31, 2019	Project Sheet Number:	

SHOULDER

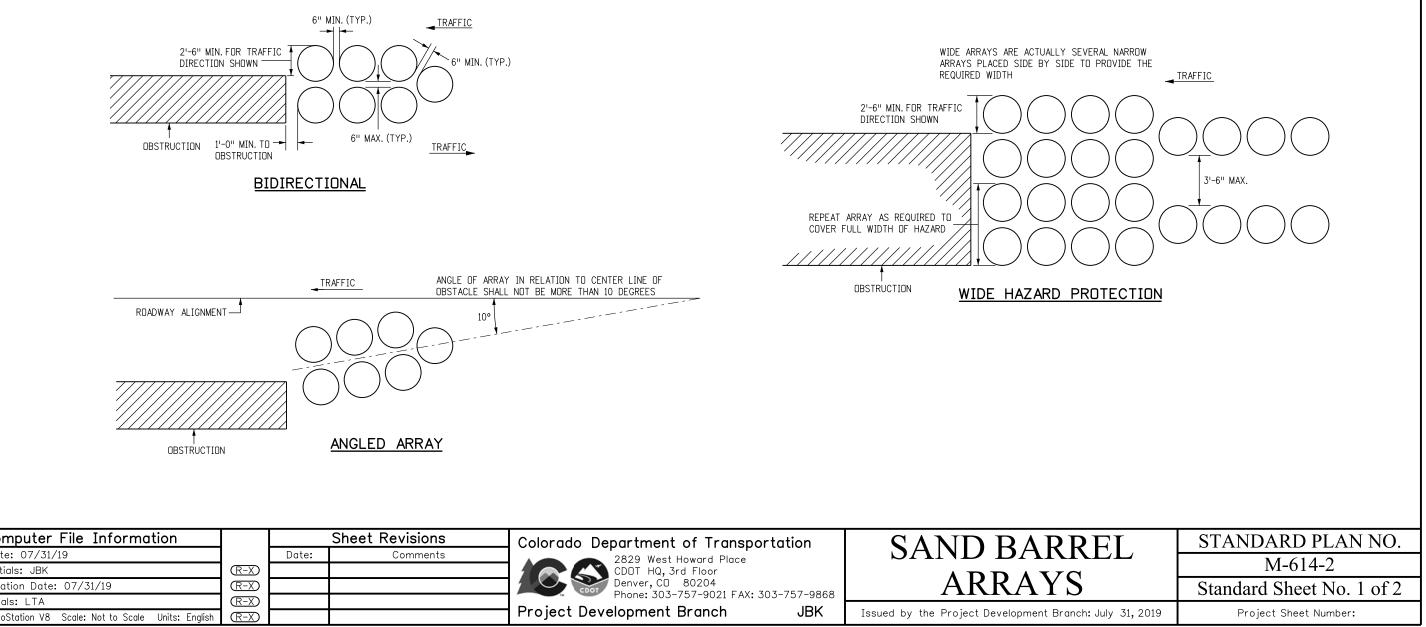
FOUR LANE UNDIVIDED HIGHWAY (HMA AND CONCRETE) CONTINUOUS CENTER LINE RUMBLE STRIPS


MARKING

TYPICAL SECTION B-B FOR FORMED OR ROLLED ON CONCRETE PAVEMENTS ONLY

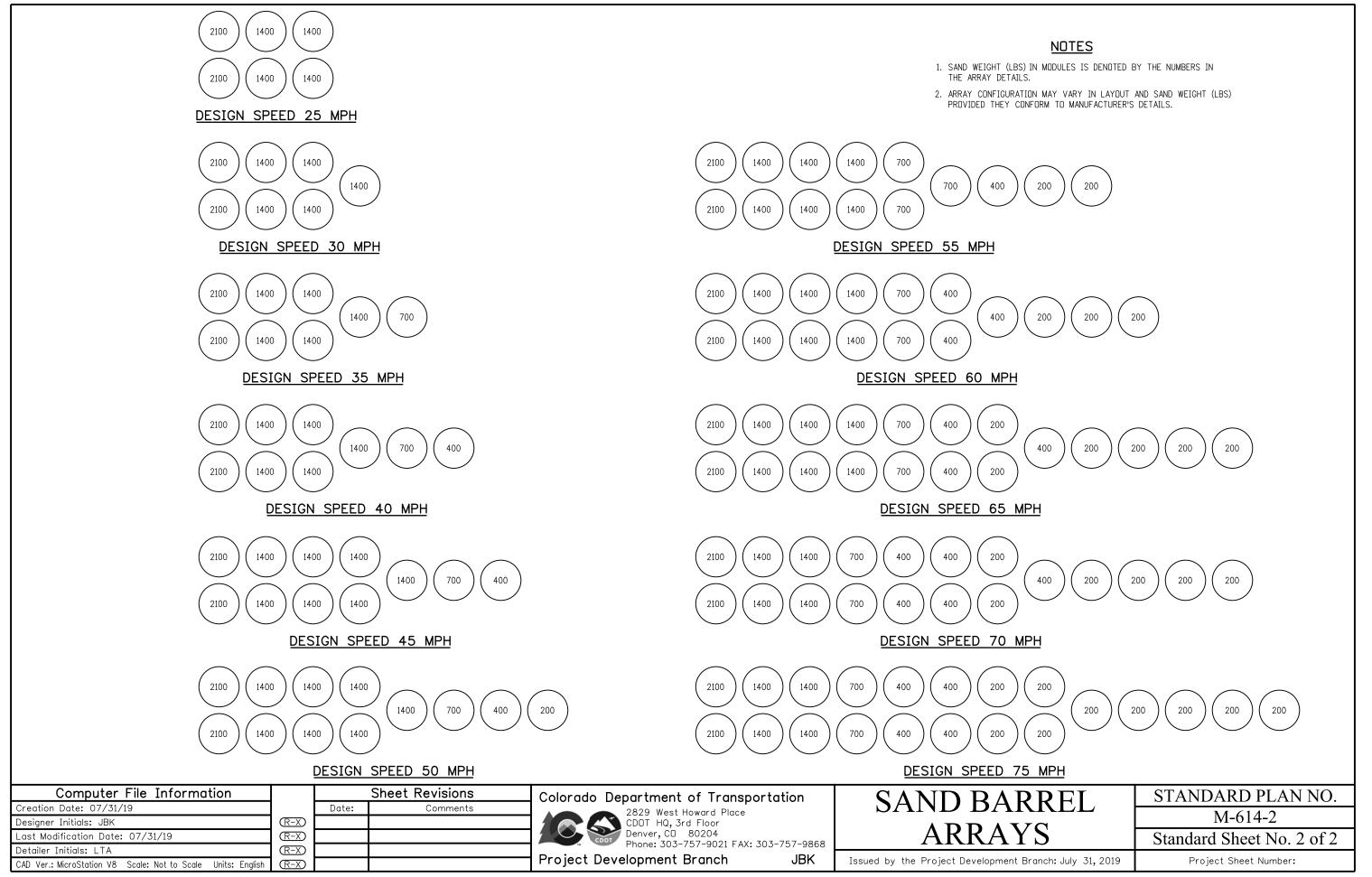

DETAILS FOR CENTER LINE RUMBLE STRIPS

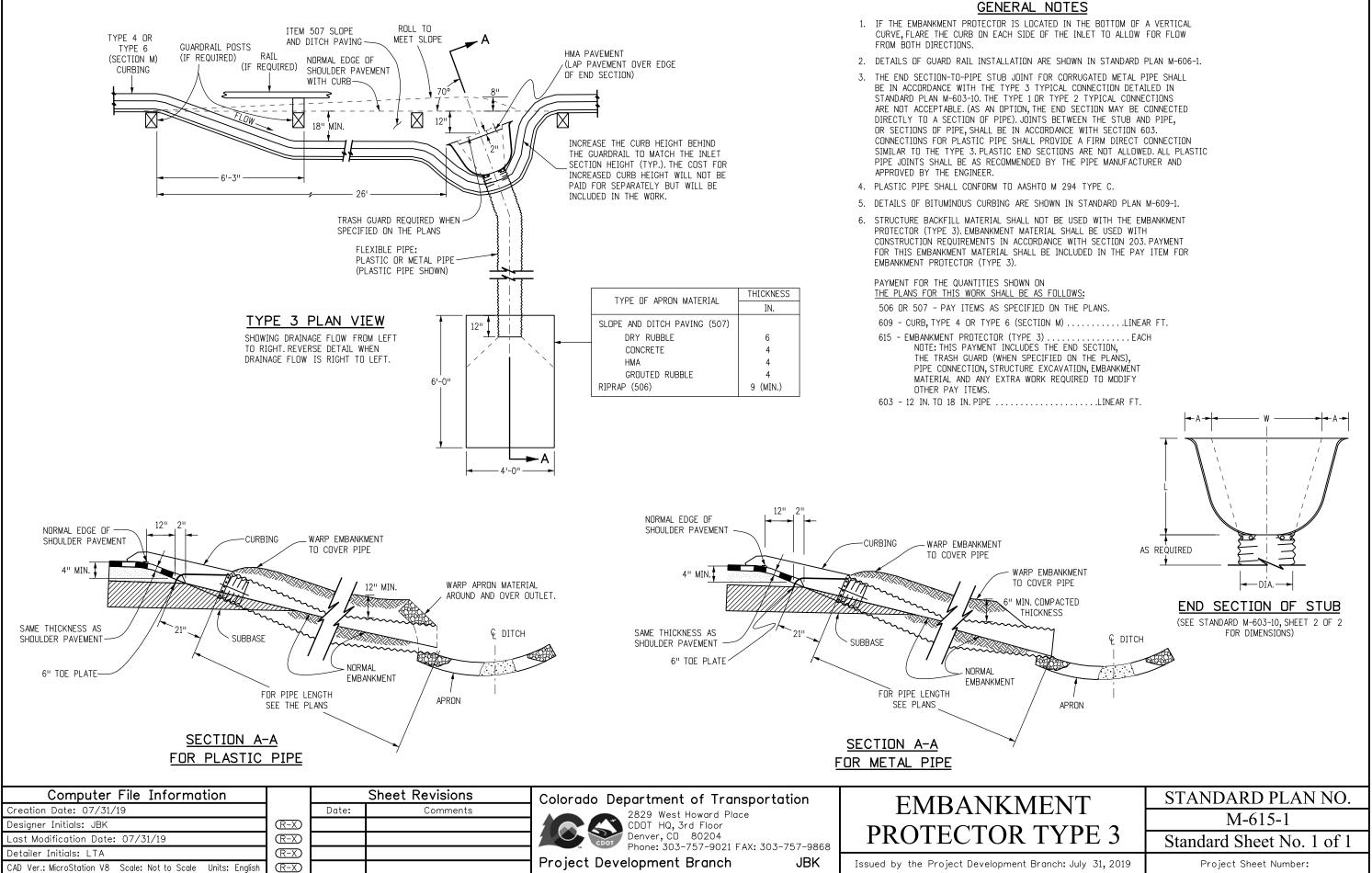
Computer File Information			Sheet Revisions	Colorado Department of Transportation		STANDARD PLAN NO.
Creation Date: 07/31/19		Date:	Comments	2829 West Howard Place		
Designer Initials: JBK	(R-X)				RUMBLE STRIPS	M-614-1
Last Modification Date: 07/31/19	(R-X)			CDUT HQ, 3rd Floor Denver, CD 80204 Phone: 303-757-9021 FAX: 303-757-9868		Standard Sheet No. 2 of 3
Detailer Initials: LTA	(R-X)					
CAD Ver.: MicroStation V8 Scale: Not to Scale Units: English	(R-X)			Project Development Branch JBK	Issued by the Project Development Branch: July 31, 2019	Project Sheet Number:



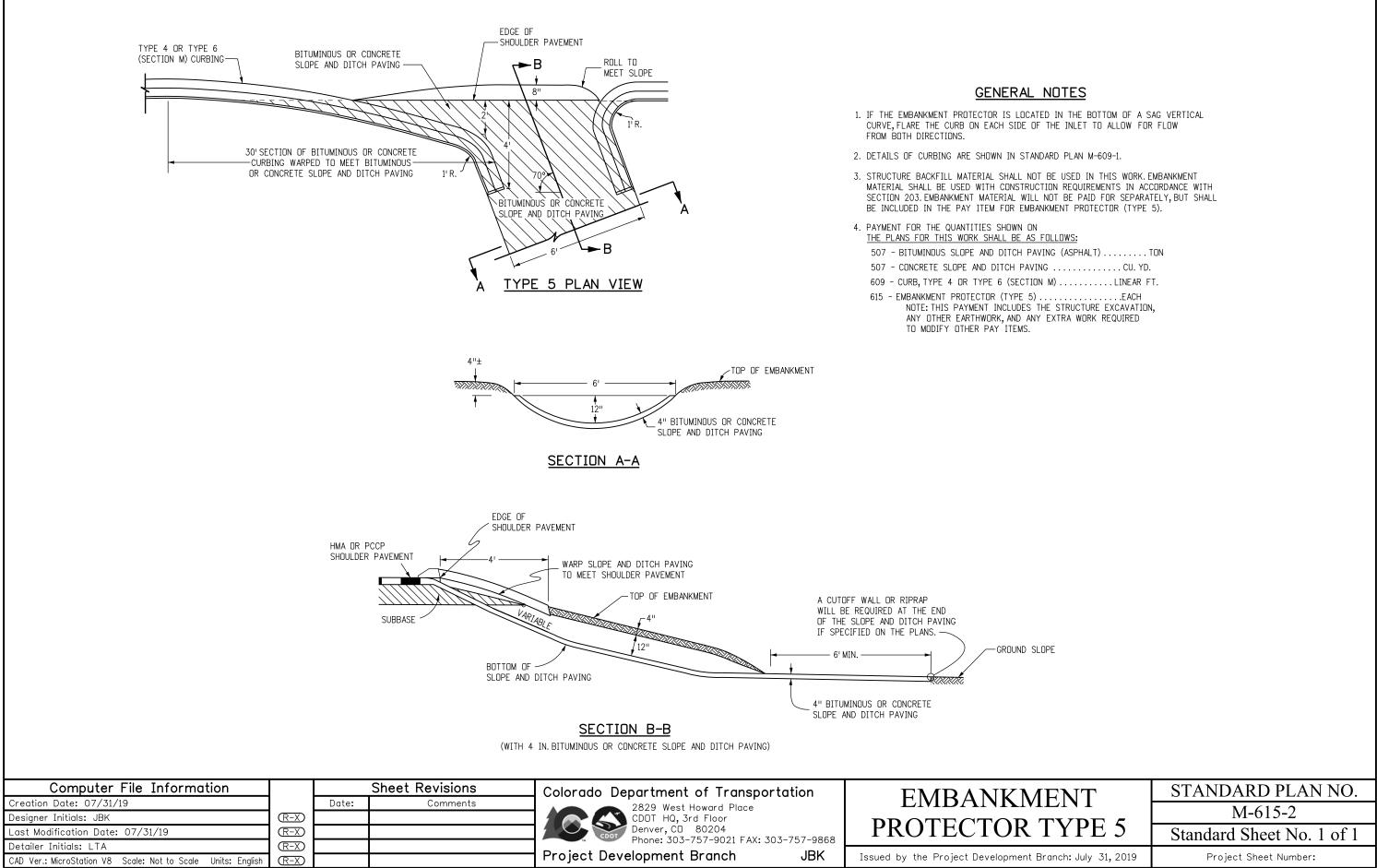
STANDARD PLAN NO.	
M-614-1	
Standard Sheet No. 3 of 3	
Project Sheet Number:	

UNIDIRECTIONAL

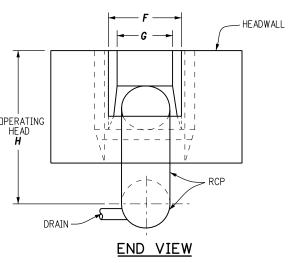

- 1. SAND SHALL BE MIXED WITH 5% SALT BY WEIGHT.
- 2. WHEN ARRAYS ARE PLACED ON STRUCTURES WHERE THE VIBRATIONS FROM MOVING TRAFFIC MAY CAUSE THE MODULES TO SHIFT, STEEL OR FORMED-IN-PLACE HMA HALF-RINGS MAY BE PLACED ON THE DOWNHILL SIDE OF THE MODULES TO PREVENT MOVEMENT. NAILS OR BOLTS MAY BE PLACED THROUGH THE BOTTOM OF THE OUTER CONTAINER INTO THE ROADWAY TO PREVENT MODULE MOVEMENT.
- 3. OFFSET THE ARRAY TO AVOID IMPACT TO THE REAR MODULE FROM WRONG-WAY VEHICLES.
- 4. ARRAYS SHALL NOT BE PLACED ON SLOPES WITH LATERAL OR HORIZONTAL GRADES OF 5% OR GREATER.

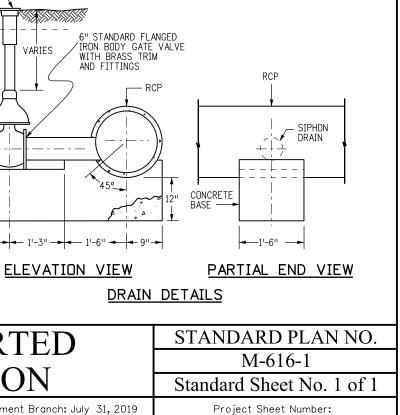


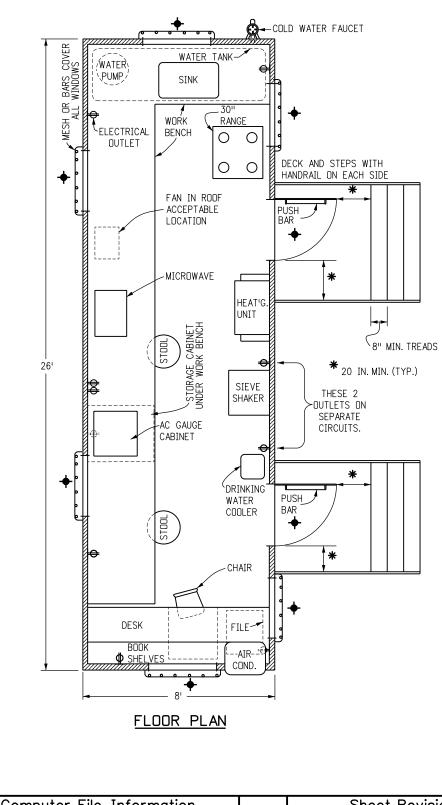
Computer File Information			Sheet Revisions	Colorado Department of Transport	ation	SAND BA
Creation Date: 07/31/19		Date:	Comments	2829 West Howard Place		SAND DAI
Designer Initials: JBK	(R-X)			CDDT HQ, 3rd Floor		
Last Modification Date: 07/31/19	(R-X)			Denver, CD 80204 Phone: 303-757-9021 FAX: 303	-757-0969	AKKA
Detailer Initials: LTA	(R-X)					
CAD Ver.: MicroStation V8 Scale: Not to Scale Units: English	(R-X)			Project Development Branch	JBK	Issued by the Project Development


5. CURBS AND RAISED ISLANDS SHALL BE NO MORE THAN 4 IN. HIGH. 6. FOUNDATION PADS SHALL BE FLAT AND MADE OF 6 IN. THICK CONCRETE OR HMA. 7. INTERMIXING OF DIFFERENT BRANDS OF MODULES ARE ACCEPTABLE, IF THE MODULES ARE FHWA APPROVED, AND THE ARRAY MEETS THE DESIGN CRITERIA.

8. ARRAY CONFIGURATION MAY VARY IN LAYOUT AND SAND WEIGHT (LBS) PROVIDED THEY CONFORM TO MANUFACTURER'S DETAILS.






 −		L = LENGTH GTH OF SIPHON PIPE IS AG											
▲ → ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	LS (PAT LENG	GIN UF SIPHUN PIPE IS AN	JIUAL LENG	IH MEASUR	ED ALUNG	INE PIPE	CENTERLIN	E)	4"			IARD	т
	T c								<u>+</u>			NLET OR	Ī
B B S S	, i č								A BARNER CONTRACT			DUTLET LOWLINE LEVATION	
		/ RCP	(TYPICAL F	FOR INLET	OR OUTLET	ī) <u> </u>		\neg					 OPER/
2'-6"	\searrow \times												HEA HEA
								\rightarrow					
$6" \rightarrow 4 \rightarrow 3" CLEAR \rightarrow 4$	\sim	<u> </u>	MRR.	12" MI	N.			K	///				
ELEVATION VIEW	01		$\overline{\mathbf{v}}$	(Ŧ,	. 162			ABLE.SEE TH	E PLANS FOR GLES 01 AND 02.	<u> </u>
	T.				{		ð,						
				12" OR AS	SHOWN ON	N THE PLAM			BACKSLOPE	OWER ELBOW. PLACE ABOVE THE DITCH	LINE.	1Ľ	
		PIPE DIAMETER			DIMEN					PIPE DIAMETER	CONCRETE	REINFORCED	
				_			_					STEEL	
	{	IN.	A	B	C	E	F	G		IN.	CU. YDS.	LBS.	
	<u> </u>	12	2'-6"	1'-6''	0'-9''	1'-6"	2'-0"	1'-6''		12	0.62	55	
		18	3'-9"	2'-0''	1'-2"	2'-3''	3'-0"	2'-1"		18	1.17	88	
#4 @ 12" CENTERS		24	5'-0"	2'-6''	1'-6''	3'-0"	4'-0''	2'-8"		24	1.92 2.72	203	
E - 3" CLR. (TYP.)		30	6'-3"	3'-0''	1'-11"	3'-9"	5'-0"	3'-3"		36	3.74	203	
		36	7'-6"	3'-6"	2'-3"	4'-6"	6'-0''	3'-10"				ANTITIES	
<u>PLAN VIEW</u>			<u>HE</u>	ADWAL	L DIM	ENSION	<u>15</u>	17		QUANTITI	ES FOR ONE H	HEADWALL	
		HEADWALL									DUCTION FOR	PIPE.	
HINGES 2"	417.0							2" ×	¹ ⁄4" × 6" FLA <u>−</u> ¾" DIA. BI				
	1 ¹ /2''		· Δ ·	- ¾" x 14" WITH NU	BOLT F AND TWO				— 74" DIA. BI				シᠮ᠆ᠯᢁ
	3"	╶┠╌╌╌╴		WASHERS				XII)	∱ 1''	1 ³ ⁄4''		DITCH LINE	
	│ <u>*</u> †			∛4" × 10" PIPE SLEEV	F		₽						Πv
ALL INTERSECTIONS (TYP.)				STD. PIPE)	L	Ľ	FR/	AME 7/8	" INSIDE DIA	Α.	SEE	HE PLANS FOR	
FOR 12", 18" AND 24" PIPES		FRAME					- 11/2"				LENG SIPHC	H OF 6" DIA. N DRAIN	、 八
24" PIPES /	1	HINGE ASSE	MBLY					HIN	NGE			_	
		DID		,	NO	. OF			WETCHT		TO SI	JIT	╶╫╶╎─╟
M/2				BAR A BRACE		CES	DIMENS:		WEIGHT		FLANGE		
M/3			INCHES 12	³ ∕8" × 2		КСН Ј 1 1'-0'	K " 1'-6"	M ' 2'-6''	LBS. 35.1	(ΔΓ	CONCRETE BA PROX.0.3 CU.	SE YDS.)	
			12	78 × 3		1 1'-7'			74.4				
			24	3/8" x 3		1 2'-2			120.5			-	12"
			30	3/8" x 3		2 2'-9			235.9				ÉLE
TRASH GUARD DETAILS			36	3%" x 3		2 3'-4	" 5'-6'	' 7'-10''	317.6				
		 <u>T</u>	RASH			NSION	S AND	QUANT	ITIES				
Computer File Information		Sheet Revisions		Col	orado	Depar	tment	of Trar	nsportat	ion	7		т
Creation Date: 07/31/19	Date:	Comments				282	9 West⊦	loward Pla	ce			NVE	ΚI
	-X) -X)			- 7 (Den Den	⊤ HQ,3r ver,CO	d Floor 80204				SIPI	HO
Detailer Initials: LTA	-X)				iect D			757-9021 F Branch	AX: 303-7		and by the	Project Deve	
CAD Ver.: MicroStation V8 Scale: Not to Scale Units: English 🦳	-X)					evelop					sueu by the	= FIOJECT DEVE	sopment

- 1. SIPHON DRAIN, VALVE AND VALVE BOX, AND TRASH GUARDS ARE TO BE PROVIDED ONLY WHEN CALLED FOR ON THE PLANS.
- 2. CONCRETE SHALL BE CLASS B.
- 3. ALL EXPOSED CONCRETE CORNERS SHALL BE CHAMFERED $\frac{3}{4}$ IN.
- 4. THE LOCATION, SIZE, PIPE MATERIAL AND GOVERNING DIMENSIONS OF SIPHONS WILL BE SHOWN ON THE PLANS.
- 5. TO DETERMINE WALL THICKNESS OR CLASS FOR SIPHON PIPE, SEE APPROPRIATE TABLES ON STANDARD PLAN M-603-2.
- 6. COST OF JOINT SEALERS, GASKETS, FITTINGS AND CONNECTIONS SHALL BE INCLUDED IN THE BID PRICE FOR SIPHON PIPE.
- 7. TRASH GUARDS AND APPURTENANCES SHALL BE GALVANIZED IN CONFORMANCE WITH AASHTO M 111.

_ ADJUSTABLE CAST IRON VALVE BOX AND BASE. (MIN. $5^{1}/_{2}$ " I.D.)

- 1. CLASS 1 FIELD LABORATORIES SHALL CONSIST OF A WEATHERPROOF. INSULATED. TEMPORARY OFFICE TYPE TRAILER, CONSTRUCTED TO THE UNIFORM BUILDING CODES SERIES, WITH FLOOR PLAN AND EQUIPMENT LAYOUT SIMILAR TO THE DRAWING ON THIS SHEET. IT SHALL MEET OR EXCEED THE FOLLOWING REQUIREMENTS.
- 2. DIMENSIONS: 26 FT. LONG x 8 FT. WIDE OUTSIDE, 7 FT.-6 IN. HEIGHT INSIDE.
- 3. WINDOWS: A MINIMUM OF 4, WITH PROVISION FOR CROSS VENTILATION AND LOCKING.
- 4. DOORS: TWO, EQUIPPED WITH DEADBOLT LOCKS, 36 IN. x 80 IN., INSULATED STEEL WITH A SMALL CLEAR GLASS WINDOW. EQUIPPED WITH HORIZONTAL PUSH BAR, HEAVY DUTY DOOR CLOSER, AND PULL HANDLE MOUNTED ABOVE PUSH BAR. EACH DOOR SHALL HAVE A SET OF STEPS WITH DECK. AND HANDRAILS. THE STEPS SHALL BE PLACED SO THE DECK CAN BE ACCESSED EITHER FROM THE SIDE OR FROM THE FRONT. THE DECK, RAILS, AND STEPS SHALL MEET OSHA REQUIREMENTS.
- 5. FLOOR: ADEQUATE INSULATION UNDER THE FLOOR, FLOOR COVERING SHALL BE SKID RESISTANT.
- 6. HEATING: FURNACE, 41,000 BTU, FORCED AIR TYPE.
- 7. AIR CONDITIONING: ONE, 8,300 BTU MINIMUM.
- 8. ELECTRICAL: WORK SHALL CONFORM TO THE NATIONAL ELECTRICAL CODE FOR 110/220 VOLTS, 60 HZ, APPLICATIONS AND PROVIDE RELIABLE UNIFORM POWER TO PROPERLY OPERATE ALL FIELD LABORATORY EQUIPMENT. ALL TRAILERS CONSTRUCTED AFTER JULY 1, 2006 SHALL HAVE AN APPROPRIATELY SIZED CIRCUIT BREAKER TO HANDLE THE LOAD OF ALL LABORATORY AND ENVIRONMENTAL EQUIPMENT OPERATING AT ONE TIME. PROVIDE A SEPARATE ELECTRICAL CIRCUIT TO SUPPLY POWER TO THE ASPHALT CONTENT GAUGE AND THE OUTLET IN THE STORAGE CABINET UNDER THE WORK BENCH.
- 9. LIGHTING: ADEQUATE FLUORESCENT LIGHTING DIRECTLY OVER ALL WORK BENCH AND DESK AREAS. THERE SHALL BE ONE 110 VOLT EXTERIOR PORCH LIGHT FIXTURE WITHIN 2 FT. OF EACH EXTERIOR DOOR.
- 10. VENT FAN: ONE, GENERAL VENTILATION WITH 500 CFM CAPACITY AND TWO-SPEED SWITCH. MOUNTED IN THE ROOF OR AT TOP OF WALL NEAR THE RANGE. THE THREE FANS AND TWO WORK BENCH GRILLES PREVIOUSLY REQUIRED MAY BE RETAINED IN THOSE CLASS 1 FIELD LABORATORIES PURCHASED BEFORE THE DATE OF THIS STANDARD.
- 11. FURNITURE: ONE, TWO-DRAWER, LEGAL SIZE FILE CABINET BUILT INTO DESK AREA. DESK SHALL BE BUILT-IN WITH ONE CENTER DRAWER. ONE DESK CHAIR WITH ROLLERS. TWO STOOLS FOR WORK AREA WITH HEIGHT COMPATIBLE WITH WORK BENCHES. ALL CHAIRS SHALL BE ERGONOMICALLY BUILT
- 12. BOOK SHELVES; MINIMUM 10 LINEAR FT. LONG AND 10 IN. DEEP, BUILT OVER DESK AREA. TOP SHELF SHALL BE AT LEAST 14 IN. BELOW CEILING.
- 13. WORK BENCHES: 30 IN. WIDE x 36 IN. HIGH WITH A DURABLE WORKING SURFACE SUCH AS EDRMICA
- 14. STORAGE CABINETS: TWO, ONE BUILT-IN UNDER THE WORK BENCH WITH A 28 IN. x 28 IN. LOCK EQUIPPED DOOR, WITH ELECTRICAL OUTLET INSIDE. ONE REMOVABLE, WITH OPEN BOTTOM, LOCK EQUIPPED TO SECURE CABINET TO TOP OF WORK BENCH, LARGE ENOUGH TO COVER A 22 IN. x 18 IN. x 18 IN. HIGH ASPHALT CONTENT (AC) GAUGE.
- 15. SINK: ONE, SINGLE TUB, STAINLESS STEEL, 25 IN. x 22 IN. x 6 $\frac{1}{2}$ IN. EQUIPPED WITH SPRAY NOZZLE, ONE COMBINATION (MIXING) HOT AND COLD WATER FAUCET AND ONE SINGLE COLD WATER FAUCET. ALL FAUCETS SHALL BE EQUIPPED WITH STANDARD HOSE THREAD SPIGOTS. DRAINS SHALL HAVE NO TRAP.
- 16. DRINKING WATER SUPPLY: DRINKING WATER DISPENSED FROM AN ACCEPTABLE WATER COOLING DEVICE.
- 17. TESTING WATER SUPPLY: ONE HUNDRED GALLON WATER CAPACITY, VENTED, WITH MEANS OF DETERMINING WATER LEVEL, WITH ONE PRESSURE PUMP, MINIMUM 30 PSI DELIVERY PRESSURE. ONE COLD WATER FAUCET WITH BACK FLOW PREVENTER LOCATED OUTSIDE OF TRAILER. WATER PIPES SHALL BE LOCATED SO THEY ARE UNEXPOSED AND PROTECTED FROM DAMAGE. WATER SHALL BE SUPPLIED BY THE CONTRACTOR. USE POTABLE WATER ONLY.

A. A SAFETY SHIELD ON DRIVE BELT. B. AN ADJUSTABLE TIMED - ON/OFF SWITCH LOCATED NEAR THE SHAKER. C. ADAPTERS TO HANDLE EITHER 8 IN. OR 12 IN. SIEVES.

THE SHAKER SHALL BE CAPABLE OF SHAKING A FULL SET OF 8 IN. SIEVES AS WELL AS 12 IN. SIEVES, AND SHALL BE MOUNTED 24 IN. ABOVE THE FLOOR IN A SOUND PROOF, INSULATED ENCLOSURE HAVING HINGED OPENINGS.

THE SIEVE SHAKER SHALL BE A RO-TAP. ENDOCOTT FROM SOILTEST. SS-12R FROM GILSON OR APPROVED EQUAL. THE SHAKER SHALL BE SECURELY BOLTED TO A RIGID AND STURDY SURFACE.

A. POWER: 115 VAC B. MODEL: TOP LOADING C. CAPACITY: MINIMUM OF 35 LBS. D. READABILITY AND SENSITIVITY: 0.0005 LB. E. ACCURACY: 0.001 LB. OR 0.1%

F. DISPLAY PANEL SHALL BE EQUIPPED WITH THE FOLLOWING: LED DISPLAY ON/OFF KEY, PRINT KEY, RE-ZERO KEY, WEIGHING MODE KEY, SAMPLE % KEY, SERIAL RS-232C I/O PORT, AND A CALIBRATION SWITCH. G. WEIGHING MODES: GRAMS, POUNDS, AND PERCENT OF TARGET MASS (WEIGHT). H. WEIGHING SURFACE DIMENSION: MINIMUM OF 9 IN. WIDE BY 12 IN. DEEP. I. BASE: SHALL HAVE ADJUSTABLE LEVELING FEET AND A LEVEL VIAL ATTACHED. THE BALANCE SHALL BE EQUIPPED WITH AN UNDERHOOK WEIGHING DEVICE AND ONE COPY OF THE OWNER'S MANUAL.

Computer File Information			Sheet Revisions	Colorado Department of Transporta	tion	
Creation Date: 07/31/19		Date:	Comments	2829 West Howard Place		FIELD LABOR
Designer Initials: JBK	(R-X)			CDDT HQ, 3rd Floor		
Last Modification Date: 07/31/19	(R-X)			Denver, CD 80204 Phone: 303-757-9021 FAX: 303-7	757_0868	CLASS
Detailer Initials: LTA	(R-X)					
CAD Ver.: MicroStation V8 Scale: Not to Scale Units: English	(R-X)			Project Development Branch	JBK	Issued by the Project Development

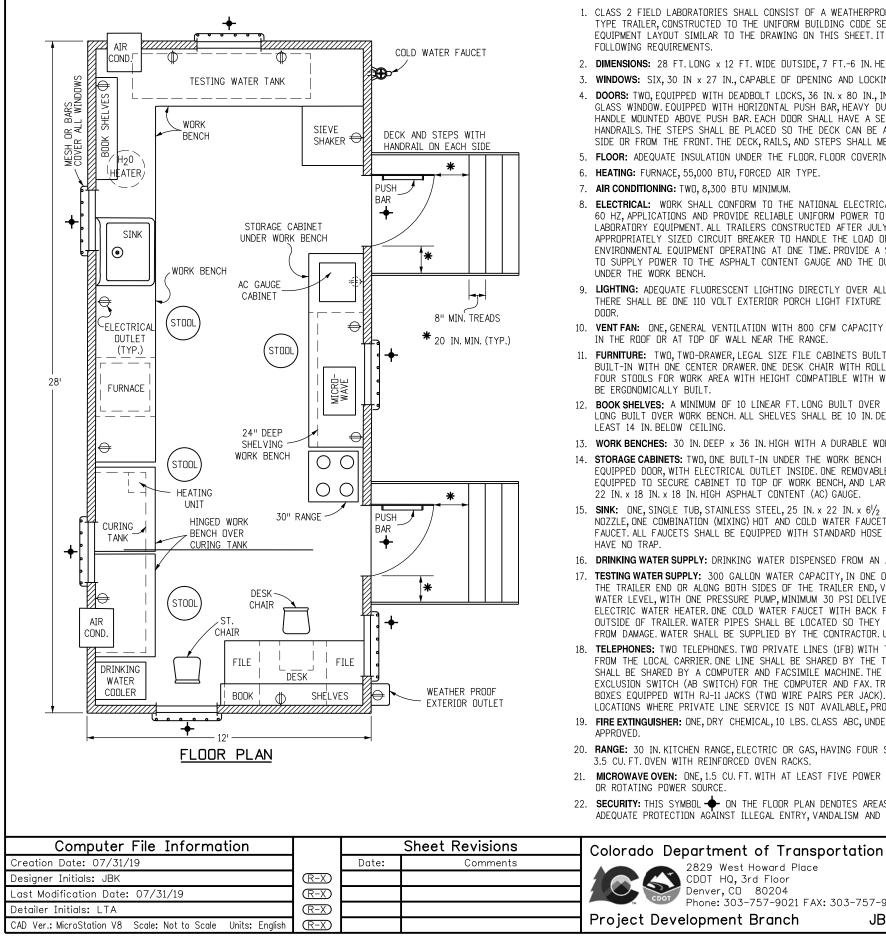
18. TELEPHONES: TWO TELEPHONES. TWO PRIVATE LINES (1FB) WITH TOUCH TONE SERVICE (IF AVAILABLE) FROM THE LOCAL CARRIER. ONE LINE SHALL BE SHARED BY THE TWO TELEPHONES. THE SECOND LINE SHALL BE SHARED BY A COMPUTER AND A FACSIMILE MACHINE. THE CONTRACTOR SHALL PROVIDE AN EXCLUSION SWITCH (AB SWITCH) FOR THE COMPUTER AND FAX. TRAILER WIRING SHALL INCLUDE FOUR BOXES EQUIPPED WITH RJ-11 JACKS (TWO WIRE PAIRS PER JACK). TWO AT EACH END OF THE TRAILER. LOCATIONS WHERE PRIVATE LINE SERVICE IS NOT AVAILABLE. PROVIDE ONLY ONE TELEPHONE LINE.

19. FIRE EXTINGUISHER: DNE, DRY CHEMICAL, 10 LBS. CLASS ABC, UNDERWRITERS LABORATORIES, INC. APPROVED.

20. SIEVE SHAKER: ONE MOTOR DRIVEN STANDARD PORTABLE SHAKER INCLUDING:

21. RANGE: 30 IN. KITCHEN RANGE, ELECTRIC OR GAS, HAVING FOUR SURFACE BURNERS AND A 3.5 CU. FT. DVEN WITH REINFORCED OVEN RACKS.

22. FORCED AIR OVEN: IF A FORCED AIR OVEN IS REQUIRED, THE LOCATION WHERE THE OVEN IS PLACED SHALL HAVE A MINIMUM 3 IN. DIAMETER PIPE INSTALLED AND VENTED TO THE OUTSIDE. (SEE M-620-2, SHEET 2 OF 2, GENERAL NOTE 27 FOR MORE REQUIREMENTS)


23. MICROWAVE OVEN: ONE, 1.5 CU. FT. WITH AT LEAST FIVE POWER LEVELS AND A REVOLVING FLOOR OR ROTATING POWER SOURCE.

24. ELECTRONIC BALANCE: THE BALANCE SHALL COMPLY WITH AASHTO M 231 FOR GENERAL PURPOSE, CLASS G2 BALANCES, AND THE FOLLOWING:

25. SECURITY: THIS SYMBOL $- \bullet$ on the Floor plan denotes areas on the TRAILER WHERE ADEQUATE PROTECTION AGAINST ILLEGAL ENTRY, VANDALISM AND THEFT SHALL BE PROVIDED.

26. THE REQUIREMENTS LISTED HEREIN ARE INTENDED TO MEET THE NEEDS OF THE CDOT TESTING PERSONNEL CONCERNING TESTING FACILITIES. THERE IS NO INTENT TO SPECIFY ANY STRUCTURAL PORTIONS OF THE LABORATORY EXCEPT AS NEEDED TO SATISFACTORILY PERFORM THE REQUIRED TESTING OF MATERIALS. THE CONTRACTOR MAY SUBSTITUTE CLASS 2 FIELD LABORATORY FOR CLASS 1 FIELD LABORATORY.

RATORY	STANDARD PLAN NO.			
S 1	M-620-1			
	Standard Sheet No. 1 of 1			
ent Branch: July 31, 2019	Project Sheet Number:			

	<u>GENERAL NUT</u>	<u>ES</u>
1.	CLASS 2 FIELD LABORATORIES SHALL CONSIST OF A WEATHERPROOF, INSULATED, TEMPORARY OFFICE TYPE TRAILER, CONSTRUCTED TO THE UNIFORM BUILDING CODE SERIES, WITH FLOOR PLAN AND EQUIPMENT LAYOUT SIMILAR TO THE DRAWING ON THIS SHEET. IT SHALL MEET OR EXCEED THE FOLLOWING REQUIREMENTS.	23.
2.	DIMENSIONS: 28 FT. LONG x 12 FT. WIDE OUTSIDE, 7 FT6 IN. HEIGHT INSIDE.	
3.	WINDOWS: SIX, 30 IN x 27 IN., CAPABLE OF OPENING AND LOCKING.	
	DOORS: TWO, EQUIPPED WITH DEADBOLT LOCKS, 36 IN. × 80 IN., INSULATED STEEL WITH SMALL CLEAR GLASS WINDOW. EQUIPPED WITH HORIZONTAL PUSH BAR, HEAVY DUTY DOOR CLOSER, AND PULL HANDLE MOUNTED ABOVE PUSH BAR. EACH DOOR SHALL HAVE A SET OF STEPS WITH DECK, AND HANDRAILS. THE STEPS SHALL BE PLACED SO THE DECK CAN BE ACCESSED EITHER FROM THE SIDE OR FROM THE FRONT. THE DECK, RAILS, AND STEPS SHALL MEET OSHA REQUIREMENTS.	24.
5.	FLOOR: ADEQUATE INSULATION UNDER THE FLOOR.FLOOR COVERING SHALL BE SKID RESISTANT.	21.
6.	HEATING: FURNACE, 55,000 BTU, FORCED AIR TYPE.	
7.	AIR CONDITIONING: TWO, 8,300 BTU MINIMUM.	
8.	ELECTRICAL: WORK SHALL CONFORM TO THE NATIONAL ELECTRICAL CODE FOR 110/220 VOLTS, 60 HZ, APPLICATIONS AND PROVIDE RELIABLE UNIFORM POWER TO PROPERLY OPERATE ALL FIELD LABORATORY EQUIPMENT. ALL TRAILERS CONSTRUCTED AFTER JULY 1, 2006 SHALL HAVE AN APPROPRIATELY SIZED CIRCUIT BREAKER TO HANDLE THE LOAD OF ALL LABORATORY AND ENVIRONMENTAL EQUIPMENT OPERATING AT ONE TIME. PROVIDE A SEPARATE ELECTRICAL CIRCUIT TO SUPPLY POWER TO THE ASPHALT CONTENT GAUGE AND THE DUTLET IN THE STORAGE CABINET UNDER THE WORK BENCH.	
9.	LIGHTING: ADEQUATE FLUORESCENT LIGHTING DIRECTLY OVER ALL WORK BENCH AND DESK AREAS. THERE SHALL BE ONE 110 VOLT EXTERIOR PORCH LIGHT FIXTURE WITHIN 2 FT. OF EACH EXTERIOR DOOR.	
10.	VENT FAN: ONE, GENERAL VENTILATION WITH 800 CFM CAPACITY AND 2 SPEED SWITCH. MOUNTED IN THE ROOF OR AT TOP OF WALL NEAR THE RANGE.	25.
11.	FURNITURE: TWO, TWO-DRAWER, LEGAL SIZE FILE CABINETS BUILT INTO DESK AREA. DESK SHALL BE BUILT-IN WITH ONE CENTER DRAWER. ONE DESK CHAIR WITH ROLLERS, ONE STRAIGHT CHAIR, AND FOUR STOOLS FOR WORK AREA WITH HEIGHT COMPATIBLE WITH WORK BENCHES. ALL CHAIRS SHALL BE ERGONOMICALLY BUILT.	
12.	BOOK SHELVES: A MINIMUM OF 10 LINEAR FT. LONG BUILT OVER DESK AREA AND 8 LINEAR FT. LONG BUILT OVER WORK BENCH. ALL SHELVES SHALL BE 10 IN. DEEP. TOP SHELF SHALL BE AT LEAST 14 IN. BELOW CEILING.	
13.	WORK BENCHES: 30 IN. DEEP x 36 IN. HIGH WITH A DURABLE WORKING SURFACE SUCH AS FORMICA.	
14.	STORAGE CABINETS: TWO, ONE BUILT-IN UNDER THE WORK BENCH WITH A 28 IN. × 28 IN.LOCK EQUIPPED DOOR, WITH ELECTRICAL OUTLET INSIDE. ONE REMOVABLE, WITH OPEN BOTTOM, LOCK EQUIPPED TO SECURE CABINET TO TOP OF WORK BENCH, AND LARGE ENDUGH TO COVER A 22 IN. × 18 IN. × 18 IN. HIGH ASPHALT CONTENT (AC) GAUGE.	
15.	SINK: ONE, SINGLE TUB, STAINLESS STEEL, 25 IN. x 22 IN. x $6I_2'$ IN. EQUIPPED WITH SPRAY NOZZLE, ONE COMBINATION (MIXING) HOT AND COLD WATER FAUCET AND ONE SINGLE COLD WATER FAUCET. ALL FAUCETS SHALL BE EQUIPPED WITH STANDARD HOSE THREAD SPIGOTS. DRAIN SHALL HAVE NO TRAP.	
16.	DRINKING WATER SUPPLY: DRINKING WATER DISPENSED FROM AN ACCEPTABLE WATER COOLING DEVICE.	
17.	TESTING WATER SUPPLY: 300 GALLON WATER CAPACITY, IN ONE OR MORE TANKS LOCATED ALONG THE TRAILER END OR ALONG BOTH SIDES OF THE TRAILER END, VENTED WITH MEANS OF DETERMINING WATER LEVEL, WITH ONE PRESSURE PUMP, MINIMUM 30 PSI DELIVERY PRESSURE. TEN GALLON ELECTRIC WATER HEATER. ONE COLD WATER FAUCET WITH BACK FLOW PREVENTER LOCATED ON OUTSIDE OF TRAILER. WATER PIPES SHALL BE LOCATED SO THEY ARE UNEXPOSED AND PROTECTED FROM DAMAGE. WATER SHALL BE SUPPLIED BY THE CONTRACTOR. USE POTABLE WATER ONLY.	
	TELEPHONES: TWO TELEPHONES. TWO PRIVATE LINES (1FB) WITH TOUCH TONE SERVICE (IF AVAILABLE) FROM THE LOCAL CARRIER. ONE LINE SHALL BE SHARED BY THE TWO TELEPHONES. THE SECOND LINE SHALL BE SHARED BY A COMPUTER AND FACSIMILE MACHINE. THE CONTRACTOR SHALL PROVIDE AN EXCLUSION SWITCH (AB SWITCH) FOR THE COMPUTER AND FAX. TRAILER WIRING SHALL INCLUDE FOUR BOXES EQUIPPED WITH RJ-11 JACKS (TWO WIRE PAIRS PER JACK). TWO AT EACH END OF THE TRAILER. LOCATIONS WHERE PRIVATE LINE SERVICE IS NOT AVAILABLE, PROVIDE ONLY ONE LINE.	
19.	FIRE EXTINGUISHER: ONE, DRY CHEMICAL, 10 LBS. CLASS ABC, UNDERWRITERS LABORATORIES, INC. APPROVED.	26.
00	DANCE, 70 IN KITCHEN DANCE ELECTRIC OD CAS HAVING FOUR CUREACE DURNERS AND A	

- 20. RANGE: 30 IN. KITCHEN RANGE, ELECTRIC OR GAS, HAVING FOUR SURFACE BURNERS AND A 3.5 CU.FT. OVEN WITH REINFORCED OVEN RACKS.
- 21. MICROWAVE OVEN: ONE, 1.5 CU. FT. WITH AT LEAST FIVE POWER LEVELS AND A REVOLVING FLOOR OR ROTATING POWER SOURCE.
- 22. SECURITY: THIS SYMBOL 🔶 ON THE FLOOR PLAN DENOTES AREAS ON THE TRAILER WHERE ADEQUATE PROTECTION AGAINST ILLEGAL ENTRY, VANDALISM AND THEFT SHALL BE PROVIDED.

Phone: 303-757-9021 FAX: 303-757-9868

JBK

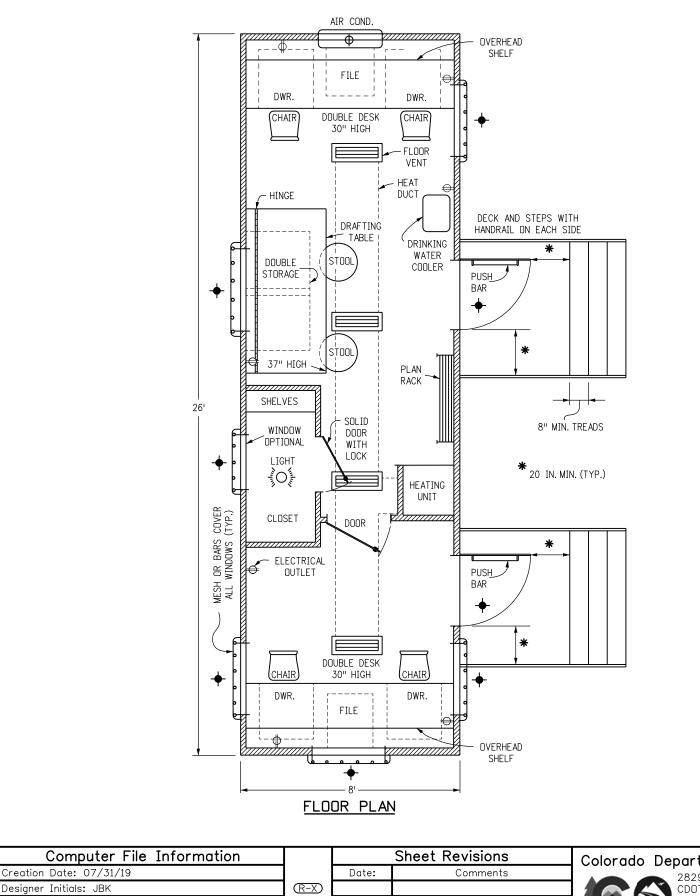
2829 West Howard Place

CDDT HQ, 3rd Floor

Denver, CD 80204

FIELD LABORATORY	STANDARD PLAN NO.
	M-620-2
CLASS 2	Standard Sheet No. 1 of 2
Issued by the Project Development Branch: July 31, 2019	Project Sheet Number:

SIEVE SHAKER: ONE MOTOR DRIVEN STANDARD PORTABLE SHAKER INCLUDING: A. A SAFETY SHIELD ON DRIVE BELT. B. AN ADJUSTABLE TIMED - ON/OFF SWITCH LOCATED NEAR THE SHAKER. C. ADAPTERS TO HANDLE EITHER 8 IN. OR 12 IN. SIEVES. THE SHAKER SHALL BE CAPABLE OF SHAKING A FULL SET OF 8 IN. SIEVES AS WELL AS 12 IN. SIEVES, AND SHALL BE MOUNTED 24 IN. ABOVE THE FLOOR IN A SOUND PROOF, INSULATED ENCLOSURE HAVING HINGED OPENINGS. THE SIEVE SHAKER SHALL BE A RO-TAP, ENDOCOTT FROM SOILTEST, SS-12R FROM GILSON OR APPROVED EQUAL. THE SHAKER SHALL BE SECURELY BOLTED TO A RIGID, STURDY SURFACE. ELECTRONIC BALANCE: THE BALANCE SHALL COMPLY WITH ASSHTO M 231 FOR GENERAL PURPOSE, CLASS G2 BALANCES, AND THE FOLLOWING: A. POWER: 115 VAC B. MODEL: TOP LOADING C. CAPACITY: MINIMUM OF 35 LBS. D. READABILITY AND SENSITIVITY: 0.0005 LB. E. ACCURACY: 0.001 LB. OR 0.1% F. DISPLAY PANEL: SHALL BE EQUIPPED WITH THE FOLLOWING: LED DISPLAY, ON/OFF KEY, PRINT KEY, RE-ZERO KEY, WEIGHING MODE KEY, SAMPLE % KEY, SERIAL RS- 232C PORT, AND A CALIBRATION SWITCH. G. WEIGHING MODES: GRAMS, POUNDS, AND PERCENT OF TARGET MASS (WEIGHT). H. WEIGHING SURFACE DIMENSION: MINIMUM OF 9 IN. WIDE BY 12 IN. DEEP. I. BASE: SHALL HAVE ADJUSTABLE LEVELING FEET AND A LEVEL VIAL ATTACHED. THE BALANCE SHALL BE EQUIPPED WITH AN UNDERHOOK WEIGHING DEVICE AND ONE COPY OF THE OWNER'S MANUAL. **RECORDING THERMOMETER:** RECORDING THERMOMETER FOR CURING TANKS SHALL BE EITHER ELECTRICAL OR MECHANICAL TYPE. A. THE ELECTRICAL RECORDING THERMOMETER SHALL BE EQUIPPED WITH THE FOLLOWING: (1) 120 VAC/60 Hz WITH A MINIMUM 3 FT. LONG POWER CORD. (2) MINIMUM 6 IN. DIAMETER CIRCULAR PAPER CHART WITH A BOX OF BLANK CHARTS. (3) A SELECTABLE TEMPERATURE SCALE WITH ONE SCALE THAT HAS A RANGE FROM 50° F. TO 120° F. (4) A SELECTABLE CHART SPEED WITH ONE SPEED OF 24 HOURS AND ONE SPEED OF 7 DAYS. THE SPEED ACCURACY SHALL BE ± 1.5%. (5) THE DISPLAY SHALL BE A MINIMUM 3 DIGIT LED WITH A MINIMUM DIGIT SIZE OF 0.5 IN. (6) THE TEMPERATURE ACCURACY OF THE MONITOR SHALL BE ± 1° F (7) THE MONITOR SHALL HAVE A CHART ADVANCE BUTTON, A TIME POINTER, A PEN ADJUST BUTTON, AND A TEMPERATURE ADJUST KNOB. THE RECORDING PEN SHALL BE AN INK TYPE WITH A SPARE PEN INCLUDED. THE TEMPERATURE PROBE SHALL BE SUBMERSIBLE TYPE J THERMOCOUPLE WITH A 15 FT. MINIMUM CORD | FNGTH. B. THE MECHANICAL RECORDING THERMOMETER SHALL BE EQUIPPED WITH THE FOLLOWING: (1) MINIMUM 3 IN. DIAMETER PRESSURE SENSITIVE PAPER CHART WITH A BOX OF BLANK CHARTS. (2) THE STEM OF THE THERMOMETER SHALL BE A MINIMUM OF 12 IN. LONG. (3) THE THERMOMETER SHALL BE A KEY TYPE, WINDING MODEL CAPABLE OF 7 DAY, 24 HOUR RECORDING. (4) THE DRIVE MECHANISM SHALL BE CAPABLE OF OPERATING BEYOND ITS FULL RECORDING RANGE BY A MINIMUM OF 20%. (5) THE THERMOMETER SHALL BE CAPABLE OF OPERATING FROM 0° F TO 200° F. (6) THE CLOCK MECHANISM ACCURACY SHALL BE A MINIMUM OF 2% OF THE FULL-SCALE RANGE BEING USED. (7) THE RECORDING RANGE SHALL BE A MINIMUM OF 20° F TO 220° F. THE RECORDING THERMOMETER SHALL BE MOUNTED IN SUCH A WAY THAT A MINIMUM 8 IN. OF THE STEM IS IMMERSED IN THE CURING TANKS AND IS EASILY ACCESSIBLE TO CHANGE THE RECORDING TEMPERATURE CHARTS. THE REQUIREMENTS LISTED HEREIN ARE INTENDED TO MEET THE NEEDS OF THE CDOT TESTING PERSONNEL CONCERNING TESTING FACILITIES. THERE IS NO INTENT TO SPECIFY ANY STRUCTURAL PORTIONS OF THE SUBJECT LABORATORY EXCEPT AS NEEDED TO SATISFACTORILY PERFORM THE REQUIRED TESTING OF MATERIALS.


THE GENERAL NOTES ARE CONTINUED ON SHEET 2.

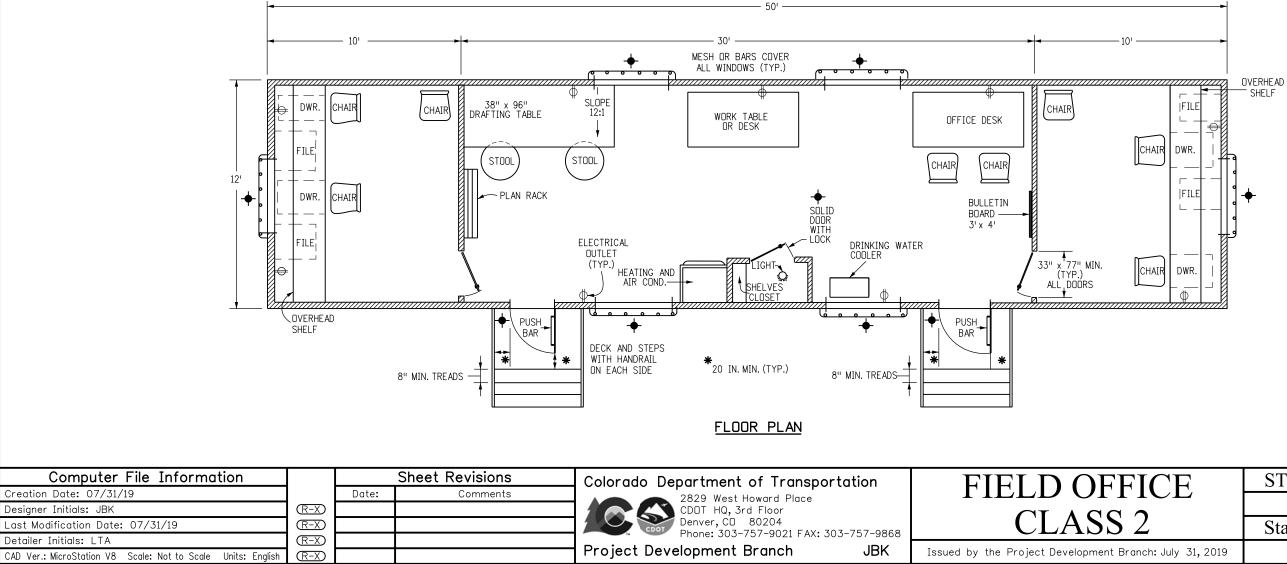
GENERAL NOTES (CONTINUED FROM SHEET 1)

- 27. FORCED AIR CONVECTION OVEN: REQUIRED ON PROJECTS WITH 5,000 OR MORE TONS OF HMA OR WHEN SPECIFIED IN THE PLANS. THE FORCED AIR OVEN REPLACES THE RANGE. THE OVEN SHALL BE RATED TO AT LEAST 1500 WATTS INCLUDING:
 - 1. AT LEAST ONE BLOWER TO CIRCULATE AIR INSIDE WITHOUT DISTURBING FINE GRAINED SOILS PLACED IN THE OVEN.
 - 2. A MINIMUM INTERIOR CAPACITY OF 4.8 CUBIC FEET.
 - 3. AN EXHAUST CHAMBER ADAPTER TO CONNECT TO A 3 INCH PIPE WHICH SHALL BE VENTED TO THE OUTSIDE.
 - 4. AT LEAST TWO ADJUSTABLE SHELVES.
 - 5. AN OVER-TEMPERATURE PROTECTION DEVICE.
 - 6. AN ELECTRONIC CONTROL SYSTEM WITH DIGITAL TEMPERATURE READ-OUT AND DIGITAL TEMPERATURE SET POINTS TO PRECISELY READ AND SET THE OVEN TEMPERATURE.
 - THE OVEN SHALL HAVE A TEMPERATURE RANGE FROM 104 °F TO 464 °F AND HAVE A UNIFORM TEMPERATURE OF ± 3 °F AT 230 °F.
 - THE OVEN SHALL BE CAPABLE OF MAINTAINING A CONSTANT TEMPERATURE, ± 5 °F, THROUGHOUT ITS TEMPERATURE RANGE.
 - THE OVEN HEATING ELEMENTS SHALL NOT BE ALLOWED TO OPERATE WITHOUT THE BLOWER.
 - THE FIELD LABORATORY SHALL BE EQUIPPED WITH A SEPARATE ELECTRICAL CIRCUIT TO SUPPLY POWER TO THE FORCED CONVECTION OVEN. IN ADDITION TO THE ABOVE FORCED AIR CONVECTION OVEN, A HOT PLATE CONFORMING TO THE FOLLOWING SHALL BE PROVIDED:
 - 1. TWO BURNER, PORTABLE, ELECTRICAL "CAL-ROD" OR "RANGETTE" TYPE.
 - 2. AT LEAST ONE BURNER SHALL BE RATED A MINIMUM OF 800 WATTS.
 - 3. EACH HOT PLATE SHALL BE EQUIPPED WITH AN ON-OFF INDICATOR LIGHT.
- 28. CURING TANK: MINIMUM 95 GALLON CAPACITY WITH A CIRCULATING PUMP WITH A 120 GPH RATING. TANK CAPACITY WILL INCREASE FOR LARGE CONCRETE PROJECTS WHEN SPECIFIED IN THE PLANS.

Computer File Information			Sheet Revisions	Colorado Department of Transportation	n	FIFLD LABOR
Creation Date: 07/31/19		Date:	Comments	2829 West Howard Place		FIELD LABOR
Designer Initials: JBK	(R-X)			CDDT HQ, 3rd Floor		
Last Modification Date: 07/31/19	(R-X)			Denver, CD 80204 Phone: 303-757-9021 FAX: 303-757-	8380-	CLASS
Detailer Initials: LTA	R-X					
CAD Ver.: MicroStation V8 Scale: Not to Scale Units: English	(R-X)			Project Development Branch JE	BK	Issued by the Project Developmen

RATORY	STANDARD PLAN NO.
~ ~ ~	M-620-2
S 2	Standard Sheet No. 2 of 2
ent Branch: July 31, 2019	Project Sheet Number:

- 1. CLASS 1 FIELD OFFICES SHALL CONSIST OF A WEATHERPROOF, INSULATED, TEMPORARY OFFICE TYPE TRAILER, CONSTRUCTED TO THE UNIFORM BUILDING CODE SERIES, WITH FLOOR PLAN AND EQUIPMENT LAYOUT SIMILAR TO THE DRAWING ON THIS SHEET. IT SHALL MEET OR EXCEED THE FOLLOWING REQUIREMENTS.
- 2. DIMENSIONS: 26 FT. LONG x 8 FT. WIDE OUTSIDE, 7 FT.-6 IN. HEIGHT INSIDE.
- 3. WINDOWS: A MINIMUM OF 4, WITH PROVISION FOR CROSS VENTILATION AND LOCKING.
- 4. OUTSIDE DOORS: TWO, REINFORCED WITH DEADBOLT LOCKS. DECK, STEPS, AND HANDRAILS AT EACH DOOR. THE STEPS SHALL BE PLACED SO THE DECK CAN BE ACCESSED EITHER FROM THE SIDE OR FROM THE FRONT. THE DECK, RAILS, AND STEPS SHALL MEET OSHA REQUIREMENTS.
- HEATING: A THERMOSTAT CONTROLLED FORCED AIR UNIT WITH A MINIMUM 5. INPUT CAPACITY OF 200 BTU PER SQUARE FT. OF FLOOR AREA.
- 6. AIR CONDITIONING: ONE, 8,300 BTU MINIMUM.
- 7. ELECTRICAL: WORK SHALL CONFORM TO THE NATIONAL ELECTRICAL CODE FOR 110/220 VOLTS, 60 Hz, APPLICATIONS AND PROVIDE RELIABLE UNIFORM POWER TO PROPERLY OPERATE ALL FIELD OFFICE EQUIPMENT.
- 8. LIGHTING: ADEQUATE FLUORESCENT LIGHTING OVER ALL DRAFTING TABLES AND DESK AREAS. THERE SHALL BE ONE 110 VOLT EXTERIOR PORCH LIGHT FIXTURE WITHIN 2 FT. OF EACH EXTERIOR DOOR.
- 9. DESKS: ONE 30 IN. x FULL INSIDE WIDTH x 30 IN. HIGH, AT EACH END OF THE TRAILER, SUPPORTED BY A LEGAL SIZE 2 DRAWER METAL FILE CENTER PEDESTÁL. EACH DESK TOP SHALL HAVE AN OVERHEAD SHELF AND TWO PEN DRAWERS.
- 10. DRAFTING TABLES: ONE 26 IN. x 72 IN. HINGED BOARD WITH DOUBLE STORAGE BELOW. SLOPE BOARD 12:1 DOWN TO 37 IN. HEIGHT AT FRONT EDGE.
- 11. FURNITURE: FOUR CHAIRS WITH ROLLERS AND TWO DRAFTING STOOLS. EACH OF APPROPRIATE HEIGHT. ALL CHAIRS SHALL BE ERGONOMICALLY BUILT.
- 12. PLAN STORAGE: A PLAN RACK OR FILE FOR FULL SIZE PLANS.
- 13. CLOSET: A LOCKED STORAGE AREA OF 15 SQ. FT.
- 14. DRINKING WATER SUPPLY: DRINKING WATER DISPENSED FROM AN ACCEPTABLE WATER COOLING DEVICE.
- 15. TELEPHONES: TWO TELEPHONES. TWO PRIVATE LINES (1FB) WITH TOUCH TONE SERVICE (IF AVAILABLE) FROM THE LOCAL CARRIER. ONE LINE SHALL BE SHARED BY THE TWO TELEPHONES. THE SECOND LINE SHALL BE SHARED BY A COMPUTER AND A FACSIMILE MACHINE. THE CONTRACTOR SHALL PROVIDE AN EXCLUSION SWITCH (AB SWITCH) FOR THE COMPUTER AND FACSIMILE MACHINE. TRAILER WIRING SHALL INCLUDE FOUR BOXES EQUIPPED WITH RJ-11 JACKS (TWO WIRE PAIRS PER JACK), TWO AT EACH END OF THE TRAILER. LOCATIONS WHERE PRIVATE LINE SERVICE IS NOT AVAILABLE, PROVIDE ONLY ONE TELEPHONE LINE.
- 16. FIRE EXTINGUISHER: ONE, DRY CHEMICAL, 10 LBS. CLASS ABC, UNDERWRITERS LABORATORIES, INC. APPROVED.
- 17. SECURITY: THIS SYMBOL 🔶 ON THE FLOOR PLAN DENOTES AREAS ON THE TRAILER WHERE ADEQUATE PROTECTION AGAINST ILLEGAL ENTRY, VANDALISM AND THEFT SHALL BE PROVIDED.


Computer File Information			Sheet Revisions	Colorado Department of Transporta	tion	FIELD OF
Creation Date: 07/31/19		Date:	Comments	2829 West Howard Place		FIELD UF
Designer Initials: JBK	R-X)			CDDT HQ, 3rd Floor		
Last Modification Date: 07/31/19	R-X)			Denver, CD 80204 Phone: 303-757-9021 FAX: 303-7	757_0969	CLASS
Detailer Initials: LTA	R-X					
CAD Ver.: MicroStation V8 Scale: Not to Scale Units: English	R-X			Project Development Branch	JBK	Issued by the Project Development

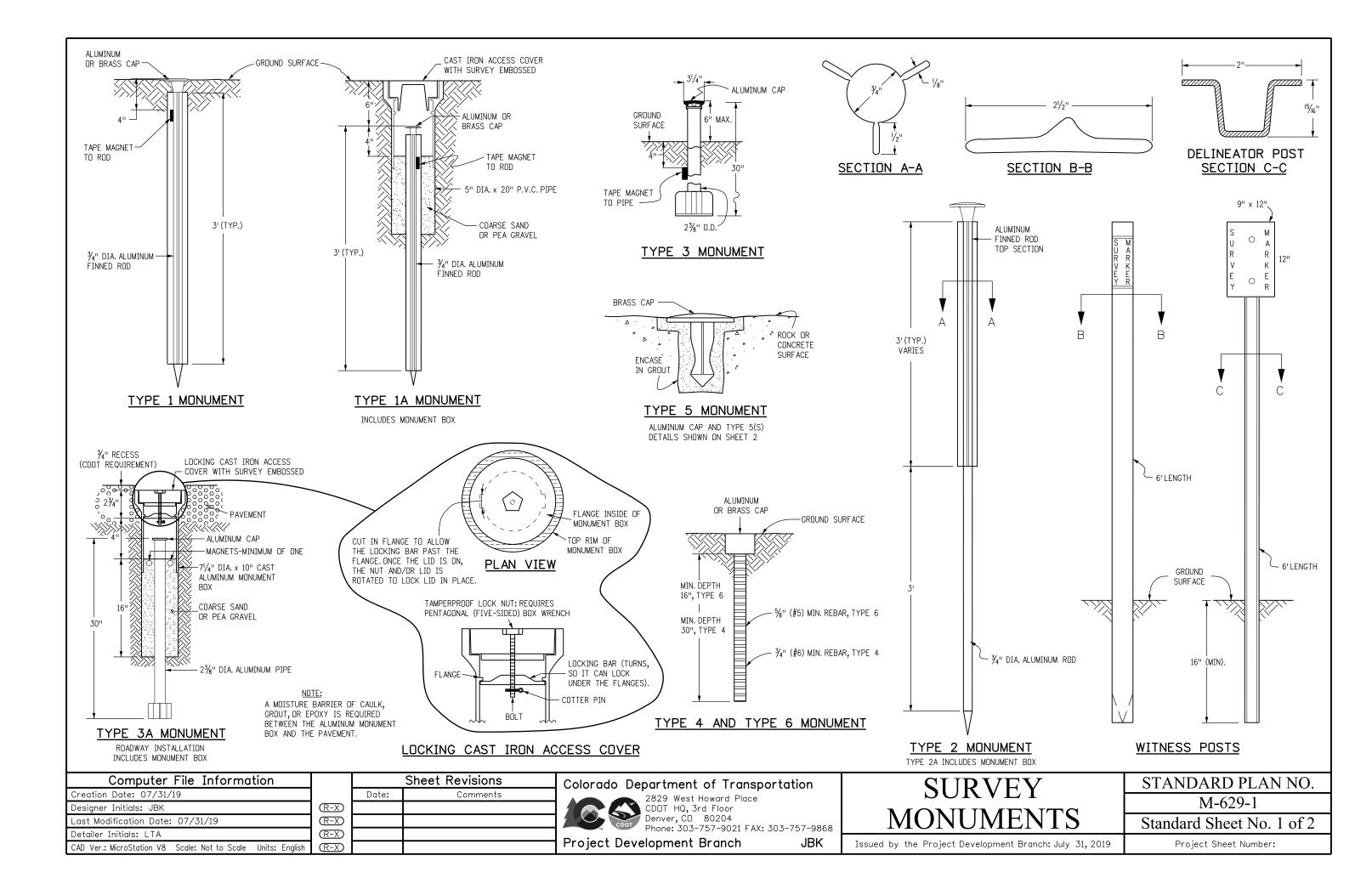
FFICE	STANDARD PLAN NO.				
_	M-620-11				
SS 1	Standard Sheet No. 1 of 1				
ent Branch: July 31, 2019	Project Sheet Number:				

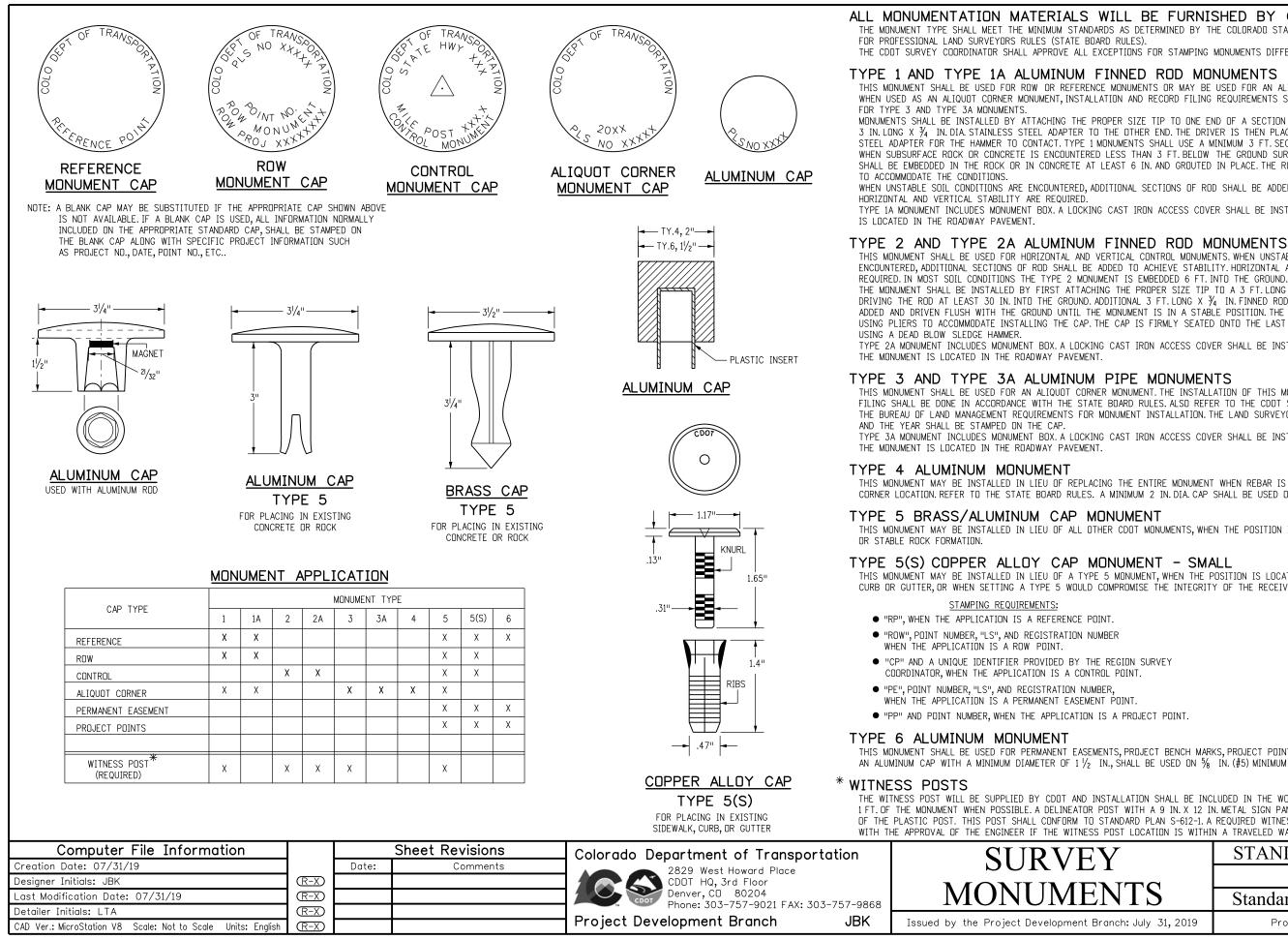
- 1. CLASS 2 FIELD OFFICES SHALL CONSIST OF A WEATHERPROOF, INSULATED, TEMPORARY OFFICE TYPE TRALER, BUILT TO THE UNITORM BUILDING CODE SERIE OF CODES, WITH FLOOR PLAN AND EQUIPMENT LAYOUT SIMILAR TO THE DRAWING SERIES ON THIS SHEET. IT SHALL MEET OR EXCEED THE FOLLOWING REQUIREMENTS.
- 2. DIMENSIONS: 50 FT. LONG x 12 FT. WIDE OUTSIDE, 7 FT.-6 IN. HEIGHT INSIDE.
- 3. WINDOWS: A MINIMUM OF 6, WITH PROVISION FOR CROSS VENTILATION AND LOCKING.
- 4. DOORS: TWO INSIDE DOORS, MAY BE LOCATED EITHER TO ONE SIDE OR AT CENTER OF PARTITION. ONE CLOSET DOOR. TWO OUTSIDE DOORS SHALL BE REINFORCED AND HAVE DEADBOLT LOCKS DECK, STEPS, AND HANDRAILS AT EACH OUTER DOOR. THE STEPS SHALL BE PLACED SO THE DECK CAN BE ACCESSED EITHER FROM THE SIDE OR FROM THE FRONT. THE DECK, RAILS, AND STEPS SHALL MEET OSHA REQUIREMENTS
- 5. HEATING & AIR CONDITIONING: THREE TON CAPACITY AIR CONDITIONING AND 80,000 BTU CAPACITY HEATING, CONNECTED TO DUCTING & THERMOSTAT CONTROLLED.
- 6. ELECTRICAL: WORK SHALL CONFORM TO THE NATIONAL ELECTRICAL CODE FOR 110/220 VOLTS, 60 Hz, APPLICATIONS AND PROVIDE RELIABLE UNIFORM POWER TO PROPERLY OPERATE ALL FIELD OFFICE EQUIPMENT.

- GENERAL NOTES
- 7. LIGHTING: ADEQUATE FLUORESCENT LIGHTING OVER ALL DRAFTING TABLES AND DESK AREAS. THERE SHALL BE ONE 110 VOLT EXTERIOR PORCH LIGHT FIXTURE WITHIN 2 FT. OF EACH EXTERIOR DOOR.
- 8. DESKS: ONE 30 IN. x FULL INSIDE WIDTH x 30 IN. HIGH AT EACH END OF THE TRAILER, SUPPORTED BY A LEGAL SIZE 2 DRAWER METAL FILE CENTER PEDESTAL. EACH DESK TOP SHALL HAVE AN OVERHEAD SHELF AND TWO PEN DRAWERS.
- 9. DRAFTING TABLE: ONE 38 IN. x 96 IN. TABLE, SLOPED 12:1 TO 37 IN. HEIGHT AT FRONT EDGE OR WITH PROVISION FOR ADJUSTING THE SLOPE.
- 10. WORK TABLE: ONE 72 IN. x 36 IN. TABLE. THE TOP OF THE TABLE SHALL BE FREE OF ALL SCRATCHES, CHIPS, AND DENTS.
- 11. OFFICE DESK: ONE 72 IN. x 36 IN. DESK WITH SIX DRAWERS AND ONE CENTER PEN DRAWER. THE TOP OF THE DESK SHALL BE FREE OF ALL SCRATCHES, CHIPS, AND DENTS.
- 12. FURNITURE: EIGHT CHAIRS WITH ROLLERS AND TWO DRAFTING STOOLS. EACH OF APPROPRIATE HEIGHT. ONE WORK TABLE OR DESK. ALL CHAIRS SHALL BE ERGONOMICALLY BUILT.
- 13. PLAN STORAGE: A PLAN RACK OR FILE FOR FULL SIZE PLANS.

- 16.

14. CLOSET: A LOCKED STORAGE AREA OF 15 SQ. FT.


15. DRINKING WATER SUPPLY: DRINKING WATER DISPENSED FROM AN ACCEPTABLE WATER COOLING DEVICE.


TELEPHONES: THREE, 2-LINE TELEPHONES. FOUR PRIVATE LINES (1FB) WITH TOUCH TONE SERVICÉ. TWO LINES ARE FOR TELEPHONE SERVICES, WITH ROLL-OVER CAPABILITY FOR THE THREE TELEPHONES. ONE LINE SHALL BE USED FOR THE COMPUTER, AND ONE LINE SHALL BE USED FOR THE FACSIMILE MACHINE. TRAILER WIRING SHALL INCLUDE 9 RJ-11 JACKS, ONE JACK EACH FOR A TWO-LINE TELEPHONE, A COMPUTER LINE, AND A FACSIMILE MACHINE LINE AT EACH END OF THE OFFICE, AND IN THÉ CENTER AREA OF THE OFFICE.

17. FIRE EXTINGUISHER: TWO, DRY CHEMICAL, 10 LBS. CLASS ABC, UNDERWRITERS LABORATORIES, INC. APPROVED.

18. SECURITY: THIS SYMBOL + ON THE FLOOR PLAN DENOTES AREAS ON THE TRAILER WHERE ADEQUATE PROTECTION AGAINST ILLEGAL ENTRY, VANDALISM AND THEFT SHALL BE PROVIDED.

FFICE	STANDARD PLAN NO.
	M-620-12
SS 2	Standard Sheet No. 1 of 1
nent Branch: July 31, 2019	Project Sheet Number:

ALL MONUMENTATION MATERIALS WILL BE FURNISHED BY CDOT

THE MONUMENT TYPE SHALL MEET THE MINIMUM STANDARDS AS DETERMINED BY THE COLORADO STATE BOARD OF REGISTRATION

THE CDOT SURVEY COORDINATOR SHALL APPROVE ALL EXCEPTIONS FOR STAMPING MONUMENTS DIFFERING FROM THE STANDARDS.

THIS MONUMENT SHALL BE USED FOR ROW OR REFERENCE MONUMENTS OR MAY BE USED FOR AN ALIQUOT CORNER MONUMENT. WHEN USED AS AN ALIQUOT CORNER MONUMENT, INSTALLATION AND RECORD FILING REQUIREMENTS SHALL BE AS STATED

MONUMENTS SHALL BE INSTALLED BY ATTACHING THE PROPER SIZE TIP TO ONE END OF A SECTION OF FINNED ROD, AND A 3 IN LONG X $\frac{3}{4}$ IN DIA STAINLESS STEEL ADAPTER TO THE OTHER END. THE DRIVER IS THEN PLACED OVER THE STAINLESS STEEL ADAPTER FOR THE HAMMER TO CONTACT. TYPE 1 MONUMENTS SHALL USE A MINIMUM 3 FT. SECTION OF FINNED ROD. WHEN SUBSURFACE ROCK OR CONCRETE IS ENCOUNTERED LESS THAN 3 FT. BELOW THE GROUND SURFACE, THE ROD SHALL BE EMBEDDED IN THE ROCK OR IN CONCRETE AT LEAST 6 IN. AND GROUTED IN PLACE. THE ROD MAY BE SHORTENED

WHEN UNSTABLE SOIL CONDITIONS ARE ENCOUNTERED, ADDITIONAL SECTIONS OF ROD SHALL BE ADDED TO ACHIEVE STABILITY.

TYPE 1A MONUMENT INCLUDES MONUMENT BOX. A LOCKING CAST IRON ACCESS COVER SHALL BE INSTALLED WHEN THE MONUMENT

THIS MONUMENT SHALL BE USED FOR HORIZONTAL AND VERTICAL CONTROL MONUMENTS. WHEN UNSTABLE SOIL CONDITIONS ARE ENCOUNTERED, ADDITIONAL SECTIONS OF ROD SHALL BE ADDED TO ACHIEVE STABILITY. HORIZONTAL AND VERTICAL STABILITY ARE THE MONUMENT SHALL BE INSTALLED BY FIRST ATTACHING THE PROPER SIZE TIP TO A 3 FT.LONG X 3/4 IN.DIA.ROD, THEN DRIVING THE ROD AT LEAST 30 IN. INTO THE GROUND. ADDITIONAL 3 FT. LONG X 3/4 IN. FINNED ROD SECTIONS SHALL BE ADDED AND DRIVEN FLUSH WITH THE GROUND UNTIL THE MONUMENT IS IN A STABLE POSITION. THE FINS ARE BENT OVER USING PLIERS TO ACCOMMODATE INSTALLING THE CAP. THE CAP IS FIRMLY SEATED ONTO THE LAST FINNED SECTION OF ROD

TYPE 2A MONUMENT INCLUDES MONUMENT BOX. A LOCKING CAST IRON ACCESS COVER SHALL BE INSTALLED WHEN

THIS MONUMENT SHALL BE USED FOR AN ALIQUOT CORNER MONUMENT. THE INSTALLATION OF THIS MONUMENT AND RECORD FILING SHALL BE DONE IN ACCORDANCE WITH THE STATE BOARD RULES ALSO REFER TO THE CODT SURVEY MANUAL AND THE BUREAU OF LAND MANAGEMENT REQUIREMENTS FOR MONUMENT INSTALLATION. THE LAND SURVEYOR'S LICENSE NUMBER

TYPE 3A MONUMENT INCLUDES MONUMENT BOX. A LOCKING CAST IRON ACCESS COVER SHALL BE INSTALLED WHEN

THIS MONUMENT MAY BE INSTALLED IN LIEU OF REPLACING THE ENTIRE MONUMENT WHEN REBAR IS IN PLACE AT AN ALIQUOT CORNER LOCATION REFER TO THE STATE BOARD RULES. A MINIMUM 2 IN DIA CAP SHALL BE USED ON $\frac{3}{2}$ IN (#6) REBAR.

THIS MONUMENT MAY BE INSTALLED IN LIEU OF ALL OTHER CDOT MONUMENTS, WHEN THE POSITION IS LOCATED IN CONCRETE

THIS MONUMENT MAY BE INSTALLED IN LIEU OF A TYPE 5 MONUMENT, WHEN THE POSITION IS LOCATED IN A CONCRETE SIDEWALK. CURB OR GUTTER, OR WHEN SETTING A TYPE 5 WOULD COMPROMISE THE INTEGRITY OF THE RECEIVING STRUCTURE.

THIS MONUMENT SHALL BE USED FOR PERMANENT EASEMENTS, PROJECT BENCH MARKS, PROJECT POINTS, AND REFERENCES. AN ALUMINUM CAP WITH A MINIMUM DIAMETER OF 1 1/2 IN., SHALL BE USED ON 🐐 IN. (#5) MINIMUM REBAR.

THE WITNESS POST WILL BE SUPPLIED BY CDOT AND INSTALLATION SHALL BE INCLUDED IN THE WORK. IT SHALL BE DRIVEN WITHIN 1 FT. OF THE MONUMENT WHEN POSSIBLE. A DELINEATOR POST WITH A 9 IN. X 12 IN. METAL SIGN PANEL MAY BE USED IN LIEU OF THE PLASTIC POST. THIS POST SHALL CONFORM TO STANDARD PLAN S-612-1. A REQUIRED WITNESS POST MAY BE OMITTED WITH THE APPROVAL OF THE ENGINEER IF THE WITNESS POST LOCATION IS WITHIN A TRAVELED WAY, DRIVEWAY, OR ACCESS OPENING.

EY	STANDARD PLAN NO.				
	M-629-1				
ENTS	Standard Sheet No. 2 of 2				
ent Branch: July 31, 2019	Project Sheet Number:				